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The generation and verification of large-scale entanglement are essential to the development of
quantum technologies. In this paper, we present an efficient scheme to generate genuine multipartite
entanglement of a large number of qubits, by using the Heisenberg interaction. This method can
be conveniently implemented in various physical platforms, including superconducting, trapped-ion,
and cold-atom systems. In order to characterize the entanglement of the output quantum state, we
generalize the stabilizer formalism and develop an entanglement witness method. In particular, we
design a generic searching algorithm to optimize entanglement witness with a minimal number of
measurement settings under a given noise level. From the perspective of practical applications, we
numerically study the trade-off between the experiment efficiency and the detection robustness.

I. INTRODUCTION

Entanglement is a crucial resource in quantum mechanics and plays a central role in quantum information processing,
including quantum communication [1], quantum computing [2, 3], quantum cryptography [4], and quantum metrology
[5]. The experimental research of quantum information is committed to realizing massive quantum equipment, such
as large-scale quantum networks [6] and fault-tolerant quantum computers [7, 8]. One of the key objectives in
this field is to generate entanglement among a large number of degree of freedoms, known as genuine multipartite
entanglement (GME) [9]. The size of the genuinely entangled quantum system becomes a figure of merit for assessing
the advancement of quantum devices in the competition among various realizations.

The generation of large-scale GME generally requires a number of entangling gates. In the noisy intermediate-scale
quantum era [10], it is challenging to operate quantum gates precisely with a deep circuit, due to the decoherence
and noise, which becomes the main obstacle in generating large-scale quantum entanglement. Compared with single-
qubit gates, two-qubit entangling gates would normally introduce more noises to the system. Thus, in a quantum
information processing task, we should minimize the number of two-qubit gates to suppress the negative effects of the
noise. In this paper, we propose an efficient scheme based on the Heisenberg interaction to generate GME in large-
scale quantum systems, which only contains a very shallow circuit and can be directly applied on many experimental
platforms.

Due to the exponential scaling of the Hilbert space with the number of subsystems, it is generally a challenging
task to fully detect the entanglement of a large quantum system, which normally requires quantum state tomography.
Numerous theoretical and experimental efforts have been devoted to characterize GME [11], such as ion trap [12, 13],
photons [14, 15], Rydberg atoms [16] and superconducting circuits [17–19]. With certain preknowledge of the prepared
state, the entanglement witness (EW) [20, 21] has been proposed to efficiently determine whether a state is entangled
by using a limited number of measurements. In general, the EW is a Hermitian operator W which has non-negative
expectation values for all separable states and negative values for some specific entangled states [21], i.e.,

〈W〉 ≥ 0, for all separable states;

〈W〉 < 0, for some entangled states.
(1)

With the prior knowledge of an entangled pure state |ψ〉, there exists a generic construction of an EW operator to
detect entanglement around |ψ〉. One widely used EW operator is given by

Wψ = αI− |ψ〉 〈ψ| , (2)

where α is the maximal fidelity between the state |ψ〉 and any bi-separable state [22]. Here,Wψ is a global EW operator
and can detect GME of an unknown state ρ close to |ψ〉. From the view of experimental implementation, two central
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concerns naturally arise. First, the EW operator is global and needs to be decomposed into local observables. Second,
the generation of entanglement inevitably suffers from noises and hence the EW should be robust against the noises.
A few of quantum states with certain symmetry including cluster states and more general graph states [23, 24],
Greenberger-Horne-Zeilinger (GHZ) states and W states [25, 26] and more general permutation invariant states
[27, 28] are widely studied, which have efficient EW constructions. There are also a few other entanglement detection
and quantification methods besides linear witness operators, such as entanglement criteria based on correlations
[29, 30], concurrences [31, 32], Fisher information [33, 34], and spin squeezing from collective measurements [35–37].
Nevertheless, the entangled states generated by experimentally engineered Hamiltonians are usually complex and do
not belong to standard Pauli stabilizer states. Simple EW construction methods cannot be directly applied here. How
to efficiently witness GME for a relatively complex entangled state remains an open problem.

In this paper, we generalize the stabilizer formalism and apply the EW method to characterize the entanglement of
our target states. We analyze the stabilizer structures and draw a family of EW operators which can be evaluated using
a specific number of local measurements. Then, we design a searching algorithm to optimize the EW for the target
state. In our method, optimization runs in the sense of finding the EW operator with the maximal noise tolerance.
Here, the noise tolerance means the upper bound of tolerable noise for the experiment setup. Thus, given any noise
condition, our method can always find an optimal EW operator with minimal local measurements to characterize
GME for our target state. In fact, our algorithm is general and can be used to design an optimal EW operator for
other generalized stabilizer states. In particular, we find that the noise tolerance increases as the local measurement
complexity of an EW operator grows. However, one cannot unboundedly increase the number of local measurement
settings for the sake of the detection robustness. There exists a balance between detection efficiency and robustness.
We investigate the trade-off between experiment efficiency and detection robustness to help find the most appropriate
EW operator in the real laboratory.

The paper is organized as follows. Sec. II introduces an efficient generation scheme of the large-scale entangled
state. In Sec. III, we generalize the stabilizer formalism and then in Sec. IV we apply it to construct the EW for
the non-Pauli stabilizer state. Sec. V proposes a generic searching algorithm to find the optimal EW operator. In
Sec. VI, we show the numerical results and discuss the trade-off between the detection robustness of a witness and its
required number of measurement settings. Finally, we conclude and discuss possible future directions.

II. ENTANGLEMENT GENERATION

Entangling gates are essential to the entanglement generation. The control of qubit interactions is the core tech-
nology of generating two-qubit or multi-qubit gates, where great efforts have been devoted to this direction [38–40].
Typical interactions arising in most experimental architectures include the Ising model [41] and Heisenberg model [42].
The Ising interaction is usually implemented in trapped ions [43], Rydberg atoms [44], nuclear magnetic resonance
[45], flux and charge superconducting systems [46, 47], and can generate controlled-phase gate and controlled-NOT
gate by tuning the time-evolution parameters of the spin-spin interaction. The Heisenberg interaction is widely em-
ployed in many experimental architectures and can generate various entangling gates. In this paper, we focus on the
Heisenberg interaction, but our method can be applied to the Ising interaction as well.

The Heisenberg model is frequently employed to quantum dot spins [48], nuclear spins [49], and cavity QED [50].
The coupling Hamiltonian of the Heisenberg interaction is given by

H(ij) =
J

2
(XiXj + YiYj + ZiZj), (3)

where J is the coupling strength between the qubits i and j and we denote Ij , Xj , Yj and Zj as the identity and Pauli
operators for the qubit j. The time evolution of the Heisenberg interaction is given by

U (ij)(t) = exp
[
−iH(ij)t

]
=


e−iJt/2 0 0 0

0 cos(Jt)eiJt/2 −i sin(Jt)eiJt/2 0
0 −i sin(Jt)eiJt/2 cos(Jt)eiJt/2 0
0 0 0 e−iJt/2

 (4)

By tuning the evolution time at t = π
4J , a two-qubit

√
SWAP gate is obtained. In this paper, we will employ

√
SWAP

gate to generate large-scale entanglement, and our method can be applied to other two-qubit entangling gates as
well. One can use the

√
SWAP gates with several additional single qubit rotations to generate controlled-phase and

controlled-NOT gates [51]. Hence, the
√

SWAP gate, together with single-qubit gates, forms the complete gate set
for universal quantum computing [52]. As mentioned above, the controlled-phase gate and controlled-NOT gate are
unable to achieve directly in the Heisenberg interaction. The construction of the controlled gates pays a considerable
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cost in terms of the circuit depth and the number of qubit operations. Thus, one would better directly use
√

SWAP to
generate entangled states, which is simpler, more efficient and robust to quantum noises. It is worth noting that the
generated target state is not a standard stabilizer state, which is uniquely identified by a set of n-fold Pauli tensors.

The connection structure is similar to the Affleck-Kennedy-Lieb-Tasaki state [53], as shown in Fig. 1. Each pair of

spin-1/2 is set to the quantum singlet, whereas the coupling operation is the
√

SWAP gate. The generation procedure

runs as follows: First prepare the original register as N singlets |Ψ0〉 = |Ψ−〉⊗N , where |Ψ−〉 = (|01〉 − |10〉)/
√

2, and

then simultaneously apply the
√

SWAP gate between the nearest neighbor qubits.

√
SWAP

√
SWAP

√
SWAP

√
SWAP

= (|01〉 − |10〉)/
√

2

FIG. 1. (Color Online) Genuine multipartite entangled target state. The qubit pairs connected by solid lines denote singlets

and the dashed ovals are
√

SWAP gates.

Finally, we achieve the 2N -qubit entangled state as the target state,

|Ψ〉 =

N⊗
i=1

√
SWAP2i,2i+1

∣∣Ψ−〉⊗N . (5)

Note that the target state obtained here has the periodic boundary condition, i.e., the first and last qubits are coupled
by the

√
SWAP gate. This may be unrealistic in some experiments when the qubits are positioned in a straight line

and the interactions could only be employed between the nearest neighboring qubits. However, the lack of periodic
boundary condition will not affect our analysis much. We will elaborate more on this in Sec. IV. Furthermore, the
target state itself has an interesting property. Since the Heisenberg model of Eq. (3) has a SU(2) symmetry, the
magnetic quantum number

∑
Zi of the whole system is constant and maintains 0 during the entanglement generation

procedures. Also, the whole generation procedures only contain a depth-1 circuit, which is resource-efficient for the
experiment and can achieve very high fidelity.

III. GENERALIZED STABILIZER FORMALISM

Let Si denote the stabilizer operator on an n-qubit quantum system. A stabilizer Si is an n-fold tensor product of n
operators chosen from the one qubit Pauli operators P1 = ±{X,Y, Z, I}. A stabilizer set S = {S1, · · · , Sn} consisting
of n mutually commuting and independent stabilizer operators is called the set of stabilizer “generators”. The n
operators in set S uniquely identify a state |ψ〉 satisfying Si |ψ〉 = |ψ〉 for i = 1, · · · , n. Therefore, the density matrix
of |ψ〉 can be written as |ψ〉 〈ψ| =

∏
i
Si+I

2 [54]. The entangled state we prepare in Sec. II is not a standard stabilizer

state, since the
√

SWAP operations transform the single Pauli operator to the summation of Pauli operators in P⊗n1 .
This motivates us to generalize the definition of standard stabilizer state to the generalized stabilizer state [55].

Definition 1 (Generalized stabilizer state). For an n-qubit quantum system, a generalized stabilizer state |Ψ〉 is
the unique eigenstate to eigenvalue +1 of the n mutually commuting and independent generalized stabilizer operators
{S1, · · · , Sn}, where each Si is an arbitrary Hermitian and unitary operator. Set S is called the set of generalized
stabilizer generators.

Proposition 1. For any pure state |ϕ〉 ∈ H⊗n2 , there exists a generalized stabilizer set {Sϕ} which can uniquely
determine |ϕ〉.

Proof. For |ϕ〉 ∈ H⊗n2 , we have |ϕ〉 = Uϕ |0〉⊗n, where Uϕ is a specific unitary operator determined by |ϕ〉. Since

S = {Zi} is the stabilizer set of |0〉⊗n, we can derive Sϕ = Uϕ{Zi}U†ϕ as the stabilizer set of |ϕ〉.

From Definition 1, we can easily construct a stabilizer set under any unitary transformation. Designate |ψ〉 as a
standard stabilizer state and S = {Si} as its stabilizer generator set. Applying an arbitrary unitary U on |ψ〉, we have
(USiU

†)U |ψ〉 = U |ψ〉 for all i’s. In other words, set SU = U{Si}U† is the generator set for the generalized stabilizer
state U |ψ〉, where U{Si}U† represents premultiplying U and postmultiplying U† to each element in S. There is a
similar definition of generalized stabilizer state mentioned in Ref. [56] where the stabilizer Si is defined as an N -fold
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tensor product of arbitrary possibly non-Hermitian, linear operator. Our definition loosens the restriction of N -fold
tensor product formulation, but limits the stabilizer Si to a Hermitian operator. We also remark that this generalized
stabilizer formalism is used to construct the witness for the W state [21] and to quantify quantum coherence in the
multipartite system [57].

Now return to our target entangled state |Ψ〉 defined in Eq. (5), which is constructed by 2N singlets with
√

SWAP
operations connecting every neighboring pair of sites. Each singlet |Ψ−〉 is a standard stabilizer state, whose stabilizer

set can be chosen as {−XX,−ZZ}. Then consider the set of
√

SWAP operations as an additional operation U applied

on the 2N singlets, where U =
⊗N

i=1

√
SWAP2i,2i+1. Hence, the corresponding transformed stabilizer set for each

singlet become U{−XX,−ZZ}U†, which we define as

S̃
(i)
XX = −UXjXj+1U

†

= −(Xj−1Ij + Ij−1Xj − Yj−1Zj + Zj−1Yj)⊗ (Xj+1Ij+2 + Ij+1Xj+2 + Yj+1Zj+2 − Zj+1Yj+2),

S̃
(i)
ZZ = −UZjZj+1U

†

= −(Zj−1Ij + Ij−1Zj + Yj−1Xj −Xj−1Yj)⊗ (Zj+1Ij+2 + Ij+1Zj+2 − Yj+1Xj+2 +Xj+1Yj+2),

(6)

with j = 2i− 1. Here S̃
(i)
XX and S̃

(i)
ZZ are the U -transformed stabilizers for the i-th singlet. In general, the single Pauli

product term XjXj+1(ZjZj+1) are transformed into the linear combinations of 16 Pauli tensors under the entangling
operation U .

IV. GME WITNESS FOR THE GENERALIZED STABILIZER STATE

In order to study the entanglement properties of a given state, one may conventionally employ the tomography
method to fully characterize the quantum state. As we known, quantum state tomography is resource-intensive and
becomes impractical for large-scale quantum systems. The EW method is proposed to balance the measurement
complexity and the completeness of state information, which can efficiently verify the entanglement for any given
state [21]. Before giving detailed descriptions of the EW method, we first give a rigorous definition of GME. A pure
state |ψ〉 is called bi-separable if we can find a bi-partition {A,B} such that |ψ〉 = |φ〉A ⊗ |χ〉B . A mixed state ρ is
called bi-separable if it can be decomposed into a convex combination of the pure product states |ψi〉 = |φ〉Ai ⊗ |χ〉Bi
under bipartitions {Ai, Bi}, i.e., ρ =

∑
i pi |ψi〉 〈ψi| and each |ψi〉 can have different bipartition. Otherwise, the state

possesses genuine multipartite entanglement [9, 21].

A. Projector-based witness

As for our target state |Ψ〉 of Eq. (5), the projector-based EW operator can be written as

WΨ =
5

8
I− |Ψ〉 〈Ψ| , (7)

Here, the coefficient αΨ = 5/8 is computed as the largest Schmidt coefficient of |Ψ〉 〈Ψ| under any bipartition [22].
Note that for our target state, this value remains constant and has nothing to do with the amount N of singlets. The
operator Wψ is a global witness and can detect GME of an unknown state ρ close to |Ψ〉. One can always conclude
that ρ is genuinely multipartite entangled when its fidelity satisfies Fρ = tr(|Ψ〉 〈Ψ| ρ) > 5/8.

Then the question comes to how to measure the witness operator WΨ. Now we show that the projector-based
witness in Eq. (7) can be decomposed as a summation of the generalized stabilizers terms. As mentioned in Sec. III,

target state |Ψ〉 is the unique +1 eigenstate of each element in the stabilizer set {S̃(i)
XX , S̃

(i)
ZZ}, thus, we can define the

corresponding stabilizer projectors,

P̃
(i)
XX =

S̃
(i)
XX + I

2
,

P̃
(i)
ZZ =

S̃
(i)
ZZ + I

2
.

(8)

Then, the projectors onto the target state can be written as the product of the stabilizing projectors,

|Ψ〉 〈Ψ| =
∏
i

P̃
(i)
XX P̃

(i)
ZZ . (9)
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From the above definition, we can see the target state projector can always be decomposed into a combination of
products of stabilizer terms. One can measure these observables in experiments and obtain an estimation value of
WΨ.

The key challenge of the EW method is to efficiently estimate the expectation value of WΨ in experiments. The
experimental efforts for measuring a witness can be described by the number of local measurements. Denote

⊗n
k=1O(k)

as a local measurement setting (LMS), which consists of performing Pauli measurements O(k) ∈ {X,Y, Z} or doing
nothing (O(k) = I) to the k-th qubit [58]. Note that the measurements in one LMS are performed simultaneously. For
an EW operator W, we call the number of LMSs required to measure W as its local measurement complexity (LMC)
[28], denoted by CW , which is an important quantity to evaluate the efficiency of W in experiments. For typical
symmetric entangled states, GHZ and W states, one can make efficient decompositions of the corresponding state
projectors and estimate the fidelities with N + 1 and 2N + 1 LMSs, respectively. However, for some more complex
entangled states, the fidelity estimation requires too much measurement effort even using state decomposition. In this
case, instead of measuring the projector-based witness Wψ of Eq. (2), one can alternatively measure a new witness
[25]

W ′ψ = αI− |ψ〉 〈ψ|+Q, (10)

where Q is a positive operator, and the criterion in Eq. (1) can always be satisfied. Then the question comes to how
to choose the positive operator Q so that the estimation of witness requires only a few measurements, whereas still
obtaining a good bound on the fidelity. One feasible solution is to subtract the complicated state projector |ψ〉 〈ψ|
and replace it by the linear combination of the operators with fewer LMSs {Pi}, i.e.,

Q = |ψ〉 〈ψ|+
∑
i

ciPi. (11)

Note that the operator set {Pi} is indeed a decomposition of the projector, i.e., |ψ〉 〈ψ| =
∏
i Pi, thus we call it the

bounding decomposition method.
Now return to our target state. Unlike standard Pauli stabilizer states, the

√
SWAP operations make the stabilizers

of our target state more complicated [see Eq. (6)], which may increase the measurement effort for estimating the
fidelity. It is easy to see the LMC for the projector-based EW operator of Eq. (7) is CWψ

= 32(N−1), comparable to
the experimental cost for quantum state tomography. Obviously, this witness is impractical for a large-scale quantum
system. One can derive an appropriate operator Q via the bounding decomposition method to obtain a more efficient
witness. We will demonstrate this with several cases in the next section.

B. Witness operator with 3k LMSs

In this section, we will focus on the bounding decomposition method for the EW operator. We first review a simple
decomposition scheme for projectors [23, 24].

Proposition 2. For a set of projectors {P1, · · · , Pk}, we have

P1 · · ·Pk ≥ P1 + · · ·+ Pk − (k − 1)I, (12)

where A ≥ B means (A−B) is positive semidefinite.

In the following part we will omit the brackets when there is no ambiguity. As for the inequality of Eq. (12), the
LMC needed to measure the left part is larger than that for the right part. For example, set P1 = (I + X)/2, P2 =
(I + Z)/2, the LMC for measuring P1P2 is CL = 3, whereas for measuring (P1 + P2) is CR = 2. Thus, one
can improve the efficiency of an EW operator by changing the product form into the summation form. Since no

overlap exists between the LMSs for the transformed stabilizers S̃
(i)
XX and S̃

(i)
ZZ of Eq. (6), one should separate the

corresponding projectors to decrease the total LMC for the witness. According to Proposition 2, one can choose

Q = |Ψ〉 〈Ψ|+ 2I−
∏N
i P̃

(i)
XX −

∏N
i P̃

(i)
ZZ and propose a more efficient witness

W ′Ψ =
13

8
I− (

N∏
i

P̃
(i)
XX +

N∏
i

P̃
(i)
ZZ), (13)

with the LMC CW′Ψ = 2 ·3(N−1), whereas the LMC for the original EW operator defined in Eq. (7) is CWΨ
= 32(N−1).

Our slight modification makes a square root reduction for the LMC. Moreover, the product terms
∏N
i P̃

(i)
XX and∏N

i P̃
(i)
ZZ can be further decomposed based on Proposition 2. In general, we can present a projector product subset

with different LMSs for the EW operator, as shown in the following proposition.
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Proposition 3. For the target state of Eq. (5) and its corresponding stabilizer projectors {P̃ (i)}XX/ZZ defined in

Eq. (6) and (8), the LMC of measuring the projector product term P̃ (i1) · · · P̃ (ik)(1 ≤ i1 < · · · < ik ≤ N) is given by,

LMC =


9, k = 1;
15, k = 2 and (i1 − i2) mod N = ±1;

3
∑k
r=1 min(ir−ir−1,2), otherwise,

(14)

where i0 is set to be ik −N with the periodic boundary condition.

Proof. We only prove the case of {P̃ (i)}XX and the same argument applies for {P̃ (i)}ZZ . We omit the subscript XX

for simplicity. We first consider a single projector P̃ (i) = (S̃(i) + I)/2, whose LMC is explicitly determined by S̃(i).

As shown in Eq. (6), there are 16 Pauli combinations in P̃ (i). Let j = 2i − 1, a good point is that only one LMS
X(j−1)X(j) is needed for measuring Xj−1Ij and Ij−1Xj . Thus we only need nine LMSs to estimate the projector

P̃ (i), denoted by {O(i)
1 ⊗O

(i)
2 }, where

O
(i)
1 ∈ {X(j−1)X(j), Y (j−1)Z(j), Z(j−1)Y (j)},

O
(i)
2 ∈ {X(j+1)X(j+2), Y (j+1)Z(j+2), Z(j+1)Y (j+2)}.

(15)

Then, consider a projector product term P̃ (i)P̃ (i+1), the corresponding LMC is determined by S̃(i), S̃(i+1) and

S̃(i)S̃(i+1). Consistent with Eq. (15), the LMSs for measuring S̃(i), S̃(i+1) can be written as {O(i)
1 ⊗ O

(i)
2 } and

{O(i+1)
1 ⊗O(i+1)

2 }. Due to the identical relation,

UX(j+1)X(j+2)U† = X(j+1)X(j+2), (16)

where U is the coupling operation discussed in Sec. III, the LMSs for measuring S̃(i)S̃(i+1) are {O(i)
1 ⊗X(j+1)X(j+2)⊗

O(i+1)
2 }. Thus the total LMC for P̃ (i)P̃ (i+1) is 15.

Finally we consider the projector product term P̃ = P̃ (i1) · · · P̃ (ik) [k ≥ 2, (i1 − i2) mod N 6= ±1]. Decomposing P̃
into the sum of stabilizers, one can find the related LMSs are determined by the stabilizer set,

S = {s(a1 · · · ak)|s(a1 · · · ak) = (S̃(i1))a1 · · · (S̃(ik))ak , aj ∈ {0, 1}, 1 ≤ j ≤ k}. (17)

We now prove the LMSs L = {O(i1)
1 ⊗O(i1)

2 ⊗ · · · ⊗O(ik)
1 ⊗O(ik)

2 } are necessary and sufficient for measuring P̃ . The

LMSs for measuring each stabilizer S̃(ij) are {O(ij)
1 ⊗ O

(ij)
2 }, thus, L are sufficient for all the elements in S, i.e.,

LMS(S) ⊆ L. Then, we prove the necessity of L. One can always construct a subset S ′ ⊆ S, where the LMSs of
S ′ cover all the elements of L. The construction runs as follows. First set a1 = 1 and track the order j from 2 to
k: If aj−1 = 1 and ij = ij−1 + 1, set aj = 0; otherwise, set aj = 1. Then one obtain a specific stabilizer product

s(a1 · · · ak). Second collect the single stabilizer terms S̃(ij) with aj = 0. The subset is constructed as

S ′ = {s(a1 · · · ak)} ∪ {S̃(ij)|aj = 0} ∪ {S̃(ij−1)S̃(ij)|aj = 0}. (18)

It is not difficult to see that LMS(S ′) is equivalent to L. Since S ′ ⊆ S, one can conclude that L ⊆ LMS(S). Thus,

there completes the proof of L = LMS(S). The LMC for P̃ is determined by |L| = 3
∑k
r=1 min(ir−ir−1,2).

Here we formalize Proposition 3 with the periodic boundary condition, i.e., the first and last qubit can be coupled
by the entangling gate. One can directly generalize the result here to open boundary condition by taking i0 = i1 − 2
in Proposition 3.

Clearly from Proposition 3, we can obtain the EW operator with the minimal LMC by replacing the complicated

terms
∏N
i P̃

(i)
XX and

∏N
i P̃

(i)
ZZ by a sum of single projector terms, i.e., W ′′Ψ = (2N − 3

8 )I−
∑N
i (P̃

(i)
XX + P̃

(i)
ZZ). Thanks

to the translation invariant symmetric structure of the target state, still only 9 LMSs are required to measure the

summation term
∑N
i P̃

(i)
XX . One can periodically select one of the three Pauli tensors for one LMS, i.e. O

(1)
1 = · · · =

O
(N)
1 , O

(1)
2 = · · · = O

(N)
2 . The same is true for the projector P̃

(i)
ZZ . Hence, one needs 18 LMSs in total to measure the

EW operator W ′′Ψ.
It seems we obtain the most efficient EW operator present above. However, in real experiments, the quantum

noises exist and may affect the detection performances. The more decompositions we perform, the more sensitive the
EW operators will be to quantum noises. Actually, there exists a trade-off between the detection robustness and the
experimental efficiency [26]. In the following section, we will design a searching algorithm for constructing the optimal
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EW operator with the maximal detection robustness. Afterwards, we can always find an appropriate entanglement
detection strategy under any experimental condition.

In practice, the generation of the target state is suffering from non-negligible noises, which can affect the performance
of entanglement detection. For simplicity, we treat the prepared noisy state as the target state mixed with the white
noise

ρΨ = (1− p) |Ψ〉 〈Ψ|+ p

22N
I. (19)

A valid EW operator for ρΨ must obey the criterion in Eq. (1), thus, there always exists an upper bound for p, denoted
as pmax, indicating the maximum tolerable noise error rate. We can treat pmax as an essential figure of merit for the
detection robustness. Applying the EW operator W ′Ψ defined in Eq. (13), one can calculate,

pmax =
3

16(1− 2−N )
, (20)

which approaches 3/16 when N →∞. The product projectors
∏N
i P̃

(i)
XX and

∏N
i P̃

(i)
ZZ in W ′Ψ can be further decom-

posed to decrease the total LMC for GME detection. Meanwhile, the detection robustness pmax is changed as the
EW operator changes.

To be specific, we will give an example to show how the formulations of EW operators affect pmax. Recall that no

overlap exists between the LMSs for {P̃ (i)
XX} and {P̃ (i)

ZZ}. The decomposition of
∏N
i P̃

(i)
XX works for

∏N
i P̃

(i)
ZZ as well,

thus, we will take the same decomposition method for these two product projectors. Set N = 5 without periodic
boundary condition, a ten-qubit target state is obtained. Now fix the LMC for measuring the product projector

P̃γ = P̃
(1)
γ · · · P̃ (5)

γ to 34, γ ∈ {XX,ZZ}, a direct application of Proposition 2 is:

P̃γ ≥ P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ + P̃ (4)

γ P̃ (5)
γ − I, (21)

then we obtain a new EW operator

W1
Ψ =

29

8
I−

∑
γ∈{XX,ZZ}

(
P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ + P̃ (4)

γ P̃ (5)
γ

)
, (22)

and its corresponding maximum tolerable noise error rate is pmax = 11.5%. Another nontrivial inequality of the

projectors is (I− P̃ (1)
γ P̃

(2)
γ )P̃

(3)
γ (I− P̃ (4)

γ P̃
(5)
γ ) ≥ 0, i.e.,

P̃γ ≥ P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ + P̃ (3)

γ P̃ (4)
γ P̃ (5)

γ − P̃ (3)
γ . (23)

Hence we derive another EW operator

W2
Ψ =

13

8
I−

∑
γ∈{XX,ZZ}

(
P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ + P̃ (3)

γ P̃ (4)
γ P̃ (5)

γ − P̃ (3)
γ

)
, (24)

the maximum tolerable noise error rate for W2
Ψ is pmax = 15.0%. Although W1

Ψ and W2
Ψ have the same LMC, W2

Ψ
is more robust to quantum noises in real experiments. Actually, for a given value of LMC, there are a variety of the
EW operators. One should choose one with optimal detection robustness.

V. ALGORITHM FOR THE CONSTRUCTING OPTIMAL WITNESS

In this section, we propose and apply a searching algorithm to construct the optimal witness under different noise
levels. As shown in the previous example, optimizing the noise tolerance can be reduced to constructing the optimal
positive operator Q in the bounding decomposition method. In the following, we will describe our algorithm in a
general version.

Given a set of projectors {P1, · · · , Pn}, assume the bounding decomposition inequality can be written as

P1P2 · · ·Pn ≥ Pd ≡
∑
j

cjP [aj ], (25)

where aj ∈ Zn2 , P [aj ] = P
aj(1)
1 P

aj(2)
2 · · ·P aj(n)

n ; the tuple (cj , P [aj ]) consisting of the coefficient and product of
projectors is the solution to be solved in the algorithm. Take the inequality in Eq. (21) for example, the solution

tuples are (1, P̃ (1)P̃ (2)P̃ (3)), (1, P̃ (4)P̃ (5)), (−1, I).
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Based on the inequality of Eq. (25), we can choose the positive operator Q as

Q = |ψ〉 〈ψ| −
∑
j

cjP [aj ], (26)

here each P [aj ] is constructed from the stabilizer projectors of Eq. (6). Note that a valid EW operator must obey the
criterion in Eq. (1). Consider the existence of noise in real experiments [see Eq. (19)], we have

tr(PdρΨ) =
p

22N

∑
j≥1

cj2
2N−s[aj ] + (1− p)

∑
j≥1

cj + c0 ≥ α,

i.e., p
∑
j≥1

cj(1− 2−s[aj ]) ≤
∑
j≥0

cj − α ≤ 1− α,
(27)

where c0 is related to P [a0] = I, and s[aj ] =
∑n
i aj(i) is the Hamming weight of the aj vector. We derive the second

inequality using the fact that
∑
j≥0 cj ≤ 1, due to the positivity of Q. Explicitly, the detection robustness can be

optimized by

pmax =
1− α

min
∑
j≥1

cj(1− 2−s[aj ])
. (28)

Here the minimization is over all possible witness operators. For our target state, the detailed construction of the
witness subset is shown in Proposition 3. It is not hard to see that 2−s[aj ] decreases quickly as s[aj ] grows, indicating
that the value of

∑
j≥1 cj makes the main contribution to pmax. As a result, we divide the minimize procedure further

into two components: (a) Minimize
∑
j≥1 cj ; (b) minimize s[aj ] for each j.

We begin by describing the minimization in (a). According to the fact that
∑
j≥1 cj ≤ 1 − c0, the problem

of minimizing
∑
j≥1 cj can be reduced to maximizing c0. The value of c0 denotes the weight of I appearing in the

bounding decomposition inequality of Eq. (25). Intuitively, this quantity can be seen as the number of decompositions.
Thus we should avoid unnecessary divisions for the original state projector. For a given set of witness operators
{P [aj ]}, we can extract the greatest common divisor projector to ensure the efficient decomposition. Assume the set
{P [aj ]}j≥1 in Eq. (25) has a common divisor projector Pcd, the bounding decomposition inequality can be written as

P1P2 · · ·Pn ≡ PcdP̄cd

≥ Pcd

∑
j≥1

c′jP [a′j ] + c′0I

 .
(29)

where P̄cd is the complementary projector of Pcd, and P̄cd itself can be further bounded by P̄cd ≥
∑
j≥1 c

′
jP [a′j ] + c′0I.

Then the inequality can be improved by

P1P2 · · ·Pn ≥
∑
j≥1

c′jP [aj ] + c′0Pcd, (30)

where P [aj ] = PcdP [a′j ], and the original c0 = 0 in Eq. (30). Since c0 ≤ 0, 0 is the maximum value of c0 if Pcd 6= I.
Note that one can repeat the above procedure for the complementary projector and solve the greatest common divisor
in each iteration until Pcd = I. After that, one can use Procedure (b) to minimize

∑
j≥1 cj [1− 2−s[aj ]], as described

below.
We now consider the minimization in (b). In order to minimize s[aj ] for each j, i.e., reduce the number of product

terms, we introduce a numerical truncation method. Recall that P [aj ] = P
aj(1)
1 P

aj(2)
2 · · ·P aj(n)

n and denote Supp(aj)
as the Hilbert space involved by P [aj ]. One can remove a divisor projector P [bj ] from P [aj ] if the following two
requirements are satisfied after removing it:

1. The common divisor projector Pcd solved in Procedure (a) remains unchanged;

2.
⋃
j≥1 Supp(P [a′j ]) = Supp(P1P2 · · ·Pn), where P [a′j ] = P [aj ]/P [bj ].

One can traverse all the divisor projectors in P [aj ] and make the truncation procedure for all j’s. Then, a minimum
s[aj ] will be obtained.
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Observation 1. A tight bounding decomposition inequality can be written as∏
Pi∈I1

Pi ·
∏
Pj∈I0

(I− Pj) ≥ 0, (31)

where I0 t I1 = Supp(P1P2 · · ·Pn) denotes the Hilbert space spanned by P1P2 · · ·Pn.

To summarize, for a target state projector |ψ〉 〈ψ| and its related witness subset {P [aj ]}, one can first apply
Procedure (a) to find out the greatest common divisor projector, and then apply Procedure (b) to minimize s[aj ] for
all j’s. Finally one will obtain an EW operator with optimal detection robustness. The detailed algorithm for the
optimization procedures is shown in Algorithm 1.

Algorithm 1: Searching algorithm for constructing optimal EW operators.

Input: An EW operator: W = αI− |ψ〉 〈ψ|, value of LMC: l.
Output: An EW operator with optimal detect robustness and at most l LMC: Wopt.

1 Construct a set of orthonormal basis {|ek〉}2
n−1

0 of Hn with |e0〉 = |ψ〉;

2 Denote U =
2n−1∑
k=0

|ek〉 〈k| and set Pi = UZiU
†, ∀i ∈ [n];

3 Construct T ∗ = {qj}, where qj is the product of elements in {Pi}n1 with LMC(qj) ≤ l,∀j and

Supp(T ∗) = Supp(
n∏
i=1

Pi);

4 Pcd ← I;
5 for i from 1 to n do
6 if Pi is a divisor of all the elements in T ∗ then
7 Pcd ← Pcd · Pi;
8 end

9 end
10 Truncate terms in T ∗;
11 while no further truncation could be down do
12 Starting from the term with the highest degree in T ∗, remove redundant sub-projectors;
13 end
14 Return Wopt = αI−

∑
qj∈T ∗

qj + (|T ∗| − 1)Pcd.

We show a concrete example to explain how our algorithm works. For a ten-qubit target state, we make the same

bounding decompositions for
∏N
i P̃

(i)
XX and

∏N
i P̃

(i)
ZZ . As for the product projector

∏N
i P̃

(i)
γ , γ ∈ {XX,ZZ}, the

witness set with LMC l ≤ 27 is

Tγ = {P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ , P̃ (3)

γ P̃ (4)
γ P̃ (5)

γ , P̃ (1)
γ P̃ (2)

γ , P̃ (2)
γ P̃ (3)

γ ,

P̃ (3)
γ P̃ (4)

γ , P̃ (4)
γ P̃ (5)

γ , P̃ (1)
γ P̃ (5)

γ , P̃ (1)
γ , P̃ (2)

γ , P̃ (3)
γ , P̃ (4)

γ , P̃ (5)
γ }.

(32)

Make a trial and choose

T ∗ = {P̃ (1)
γ P̃ (2)

γ P̃ (3)
γ , P̃ (2)

γ P̃ (3)
γ , P̃ (3)

γ P̃ (4)
γ , P̃ (3)

γ P̃ (4)
γ P̃ (5)

γ }, (33)

where the greatest common divisor is Pcd = P̃
(3)
γ . We can remove P̃

(2)
γ P̃

(3)
γ and P̃

(3)
γ P̃

(4)
γ to decrease |T ∗| by

2 whereas keeping Pcd = P̃
(3)
γ unchanged. No more truncation can be performed, and we finally obtain T ∗ =

{P̃ (1)
γ P̃

(2)
γ P̃

(3)
γ , P̃

(3)
γ P̃

(4)
γ P̃

(5)
γ }. Thus we can construct the same inequality as Eq. (23) and compute the optimal EW

operator of Eq. (24).

VI. NUMERICAL SIMULATION

In this section, we apply our searching algorithm to the target state and construct optimal EW operators under
different noise levels.

Recall that the LMSs for each stabilizers are formulated by O1 ⊗ O2, where O1, O2 ∈ {XX,Y Z,ZY }. Different
product combinations of projectors require different periodic selections of Pauli tensors in O1 and O2, which decide
the corresponding LMSs. Since the LMSs are determined when we fix the LMC, one thing we should do is to find
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the optimal EW operator with the maximal noise tolerance pmax. In the following, we use Fmin = 1 − pmax as the
figure of merit, which is nearly the minimum requirement for the experimental fidelity. As for the target state defined
in Eq. (5), we set the number of pairs N = 8, 10, 15, 20 and apply our searching algorithm to find the optimal EW
operator with maximal noise tolerance. Part of the numerical results are shown in Table I.

TABLE I. Optimal Fmin under different LMCs for target states of Eq. (5) with different numbers of pairs N . When N is large
the tolerable fidelity is given by 1− pmax ≈ 13/16 = 81.25% in Eq. (20).

N = 8 LMC 18 54 162 486 1458 4374

Fmin 94.6% 92.5% 90.0% 84.2% 81.8% 81.2%

N = 10 LMC 18 54 162 486 1458 4374

Fmin 95.8% 94.2% 92.8% 90.3% 84.6% 82.0%

N = 15 LMC 2× 32 2× 34 2× 36 2× 38 2× 310 2× 312

Fmin 97.3% 95.5% 93.4% 87.4% 81.8% 81.3%

N = 20 LMC 2× 32 2× 35 2× 38 2× 311 2× 314 2× 317

Fmin 98.0% 95.9% 93.6% 85.0% 81.3% 81.3%

Furthermore, we show the changes in the relationship between LMC and Fmin in Fig. 2. As shown in the figure, the
larger LMC always brings better noise tolerance, i.e., the lower requirements for the experimental fidelity. However,
when the LMC reaches a value that is large enough, the noise tolerance would not improve a lot anymore. For
instance, for the N = 10 target state one can find when the LMC is larger than 1458, Fmin only decreases a little. In
this case, one may not be worth paying a lot of experimental resources for minor detection improvements. In general,
there exists a trade-off between detection robustness and experimental efficiency. One can always find an appropriate
and efficient EW operator under different noise conditions.

1 35 310 315

0.85

0.90

0.95

LMC

Fm
in

N  = 20
N  = 15
N  = 10
N  = 8

FIG. 2. Optimal EWs obtained by the numerical searching algorithm for N = 8, 10, 15, 20 entangled states. The minimum
requirements for the experimental fidelity under different cases are plotted versus LMC. Note that Fmin decreases more and
more slowly when LMC increases, and finally reaches the lower bound 1− pmax [see Eq. (20)], which approaches 81.25% when
N is large.

VII. CONCLUSION

In this paper, we first propose an efficient framework to generate large-scale genuine multipartite entanglement.
The generation procedures contain: (1) prepare N singlets; (2) apply the

√
SWAP gates. Our generation scheme is

simple and efficient to apply in most of the experimental setups. Second, we generalize the stabilizer formalism to
analyze the stabilizer structures of the target state, and then design an EW method to verify the genuine multipartite
entanglement. The key point of our detection method is to find an appropriate EW operator for the target state.
We design a searching algorithm to construct the optimal EW operator under different noise conditions. Finally,
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we discuss the trade-off between detection robustness and experimental efficiency. Our analytical analysis and the
numerical algorithm are generic and can be applied to other entangled states.

The algorithm here can be improved further. To ensure the efficiency of the algorithm, the searching method we use
is to find the best solution in a reasonable time. However, it is not guaranteed that the solution is the global optimum
of the optimization. There may exist an efficient algorithm to find the optimal EW operator. Besides, our searching
region is restricted to the projector-product subsets. Thus, the constructed EW operator is evaluated as the ‘optimal’
in terms of the projector region. As a result, it is interesting to construct the optimal EW operator beyond the
stabilizer formalism. One possible way is to employ some modern optimization techniques, such as machine learning,
and we leave it for further research.
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[13] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, et al.,

Phys. Rev. X 8, 021012 (2018), URL https://link.aps.org/doi/10.1103/PhysRevX.8.021012.
[14] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, et al., Phys.

Rev. Lett. 120, 260502 (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.120.260502.
[15] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, et al., Phys. Rev. Lett. 121,

250505 (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.121.250505.
[16] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, et al.,

Science 365, 570 (2019), ISSN 0036-8075, https://science.sciencemag.org/content/365/6453/570.full.pdf, URL https:

//science.sciencemag.org/content/365/6453/570.
[17] M. Gong, M.-C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, et al., Phys. Rev. Lett. 122,

110501 (2019), URL https://link.aps.org/doi/10.1103/PhysRevLett.122.110501.
[18] K. X. Wei, I. Lauer, S. Srinivasan, N. Sundaresan, D. T. McClure, D. Toyli, D. C. McKay, J. M. Gambetta, and S. Sheldon,

Phys. Rev. A 101, 032343 (2020), URL https://link.aps.org/doi/10.1103/PhysRevA.101.032343.

https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://link.aps.org/doi/10.1103/RevModPhys.74.347
https://link.aps.org/doi/10.1103/RevModPhys.74.347
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://www.nature.com/articles/nphoton.2011.35
https://www.nature.com/articles/nphoton.2011.35
https://link.aps.org/doi/10.1103/PhysRevLett.78.3221
https://link.aps.org/doi/10.1103/PhysRevLett.78.3221
https://science.sciencemag.org/content/345/6194/302
https://science.sciencemag.org/content/345/6194/302
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s42254-018-0003-5
https://doi.org/10.1038/s42254-018-0003-5
https://link.aps.org/doi/10.1103/PhysRevLett.106.130506
https://link.aps.org/doi/10.1103/PhysRevX.8.021012
https://link.aps.org/doi/10.1103/PhysRevLett.120.260502
https://link.aps.org/doi/10.1103/PhysRevLett.121.250505
https://science.sciencemag.org/content/365/6453/570
https://science.sciencemag.org/content/365/6453/570
https://link.aps.org/doi/10.1103/PhysRevLett.122.110501
https://link.aps.org/doi/10.1103/PhysRevA.101.032343


12

[19] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, et al., Science 365, 574 (2019),
ISSN 0036-8075, https://science.sciencemag.org/content/365/6453/574.full.pdf, URL https://science.sciencemag.org/

content/365/6453/574.
[20] B. M. Terhal, Linear Algebra and its Applications 323, 61 (2001), ISSN 0024-3795, URL http://www.sciencedirect.

com/science/article/pii/S0024379500002512.
[21] O. Gühne and G. Tóth, Physics Reports 474, 1 (2009), URL https://doi.org/10.1016/j.physrep.2009.02.004.
[22] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and

A. Sanpera, Phys. Rev. Lett. 92, 087902 (2004), URL https://link.aps.org/doi/10.1103/PhysRevLett.92.087902.
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