
Property Testing Lower Bounds Via Communication Complexity

Eric Blais
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

eblais@cs.cmu.edu

Joshua Brody∗

IIIS, ITCS
Tsinghua University

Beijing, China
joshua.e.brody@gmail.com

Kevin Matulef∗

IIIS, ITCS
Tsinghua University

Beijing, China
matulef@gmail.com

Abstract—We develop a new technique for proving lower
bounds in property testing, by showing a strong connection
between testing and communication complexity. We give a
simple scheme for reducing communication problems to testing
problems, thus allowing us to use known lower bounds in
communication complexity to prove lower bounds in testing.
This scheme is general and implies a number of new testing
bounds, as well as simpler proofs of several known bounds.

For the problem of testing whether a boolean function is
k-linear (a parity function on k variables), we achieve a lower
bound of Ω(k) queries, even for adaptive algorithms with two-
sided error, thus confirming a conjecture of Goldreich [25]. The
same argument behind this lower bound also implies a new
proof of known lower bounds for testing related classes such
as k-juntas. For some classes, such as the class of monotone
functions and the class of s-sparse GF (2) polynomials, we
significantly strengthen the best known bounds.

I. INTRODUCTION

The field of property testing seeks to formalize the
question: what can we determine about a large object, with
limited access to the object itself? In general the large object
may by anything—for instance a graph on n nodes, or a
function on n variables. In a typical property testing setup,
a tester who has unbounded computational power is given
query access to the large object. The tester’s goal is to accept
the object if it has some property P , and reject it if it is “far”
from having property P .

In this paper we will primarily concern ourselves with the
case when the large object is a boolean function f on n bits.
In this case, the tester’s goal is to accept f with probability
at least 2/3 if f has property P , and reject with probability
at least 2/3 if f must be modified on an ε fraction of the
2n possible inputs in order to have property P . The query
complexity (i.e. the number of times the testing algorithm
must query f) should hopefully be a small function of ε and
n.

The notion of testing boolean functions in this framework
goes back to the seminal work of Rubinfeld and Sudan
[38], and has several connections to complexity theory (in

∗This work was supported in part by the National Basic Research
Program of China Grant 2007CB807900, 2007CB807901, and the National
Natural Science Foundation of China Grant 61033001, 61061130540,
61073174.

particular PCPs and hardness of approximation), as well
as computational learning theory [36]. Over the last two
decades, researchers have exerted a considerable amount of
effort in testing various properties of a function f , such as
whether f is a linear function [8], whether f is isomorphic
to a given function [7], [15], [1], whether f is a k-junta
[22], [4], [5], a monotone function [26], [23], a dictator [35],
a halfspace [30], an s-sparse polynomial, a size-s decision
tree, etc. [18] (see, e.g., the survey of [37]).

Over the course of this effort, a variety of techniques have
been developed for designing property testing algorithms,
thus proving testing upper bounds. However, as is often
the case in theoretical computer science, lower bounds are
harder to come by. Although several lower bounds for
specific problems are known, few general techniques are
known beyond the use of Yao’s minimax lemma.

Communication complexity is one technique that has
proven effective for proving lower bounds in other areas
of computer science. In a typical setup, two parties, Alice
and Bob, each have an input and they would like to decide
something about their joint input. Their computational power
is unbounded, but they would like to compute the answer
with as little communication as possible.

The communication complexity framework has been well-
studied, and in particular several problems are known to
require a large amount of communication. These include
SET-DISJOINTNESS, INDEX, INNER-PRODUCT, and GAP-
HAMMING-DISTANCE. The hardness of these and related
problems has been used to obtain lower bounds in many
areas such as streaming algorithms, circuit complexity, data
structures, and proof complexity [29], [28], [31].

Property testing and communication complexity have
striking similarities. Both involve parties with unbounded
computational power (in one case, the tester, and in the
other case, the communicating players), and both involve
algorithms which are restricted by the parties’ limited ac-
cess to their input. Despite these similarities, no previous
connection between these fields has been made.

In this work we show that in fact there is a strong
connection between testing and communication complexity.
In particular, we show how to reduce certain communication
problems to testing problems, thus showing that communica-

2011 26th Annual IEEE Conference on Computational Complexity

1093-0159/11 $26.00 © 2011 IEEE

DOI 10.1109/CCC.2011.31

210

tion lower bounds imply lower bounds for property testing.
This represents a new approach to proving testing lower

bounds. For a particular testing problem P that we would
like to bound, instead of starting from “scratch” by studying
the structure of P , we seek a connection between P and
a hard communication problem. If we can find such a
connection, then we can reduce the work involved. As we
will show, this approach turns out to be quite fruitful, both
for proving new bounds, and for giving simpler proofs of
known bounds.

A. Our Results

TESTING k-LINEAR FUNCTIONS. The boolean function
f : {0, 1}n → {0, 1} is linear, i.e. a parity function, when
there is a set S = {i1, . . . , is} ⊆ [n] such that for every
x ∈ {0, 1}n, f(x) = xi1 ⊕ · · · ⊕xis . When |S| = k, we say
that f is a k-linear function.

The problem of testing k-linear functions was first studied
by Fischer et al. [22]. The best lower bound is due to
Goldreich [25], who showed that Ω(

√
k) queries are required

to test k-linear functions. He also showed that non-adaptive
testers require Ω(k) queries to test the same property, and
conjectured that this stronger lower bound holds for all
testers (adaptive or not).1

We confirm Goldreich’s conjecture. As a result, we also
obtain lower bounds on the query complexity for testing
juntas, testing functions of low Fourier degree, and testing
sparse polynomials:

Theorem I.1. Fix 1 < k < n− 1. Then Ω(min{k, n− k})
queries are required to test

(i) k-linear functions,
(ii) k-juntas,

(iii) functions of Fourier degree at most k, and
(iv) functions with k-sparse polynomial representa-

tion in F2.

We define these properties formally and prove Theo-
rem I.1 in Section III.

Remark 1. In parallel work, Daniel Kane and the first au-
thor simultaneously obtained a different proof of Goldreich’s
conjecture via Fourier-analytic methods [6].

Remark 2. Goldreich has observed that our technique can
also be used to resolve two other conjectures from [25].
The first conjecture is related to testing whether a function
is computable by a small-width branching program; this
conjecture is proven and generalized using our approach
in [11]. The second conjecture involves testing whether a
function belongs to a certain subclass of linear functions

1We note that Goldreich’s conjecture and the results in [25] are stated in
terms of testing ≤k-linear functions (the class of functions that are parities
on at most k bits), but it is easy to see that the proofs in [25] give identical
lower bounds for testing k-linearity. It is also easy to see that our lower
bounds for testing k-linearity give identical bounds for testing ≤k-linearity.

over GF (3); we discuss the details in the full version of
this paper.

We note that Theorem I.1 also has implications for
the problem of isomorphism testing, or testing whether
an unknown function f is equivalent, up to permutation
of variables, to a fixed function g : {0, 1}n → {0, 1}.
Alon and Blais showed that for most functions g, testing
g-isomorphism non-adaptively requires Ω(n) queries [1].
Similarly, Chakraborty et al. showed that for every k ≤ n,
there exists a k-junta g such that testing g-isomorphism
requires Ω(k) queries [15]. Both of these results are non-
constructive, and they raise the question of whether we can
identify an explicit class of functions for which the same
lower bounds apply. Theorem I.1 shows that the class of
k-linear functions satisfies this requirement.

TESTING MONOTONICITY. Fix R ⊆ R. The function
f : {0, 1}n → R is monotone if for any two inputs
x, y ∈ {0, 1}n where x1 ≤ y1, . . . , xn ≤ yn, we have that
f(x) ≤ f(y). The problem of testing monotonicity was first
studied by Goldreich et al. [26], who introduced a natural
tester: sample random edges from the hypercube and verify
that the function is monotone on those edges. For ranges
of size |R|, this algorithm requires O(n log |R|) queries
[19]; an important open problem in property testing is to
determine whether there exist more efficient monotonicity
testers.

Despite much attention to monotonicity testing [2], [20],
[26], [19], [23], [3], [9], lower bounds for the query com-
plexity of this problem have been elusive. Previously, the
best bound for non-adaptive testers was only Ω(log n) [23]
– this translates to a Ω(log log n) lower bound for general
(adaptive) testers.2 We provide a significant improvement to
this lower bound for functions with large ranges:

Theorem I.2. Testing f : {0, 1}n → R for monotonicity
requires Ω(min{n, |R|2}) queries.

Notably, Theorem I.2 gives the first progress on the
natural-monotonicity-tester problem mentioned above: it
shows that for

√
n ≤ |R| ≤ poly(n), no monotonicity tester

can improve on the query complexity of the natural tester
by more than a logarithmic factor. We note, however, that
this problem is still open in the important special case when
R = {0, 1}.

By a recent result of Seshadhri and Vondrak [39], The-
orem I.2 also gives a new lower bound for the query
complexity of testing submodularity; see Section IV for
details.

TESTING CONCISE REPRESENTATIONS. Parnas, Ron, and
Samorodnitsky [35] showed that testing whether a function
can be represented by a monotone DNF with at most s terms

2Stronger bounds have been established for testers with one-sided error
– see [23], [9] for details.

211

Class of functions Our bound Previous lower bounds Upper bounds

k-linear Ω(k)
Ω(
√
k) [25] O(k log k) [15]

Ω(k) (n.a.) [25] O(n) (trivial)

k-juntas Ω(k) Ω(k) [16] O(k log k) [5]

Fourier degree ≤ d Ω(d) Ω(d) [15] 2O(d) [18], [15]

s-sparse GF (2)-polynomials Ω(s) Ω(
√
s) [14] Õ(s) [14]

monotone f : {0, 1}n → R Ω(min{n, |R|2})
Ω(logn) (n.a.) [23]

O(n log |R|) [19]
Ω(n) (n.a., 1-s.) [9]

submodular f : {0, 1}n → R Ω(n)
Ω(logn) (n.a.) [23], [39]

2O(
√

n log n) [39]
Ω(n) (n.a., 1-s.) [9], [39]

size-s branching programs,
Ω(log s) sΩ(1) [14] Õ(s) [14]size-s boolean formulas

s-term DNF formulas Ω(log s) Ω(log s) [14] Õ(s) [14]

size-s decision trees Ω(s) (1-s.) Ω(log s) [14] Õ(s) [14]

signed k-majority Ω(k/ log k) (1-s.) Ω(k1/12)(n.a.) 3

[7], [30] O(
√
n) [30]

for k ≤ γn, γ ∈ (0, 1) for k ≤ 3
4
n for k = n

Table I
OUR RESULTS. Bold font indicates an improvement over the previous bounds. Bounds labeled with (n.a.) apply only to non-adaptive testers; bounds

marked with (1-s.) only apply to testers with one-sided error. All other bounds apply to adaptive testers with two-sided error.

can be done with a number of queries that depends only on
s. This result was generalized by Diakonikolas et al. [18],
who introduced the method of testing by implicit learning
and showed that this method can be used to test whether a
function can be represented by a DNF with few terms, by a
small decision tree, by a small boolean formula, etc.

Our technique gives lower bounds on the query complex-
ity for a number of these properties:

Theorem I.3. At least Ω(log s) queries are required to test
(i) size-s decision trees,

(ii) size-s branching programs,
(iii) s-term DNFs, and
(iv) size-s boolean formulas.

Remark. In simultaneous and independent work,
Chakraborty et al. prove matching Ω(log s) bounds
for s-term DNFs and size-s decision trees, and stronger
poly(s) lower bounds for size-s boolean formulas and
size-s branching programs [14].

The proof of Theorem I.3 can also be extended to answer
a question of Fischer et al. [22]: they asked if the query
complexity of testing k-juntas can be reduced if the tester
is only required to reject functions that are far from (k+ t)-
juntas for some t > 0. We show that the answer to this
question is “no” for any t ≤ O(

√
k):

Theorem I.4. Fix k ≤ 3
4n and t > 0. Any algorithm that

accepts k-juntas and rejects functions 1
4 -far from (k + t)-

3The lower bound stated here is not found explicitly in [7], but can be
obtained using the arguments in that paper.

juntas with high probability must make Ω
(

min{(kt)2, k} −
log k

)
queries.

We prove Theorems I.3 and I.4 in Section V.

TESTERS WITH ONE-SIDED ERROR. The technique we in-
troduce for proving new lower bounds can also be used to
prove lower bounds for testers with one-sided error (that
is, testers which accept functions with probability 1 if they
have property P , and reject them with probability at least
2/3 if they are far from having property P). As a first
application, we get a much stronger lower bound for the
query complexity of testing decision trees with one-sided
error:

Theorem I.5. At least Ω(s) queries are required to test
size-s decision trees with one-sided error.

We also obtain a lower bound on the query complexity of
one-sided testers for a subclass of halfspaces, the class of
“signed” majority functions on k variables.

Theorem I.6. Fix any constant γ ∈ (0, 1). For k ≤ γn,
at least Ω(k/ log k) queries are required to test signed k-
majorities with one-sided error.

See Section VI for more information about the history of
these problems and the proofs of Theorems I.5 and I.6.

B. Techniques

The main idea behind all of our bounds is to set up a
communication game, where Alice has a function f , Bob
has a function g, and they want to determine whether a

212

joint function h, which is some combination of f and g
(usually the XOR), has a particular property. We can then
relate the number of queries required to test whether h has
this property to the number of bits Alice and Bob need to
communicate.

This technique is best illustrated by example. In fact,
we can give a very simple sketch of Theorem I.1, by
showing how to reduce a version of the well-known SET-
DISJOINTNESS problem to testing k-linearity. Suppose Alice
and Bob both have sets of size k from a universe of size
n. Suppose further that their sets are guaranteed to either
intersect in one place, or not at all, and they want to decide
which is the case. It is well-known that the communication
complexity of this problem is Ω(k) [27].

One way Alice and Bob can solve this set intersection
problem is by forming linear functions based on their two
sets. Alice forms the function f = χA and Bob forms
the function g = χB , where χA and χB are both k-linear
functions. It is easy to see that the joint function h = f ⊕ g
is 2k-linear if the sets don’t intersect, and (2k− 2)-linear if
they do. Note that every (2k − 2)-linear function is 1/2-far
from being 2k-linear (see Fact III.1). Therefore, they can
determine if their sets intersect by each running a testing
algorithm for 2k-linearity on h. Whenever Alice’s tester
queries h(x), she asks Bob for g(x), and whenever Bob’s
tester queries h(x), he asks Alice for f(x) (we assume
Alice and Bob use shared, public randomness to determine
which queries to make, so exchanging x is unnecessary).
The total number of bits communicated is then twice the
number of queries of the tester. Since we can lower bound
the number of bits communicated by Ω(k), this implies that
testing 2k-linearity also requires Ω(k) queries. By scaling
k, we achieve the first part of Theorem I.1.

II. FROM COMMUNICATION COMPLEXITY TO PROPERTY
TESTING

In this section, we formalize the notions of query com-
plexity for property testers, and of communication complex-
ity.

PROPERTY TESTING. The query complexity Q(P) of prop-
erty P is the minimum cost of an adaptive tester for P with
two-sided error. Q1(P) is the cost of the best algorithm that
tests P with one-sided error. Qna(P) is the query complexity
of non-adaptive testers for P .4

COMMUNICATION COMPLEXITY. We are primarily inter-
ested in (public coin) randomized protocols with one-sided
and two-sided error. Let Rε(f) denote the minimum cost
of a randomized protocol that computes f with probability
≥ 1 − ε. For z ∈ {0, 1}, Rzε (f) denotes the cost of the

4Typically, the query complexity of a testing algorithm depends on the
distance parameter ε. Throughout this work, we will assume ε is any small,
fixed constant (say ε = 0.01), and for simplicity we will state all query
complexity bounds only in terms of the other parameters involved.

best protocol that correctly outputs f whenever f(x, y) 6= z
and outputs f(x, y) with probability ≥ 1 − ε whenever
f(x, y) = z. Similarly, we let R→ε (f) and R→,zε (f) de-
note the randomized communication complexity of one-way
protocols (with one-sided error). Unless otherwise specified,
we fix ε := 1/3 and drop the subscript.

It might seem counterintuitive to define Rz(f) as the cost
of the best protocol that is always correct when f(x, y) 6= z;
it is defined in this way because of its connection to
nondeterministic communication complexity. Specifically,
let Cz(f) denote the minimum number of monochromatic
rectangles needed to cover the z-inputs of f , and define
Nz(f) := logCz(f). Then, we have

Fact II.1 ([29] Proposition 3.7). For all constant 0 < ε < 1,
Nz(f) ≤ Rzε (f) +O(log n).

For more details, see the standard text by Kushilevitz and
Nisan [29].5 It is worth noting that in [29], the definitions
for the different notions of communication complexity are
defined in terms of total functions f , whereas we are
primarily concerned with partial functions. However, the
definitions generalize, and it is easy to verify that Fact II.1
also applies to partial functions.

Given a property P , functions f, g, and a “combining
function” h = h(f, g), we define the following communica-
tion game Ch,P : Alice and Bob receive f and g respectively,
and they want to decide if h has property P or is ε-far from
all functions that have P . For most of our applications,
f and g will be boolean functions, and we will define
h := f⊕g; however, this need not always be the case. When
we use more exotic definitions of h, we note so explicitly.
The following lemma formalizes the connection between
property testing and communication complexity.

Lemma II.2. For any function h and any property P for h,
1) R(Ch,P) ≤ 2Q(P),
2) R1(Ch,P) ≤ 2Q1(P), and
3) R→(Ch,P) ≤ Qna(P).

Remark. Lemma II.2 assumes that f and g have boolean
range. In the more general case where the range of f and
g has cardinality r, the bounds on the right-hand side must
be multiplied by an extra factor of log r.

Proof: Given a t-query general testing algorithm for
P , we create a protocol for Ch,P in the following manner.
Alice and Bob use public randomness to adaptively generate
queries. For each query x, Alice and Bob exchange f(x) and
g(x), enabling each player to compute h(x). After t queries
(and 2t bits of communication), both players use the testing
algorithm to determine if h has P .

5The relation between randomized and nondeterministic communication
complexity is actually for private coin protocols; however by Newman’s
Theorem [32], the public-coin and private-coin complexities essentially
differ by at most a O(logn) term.

213

The proof connecting one-sided property testing to proto-
cols with one-sided error is analogous. In the non-adaptive
case, we construct the following one-way protocol: Alice
and Bob generate queries x1, . . . , xt in advance. Alice sends
Bob a single t-bit message, consisting of {f(xi) : i ∈ [t]}.
Bob then computes {h(xi)} and outputs 1 if and only if the
tester accepts h.

A. Communication Complexity Problems

We achieve all of our testing lower bounds via
Lemma II.2. To prove lower bounds for Ch,P , we reduce
from one of several standard communication complexity
problems. However, we often require special flavors of these
problems—either we need protocols with one-sided error, or
we require the input to be restricted in some balanced way.
Let n ∈ N, t := t(n), and x, y ∈ {0, 1}n. We are interested
in the following functions:

SET-DISJOINTNESS. Alice and Bob are given x and y and
compute

DISJ(x, y) :=
n∨
i=1

xi ∧ yi .

It is well-known that R(DISJ) = Ω(n). We use k-DISJ, a
balanced version of DISJ with the promise that |x| = |y| = k
and that xi ∧ yi = 1 for at most one i. It is known that
R(k-DISJ) = Ω(k) [27].

GAP-EQUALITY. Alice and Bob are given n-bit strings x
and y respectively and wish to compute

GEQn,t(x, y) :=

1 if x = y ,

0 if ∆(x, y) = t ,

∗ otherwise.

We drop the subscripts when n is clear from context and
t = n/8. We are interested in Rz(GEQ). The standard
public-coin EQUALITY protocol gives R0(GEQ) = O(1). For
protocols that only err when GEQ(x, y) = 1, the complexity
is drastically different.

Buhrman, Cleve, and Wigderson [12] proved an Ω(n)
lower bound on the deterministic communication complexity
of GEQn,n/2; their result extends to other gap sizes and to
randomized protocols with one-sided error.

Lemma II.3 ([12]). R1(GEQn,t) = Ω(n) for all even t =
Θ(n).6

We include a proof for completeness. The proof of this
lemma uses the following celebrated result of Frankl and
Rödl.

6Curiously, the parity of t turns out to be necessary. Since ∆(x, y) =
|x|+ |y|−2|x∩y|, Alice and Bob can deterministically distinguish x = y
from ∆(x, y) being odd in O(logn) bits by exchanging |x| and |y| and
checking the parity of |x| + |y|. This does not affect our property testing
lower bounds.

Fact II.4 ([24], Theorem 1.10). For all constant 0 <
ρ < 1/2, there exists δρ = δ(ρ) such that for all even
d ∈ [ρn, (1 − ρ)n], if S ⊆ {0, 1}n and ∆(x, y) 6= d for
all x, y ∈ S, then |S| ≤ 2n(1−δρ).

Proof of Lemma II.3: Fix a 1-monochromatic rectangle
R for GEQn,t. Let TR := {x : (x, x) ∈ R}, and consider
any x, y ∈ TR. Since R is a rectangle, (x, y) ∈ R; as
R is monochromatic, it follows that ∆(x, y) 6= t for all
x, y ∈ TR. By Fact II.4, |TR| ≤ 2n(1−δρ). Trivially, there
are 2n (x, y) pairs such that x = y; each 1-monochromatic
rectangle contains at most 2n(1−δρ) such pairs. Therefore,
we have C1(GEQn,t) ≥ 2nδρ = 2Ω(n). The rest of the proof
follows from Fact II.1.

GAP-HAMMING-DISTANCE. Alice and Bob are given n-bit
strings x and y respectively and wish to compute

GHDn,t(x, y) :=

1 if ∆(x, y) ≥ n/2 + t ,

0 if ∆(x, y) ≤ n/2− t ,
∗ otherwise.

The standard gap size for GHD is t = Θ(
√
n); in this case,

we drop the subscripts and use just GHD. A tight lower
bound of R(GHD) = Ω(n) is known, due to Chakrabarti
and Regev [13]. An easy padding argument (implicit in [10])
shows that R(GHDn,t) = Ω((n/t)2) for all t = Ω(

√
n).

We consider an extended version of GHD. In EGHDn,k,t,
Alice and Bob’s inputs x, y are n-bit strings, with the
promise that |x| = |y| = k/2, and they wish to distinguish
∆(x, y) ≥ k/2 + t from ∆(x, y) ≤ k/2− t.

Lemma II.5. For all t and all k ≤ n,

R(EGHDn,k,t) = Ω(min{(k/t)2, k} − log k).

In particular, when k = n, we show that GHDn,t remains
hard even when |x| = |y| = n/2.

In the proof of the lemma, let COST(P) denote the
maximum number of bits sent in a protocol P . We use ◦ to
denote string concatenation and 0k (1k) to denote the string
of k consecutive zeros (ones).

Proof: First, we prove the lemma for the case k = n
by reduction from GHD. Let P be the best protocol for
EGHDn,k,t. Fix m := n/4, and let x, y denote two arbitrary
inputs to GHDm,t. Alice and Bob construct 4m-bit inputs
x̂, ŷ such that |x̂| = |ŷ| = 2m and that GHDm,t(x, y) =
EGHDn,k,t(x̂, ŷ). Then, the protocol outputs P (x̂, ŷ). Next
we describe how to construct x̂ and ŷ. Let z be the absolute
value of (|x| − |y|), and consider the following 2m-bit
strings.

x′ := x ◦ 1m−|x| ◦ 0|x|,

y′ := y ◦ 1m−|y| ◦ 0|y| .

Note that |x′| = |y′| = m and that

|∆(x′, y′)− (m/2 + z)| ≥ t.

214

These strings are balanced, but in general, the Hamming
distance is not centered around 2m ± t. To get balanced
strings whose Hamming distance is centered, Alice and Bob
again append their inputs, this time creating 4m-bit strings
x̂ and ŷ such that

x̂ := x′ ◦ 1m ◦ 0m,

ŷ := y′ ◦ 1(m+2z)/4 ◦ 0m ◦ 1(3m−2z)/4 .

It’s easy to see that x̂ and ŷ are 4m-bit strings with
Hamming weight 2m. Their Hamming distance increases
by (3m− 2z)/2, so |∆(x̂, ŷ)− 2m| ≥ t.

In our protocol Q for GHDm,t, Alice and Bob exchange |x|
and |y|, construct x̂, ŷ, and output P (x̂, ŷ). By construction,
it’s easy to see that GHDm,t(x, y) = EGHDn,k,t(x̂, ŷ), hence
Q is correct whenever P is correct. The cost of Q equals
COST(P) + 2 logm. Therefore, we have

COST(P) = COST(Q)− 2 logm.

Hence, when t = O(
√
n) then

COST(P) = Ω(m)− 2 logm = Ω(n),

and when t = Ω(
√
n) then

COST(P) = Ω((m/t)2)− 2 logm = Ω((n/t)2 − 2 log n).

Proving the general case occurs by a simple padding
argument. Specifically, take inputs to EGHDk,k,t and extend
them to n bit strings by appending with 0n−k.

III. TESTING k-LINEARITY AND RELATED PROPERTIES

In this section we prove Theorem I.1. Recall that a k-
linear function is a function of the form f(x) =

∑
i∈S xi

(mod 2) for some set S ⊆ [n] where |S| = k. The defini-
tions of the other properties in the statement of Theorem I.1
are as follows:

Definition (Junta). The function f : {0, 1}n → {0, 1} is a
k-junta if there is a set J ⊆ [n] of size |J | ≤ k such that
for every x, y ∈ {0, 1}n where xi = yi for each i ∈ J ,
f(x) = f(y).

Definition (Low Fourier degree). For convenience when dis-
cussing Fourier degree we will represent boolean functions
using range {−1, 1} instead of {0, 1}. It is well known that
every boolean function f : {0, 1}n → {−1, 1} has a unique
representation of the form f(x) =

∑
S⊆[n] f̂(S)χS(x),

where χS = (−1)
∑
i∈S xi and f̂(S) ∈ R. The terms f̂(S)

are the Fourier coefficients of f , and the Fourier degree of
f is the maximum value of k ≥ 0 such that f̂(S) 6= 0 for
some set S of size |S| = k.7

Definition (Sparse polynomials). Every boolean function
f : {0, 1}n → {0, 1} also has a unique representation as a

7For more details on the Fourier representation of boolean functions see,
e.g., [17], [33].

polynomial over F2. We say that f is a k-sparse polynomial
if its representation over F2 has at most k terms.

The following facts about k-linear functions will be used
in the proof of Theorem I.1:

Fact III.1. A (k+2)-linear function is 1
2 -far from (i) k-linear

functions, from (ii) k-juntas, from (iii) functions of Fourier
degree at most k, and 1

20 -far from (iv) k-sparse polynomials.

Proof: We first prove part (iii). Parts (i) and (ii) will
follow immediately from the observation that k-juntas and
k-linear functions are subclasses of functions with Fourier
degree at most k.

Let f be a (k + 2)-linear function over the variables of
some set T ⊆ [n] where |T | = k + 2, and let g be any
function of Fourier degree at most k. For convenience, we
will represent f and g as functions from {0, 1}n to {−1, 1}.
Since f is a linear function over the variables in T , we know
that f̂(T) = 1, and f̂(S) = 0 for all S 6= T . Moreover, since
g has Fourier degree k and |T | > k, we know by definition
that ĝ(T) = 0. Thus by Parseval’s theorem

E
x

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S) = 0

which implies Prx[f(x) 6= g(x)] = 1/2.
Finally, part (iv) is a special case of a more general

theorem of Diakonikolas et al. [18, Thm. 36].

Theorem I.1 (Restated). Fix 1 < k < n − 1. Then
Ω(min{k, n− k}) queries are required to test (i) k-juntas,
(ii) k-linear functions, (iii) functions of Fourier degree
at most k, and (iv) functions with k-sparse polynomial
representation in F2.

Proof: We will first prove the theorem for k in the range
k ∈ (1, n/2), then discuss how to handle other values of k.

Let k be even and define k′ = k
2 + 1. We will show

a reduction from the k′-DISJ problem. An instance of this
problem is a pair of sets A,B ⊆ [n] such that |A| = |B| =
k′ and |A∩B| ∈ {0, 1}. Alice and Bob each receive one of
the sets and they must determine whether |A ∩ B| = 0. As
we saw in Section II-A, R(k′-DISJ) ≥ Ω(k).

Here is a protocol to solve the k′-DISJ problem: Al-
ice and Bob start by building the boolean functions
ParityA,ParityB : {0, 1}n → {0, 1} that return the parity
of the bits in A and B, respectively. They then communicate
to determine if h := ParityA⊕ParityB is a k-linear function
or a (k + 2)-linear function. Since ParityA ⊕ ParityB =
ParityA4B , h is a k-linear function iff |A ∩B| = 1.

Define Ch,P to be the communication game where Alice
and Bob each receive a function – call these functions f
and g – with the promise that f ⊕ g is a linear function
on exactly k or k + 2 bits and they must accept iff f ⊕ g
is a k-linear function. The above reduction shows that
R(Ch,P) ≥ R(k-DISJ) ≥ Ω(k). By Lemma II.2, any

215

testing algorithm that distinguishes k-linear and (k + 2)-
linear functions with probability at least 2/3 must make
at least Ω(k) queries. The theorem then follows from the
observation that k-linear functions satisfy properties (i)–(iv)
while Fact III.1 shows that (k + 2)-linear functions are far
from those same properties.

To handle k in the range k ∈ (n/2, n − 1), note that
the query complexity of distinguishing whether a function
is k-linear versus (k + 2)-linear is equivalent to the query
complexity of distinguishing whether a function is (n− k)-
linear versus (n − k − 2)-linear. This is because we can
replace the function h being tested by h ⊕ χn. Thus for
k ∈ (n/2, n − 1), the complexity of testing any of these
properties is Ω(n− k).

For the special case when k = n/2, we can show Ω(n)
queries are required via a simple padding argument. We
reduce the k = 3n/4 case (say) to the k = n/2 case
by using the function h constructed by Alice and Bob to
construct a padded h′ over a larger space- i.e. h′ has the form
h : {0, 1}n′ → {0, 1} where n′ = 3n/2 and h′ just applies
h to the first n variables. Thus a distinguisher for whether
h′ is n′

2 -linear versus (n
′

2 + 2)-linear would clearly yield a
distinguisher for whether h is 3n

4 -linear versus (3n
4 + 2)-

linear.

IV. TESTING MONOTONICITY AND SUBMODULARITY

Theorem I.2 (Restated). Testing f : {0, 1}n → R for
monotonicity requires Ω(min{n, |R|2}) queries.

Proof: We prove the theorem in three steps. First, we
give an Ω(n) lower bound for the case when R = Z.
Secondly, we handle the case where |R| =

√
n by a standard

range reduction argument. Finally, we give an Ω(|R|2)
bound for small |R| by reducing from the |R| =

√
n case.

Suppose R = Z. Then, we apply a reduction from the
DISJ problem. Let A,B ⊆ [n] be the subsets received by
Alice and Bob, respectively. Alice and Bob can determine
whether A and B are disjoint with the following protocol:
Alice builds the function χA : {0, 1}n → {−1, 1} defined
by χA(x) = (−1)

∑
i∈A xi . Similarly, Bob constructs the

function χB : {0, 1}n → {−1, 1}. They then communicate
to test whether the function h : {0, 1}n → R defined by
h(x) = 2 · |x|+ χA(x) + χB(x) is monotone or whether it
is 1/8-far from monotone.

To establish the correctness of the protocol, we need to
establish two facts: (1) when A and B are disjoint, the
function h is monotone, and (2) when A and B are not
disjoint, h is 1/8-far from monotone.

Fix i ∈ [n]. For x ∈ {0, 1}n, let x0, x1 ∈ {0, 1}n be the
vectors obtained by fixing the ith coordinate of x to 0 and
to 1, respectively. For any set S ⊆ [n],

χS(x1) = (−1)1[i∈S] · χS(x0).

Therefore, when i /∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| = 2 > 0;

when i ∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0) ≥ 0;

and similarly when i /∈ A and i ∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χB(x0) ≥ 0.

So when i 6∈ A ∩ B, the function h is monotone on each
edge (x0, x1) in the ith direction. As a result, when A and
B are disjoint the function h is monotone. This completes
the proof of fact (1).

Consider now the case where A∩B 6= ∅. When i ∈ A∩B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0)− 2χB(x1).

This implies that for each x where χA(x0) = χB(x0) = 1,
h(x1) < h(x0). Partition {0, 1}n into 2n−1 pairs that form
the endpoints to all the edges in the ith direction. Exactly 1

4
of these pairs will satisfy the condition χA(x0) = χB(x0) =
1, and for each of these pairs, either h(x0) or h(x1) must
be modified to make h monotone. Therefore, when A and
B are not disjoint, then h is 1

8 -far from monotone and this
completes the proof of fact (2).

To complete the proof in the case of R = Z, define
Ch,Mon to be the communication game where Alice and Bob
receive two functions f and g, and they must test whether
the function h defined by h(x) = 2 · |x| + f(x) + g(x)
is monotone or whether it is 1/8-far from monotone. The
argument above shows that R(Ch,Mon) ≥ R(DISJ) ≥ Ω(n).
The lower bound thus follows from Lemma II.2.

To handle the case where |R| =
√
n, we sketch the

proof of a standard range reduction argument (see, e.g., [9].)
Specifically, we can assume without loss of generality that
R = {−

√
n

2 , . . . ,
√
n

2 } and we modify the construction of
the function h to create h′

h′(x) =

−
√
n

2 when |x| − n
2 < −

√
n

2 + 1,
√
n

2 when |x| − n
2 >

√
n

2 − 1,

|x| − n
2 + χA(x)+χB(x)

2

when
∣∣ |x| − n

2

∣∣ ≤ √n2 − 1.

It is easy to see that h′ is identical to h/2, except when∣∣ |x| − n
2

∣∣ ≥ √n2 , which only occurs for a constant fraction
of x’s. Using the same reasoning as before, h′ is monotone
when A and B are disjoint, and a constant distance from
monotone when A and B intersect. We leave the details to
the reader.

Finally, suppose that |R| = o(
√
n), and let m := |R|2.

We’ll use a q-query testing algorithm for f to create a q-
query testing algorithm for functions g : {0, 1}m → {0, 1}.

216

Specifically, given g, create h : {0, 1}n → R by defining
h(x, y) := g(x) for x ∈ {0, 1}m and y ∈ {0, 1}n−m.
Clearly, if g is monotone then so is h. We now want to argue
that if g is ε-far from monotone, then so is h. We do so by
proving the contrapositive. Suppose that h is not ε-far from
monotone. Let h̃ be the monotone function closest to h; thus,
Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε. By an averaging argument,
there exists y such that Prx[h(x, y) 6= h̃(x, y)] ≤ ε. Define
g̃ : {0, 1}m → R as g̃(x) := h̃(x, y). It’s easy to see
that Prx[g(x) 6= g̃(x)] = Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε.
Therefore, g is not ε-far from monotone.

Our testing algorithm for g is simple: test h and return
the result. By the above claim, a correct answer for testing
h gives a correct answer for testing g. Since testing g for
monotonicity requires Ω(m) = Ω(|R|2) queries, the same
bound holds for testing h.

TESTING SUBMODULARITY. The real-valued function f :
{0, 1}n → R is submodular if for every x, y ∈ {0, 1}n,
f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), where (x ∨ y)i =
max{xi, yi} and (x ∧ y)i = min{xi, yi}.

Testing submodularity was first studied by Parnas, Ron,
and Rubinfeld [34] for functions in low dimensions. Re-
cently, Seshadhri and Vondrak [39] initiated the study of sub-
modularity testing for functions over the boolean hypercube.
They show that testing submodularity is at least as difficult
as testing monotonicity (see Lemma 51 of [39]), and thus
the monotonicity lower bound of Fischer et al. [23] implies a
weak lower bound of Ω(log log n) for testing submodularity.
Applying our Theorem I.2 instead, we get a much stronger
lower bound:

Corollary IV.1. Testing f : {0, 1}n → R for submodularity
requires Ω(n) queries.

V. TESTING CONCISE REPRESENTATIONS

The following lemma regarding juntas is an important
ingredient of the proof of Theorem I.3:

Lemma V.1 (Diakonikolas et al. [18]). Let P be the class of
all size-s decision trees, size-s branching programs, s-term
DNFs, or size-s boolean formulas. Then every (log s)-junta
is in P , while a random (log s+ log log s)-junta is 0.001-far
from P with probability 1− o(1).

Theorem I.3 (Restated). At least Ω(log s) queries are
required to test (i) size-s decision trees, (ii) size-s branching
programs, (iii) s-term DNFs, and (iv) size-s boolean formu-
las.

Proof: Fix P to be the property consisting of all size-s
decision trees, size-s branching programs, s-term DNFs, or
size-s boolean formulas. Define k := log s.

We prove that Ω(k) queries are required to test P with
a reduction from the EGHDn,4k/3,2 log k problem. We can
formulate the problem as follows: Alice and Bob receive

A,B ⊆ [n], respectively. Both sets have size |A| = |B| =
2
3k. Alice and Bob must distinguish between the case where
|A4B| ≥ 2

3k+ 2 log k and the case where |A4B| ≤ 2
3k−

2 log k. As we saw in Section II-A, R(EGHDn,4k/3,2 log k) ≥
Ω(k) = Ω(log s).

Alice and Bob can solve the EGHD problem with the
following protocol: Alice generates a random 2

3k-junta
f : {0, 1}n → {0, 1} whose relevant variables are iden-
tified by A. Similarly, Bob generates a random 2

3k-junta
g : {0, 1}n → {0, 1} whose relevant variables are identified
by B. Alice and Bob then test whether the function f ⊕ g
is in P or is far from P .

To see why the protocol correctly solves the
EGHDn,4k/3,2 log k problem, we observe that the function
h = f ⊕ g is a random junta on the set A ∪B of variables.
Since |A| = |B| = 2

3k, then |B \ A| = 1
2 |A4B| and

|A ∪ B| = |A| + |B \ A| = 2
3k + 1

2 |A4B|. So when
|A4B| < 2

3k − 2 log k, then h is a k-junta.8 And when
|A4B| > 2

3k+2 log k, then h is a random (k+log k)-junta.
The correctness of the protocol follows from Lemma V.1.

We now complete the proof of the lower bound as we
did in Theorems I.1 and I.2: define Ch,Jun to be the
communication game where Alice and Bob receive the
functions f, g : {0, 1}n → {0, 1} and must test whether
f ⊕ g is in P or far from P . The protocol above shows
that R(Ch,Jun) ≥ R(EGHDn,4k/3,2 log k) ≥ Ω(log s). The
Theorem follows from Lemma II.2.

TESTING JUNTAS. Fischer et al. [22] asked if it is easier
to test k-juntas if we are only required to reject functions
that are far from (k + t)-juntas for some t > 0. The lower
bound of Chockler and Gutfreund [16] gives a lower bound
of Ω(k/t) queries for this task. (See also [18, App. E].)
This bound is not sufficiently strong to answer Fischer et
al.’s question for any t ≥ ω(1).

Our proof of Theorem I.3, on the other hand, can easily
be extended to show that for any t ≤ O(

√
k), the task

of distinguishing k-juntas from functions that are far from
(k + t)-juntas requires (asymptotically) as many queries as
the standard k-junta testing problem:

Theorem I.4 (Restated). Fix k ≤ 3
4n and t > 0. Any

algorithm that accepts k-juntas and rejects functions 1
4 -

far from (k + t)-juntas with high probability must make
Ω
(

min{(kt)2, k} − log k
)

queries.

Proof: We again define a reduction from the
EGHDn,4k/3,t problem. As in the proof of Theorem I.3,
Alice and Bob can solve their instance of the problem by
building random juntas f, g : {0, 1}n → {0, 1} on the sets
A,B ⊆ [n] of size |A| = |B| = 2

3k that they received.
When |A4B| ≤ 2

3k − t, then f ⊕ g is a k-junta, and when
|A4B| ≥ 2

3k + t then f ⊕ g is a random (k + t)-junta. A

8In fact, h is a (k− log k)-junta, but it is sufficient for our purposes to
note that h is a k-junta.

217

random (k + t)-junta is 1
4 -far from (k + t − 1)-juntas with

probability 1−o(1), so this reduction and Lemma II.2 show
that the relaxed version of junta testing is at least as hard as
EGHDn,4k/3,t.

VI. TESTERS WITH ONE-SIDED ERROR

TESTING DECISION TREES. We saw in Theorem I.3 that
Ω(log s) queries are required to test whether a function
can be represented as a boolean decision tree with at
most s nodes; for testers with one-sided error, we get an
exponentially larger bound:

Theorem I.5 (Restated). At least Ω(s) queries are required
to test size-s decision trees with one-sided error.

Proof: We do a reduction from the GAP-EQUALITY
problem. Assume that s = 2n−1. Alice receives the string
a ∈ {0, 1}s and Bob receives b ∈ {0, 1}s. They must
determine if a = b or whether ∆(a, b) = s

8 .
Alice and Bob can solve their instance of the GEQ

problem with the following protocol. Let the set of vectors
x ∈ {0, 1}n with even parity Parity(x) = x1⊕· · ·⊕xn = 0
define an indexing of the bits of a. (I.e., fix a bijection
between those strings and [s].) Alice and Bob build the
functions f, g : {0, 1}n → {0, 1} by setting

f(x) =

{
ax when Parity(x) = 0,

0 when Parity(x) = 1,

and

g(x) =

{
bx when Parity(x) = 0,

1 when Parity(x) = 1.

Alice and Bob then test whether f ⊕ g can be represented
with a decision tree of size at most 15

162n; when it can, they
answer ∆(a, b) = s

8 .
Let us verify the correctness of this protocol. For

any x ∈ {0, 1}n where Parity(x) = 0, we have
that (f ⊕ g)(x) = ax ⊕ bx. Furthermore, for each x where
Parity(x) = 1, we get (f ⊕ g)(x) = 1. So when a = b,
then f ⊕ g is the Parity function. This function requires a
tree of size 2n − 1 to compute exactly, and is 1

16 -far from
every decision tree of size at most 15

162n. When ∆(a, b) = s
8 ,

consider the (complete) tree that computes f⊕g by querying
xi in every node at level i. This tree has 2n − 1 nodes,
but for every input x where ax 6= bx, we have that the
corresponding leaf has the same value as its sibling. So for
each such input, we can eliminate one node in the nth level
of the tree. Therefore, we can compute f⊕g with a decision
tree of size at most 2n − 1− 2n−1/8 < 15

162n.
To complete the proof, we introduce the communica-

tion game C⊕,DT where Alice and Bob each receive a
boolean function and they must determine if the sum of
their functions can be represented with a decision tree
of size 15

162n = 15
32s. The above reduction shows that

R1(C⊕,DT) ≥ R1(GEQ) ≥ Ω(s). Lemma II.2 then implies

the lower bound for testing size-s decision trees with one-
sided error.

TESTING SIGNED k-MAJORITIES. Our next bound is for
testing whether a function f : {−1, 1}n → {−1, 1} is
a signed k-majority (for convenience, in this section we
will switch notation and represent boolean values with ±1
notation). A signed majority is a majority function with
some variables negated, i.e. it is a halfspace of the form
f(x) = sgn(w·x), where w ∈ {−1, 1}n. If w ∈ {−1, 0, 1}n
and exactly k of the wi’s are non-zero, we say it is a signed
k-majority.

Signed majorities were previously studied by Matulef et.
al. [30], where they were referred to as {−1, 1}-weight
halfspaces. In that work, they show a non-adaptive lower
bound of Ω(log n) queries to test whether a function is
a signed majority on all n variables. In [7], Blais and
O’Donnell study the related problem of testing whether a
function is a (non-signed) majority on exactly k out of n
variables. When k ≤ 3

4n, they show a lower bound of
Ω(k1/12) queries for non-adaptive algorithms with two-sided
error.

We show that Ω(k/ log k) queries are required to test
whether f is a signed k-majority with one-sided error. The
argument in [7] can be adapted to show a non-adaptive, two-
sided lower bound of Ω(k1/12) queries for this problem
as well. Our bound is incomparable; it is asymptotically
stronger and applies to adaptive algorithms, but only ones
with one-sided error.

Theorem VI.1. Fix any constant γ ∈ (0, 1). For k ≤ γn,
at least Ω(k/ log k) queries are required to test signed k-
majorities with one-sided error.

Proof: We will show a reduction from the GAP-
EQUALITY problem.

For a fixed k, define k′ = k/γ and note k′ ≤ n. Suppose
Alice and Bob each have strings of length k′ denoted sA
and sB , which are promised to either be equal, or have
Hamming distance n − k. For convenience, we will think
of these strings as vectors over {−1, 1}k′ .

Alice and Bob will each generate functions that are linear
forms. Alice generates f : {−1, 1}n → R by defining
f(x) = x · sA, and Bob generates g : {−1, 1}n → R by
taking g(x) = x · sB . (For example, if sA = 〈−1,−1, 1〉
Alice generates the function f(x) = −x1 − x2 + x3). They
then analyze the joint function h : {−1, 1}n → {−1, 1}
defined as h(x) = sgn(f(x)+g(x)

2). It is easy to see that
h is a signed k′-majority if sA = sB , and a signed k-
majority if sA and sB have Hamming distance n − k. In
Lemma VI.3 below, we show that a signed k′-majority is a
constant distance from any signed k-majority. Thus, Alice
and Bob can solve GEQk′ by testing whether h is a signed
k-majority.

Note that each time their tester queries h(x), in order

218

to compute h they need to send Θ(log k) bits to each
other, since the range of f and g is of size Θ(k′). Thus,
similar to Lemma II.2, the communication complexity of
this problem is bounded by O(log k′) times the query
complexity of testing. By Lemma II.3, we know that the
communication complexity of GEQk′ with one-sided error
is Ω(k′). Thus, the query complexity of the tester must be
Ω(k′/ log k′) = Ω(k/ log k).

We complete the section by showing that when k′ is much
larger than k, signed k′-majorities are far from signed k-
majorities. To prove this statement, we will use the Berry-
Esseen theorem, a version of the Central Limit Theorem
with error bounds (see e.g. [21]):

Theorem VI.2 (Berry-Esseen). Let `(x) = c1x1+· · ·+cnxn
be a linear form over the random ±1 bits xi. Assume |ci| ≤
τ for all i and write σ =

√∑
c2i . Write F for the c.d.f. of

`(x)/σ; i.e., F (t) = Pr[`(x)/σ ≤ t]. Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1

1 + |t|3
,

where Φ denotes the c.d.f. of X , a standard Gaussian
random variable. In particular, if A ⊆ R is any interval
then |Pr[`(x)/σ ∈ A]− Pr[X ∈ A]| ≤ C1(τ/σ), where C1

is an absolute constant.

Lemma VI.3. Fix a constant α. Then there exist absolute
constants k0 ∈ N and ε > 0 (which only depend on α)
such that for any k ≥ k0 and k′ = (1 + α)k, all signed
k′-majorities are ε-far from signed k-majorities.

Proof: Let f be a signed k-majority, and g be a signed
k′-majority. It is easy to see that f and g have minimum
distance when they have the same sign pattern on their
common variables. So without loss of generality, assume
f(x) = sgn(x1 + · · ·+ xk) and g(x) = sgn(x1 + · · ·+ xk′)
(in other words, f is a majority function on the first k′

variables, and g is a majority function on the first k′

variables). To simplify, we will write S(x) =
∑k
i=1 xi

and T (x) =
∑k′

i=k+1 xi. Thus, f(x) = sgn(S(x)) and
g(x) = sgn(S(x) + T (x)).

For any positive real number t, we have

Pr
x

[f(x) 6= g(x)] ≥ Pr
x

[S(x) ∈ [0, t) and T (x) < −t]

= Pr
x

[S(x) ∈ [0, t)] · Pr
x

[T (x) < −t]

where the equality follows from the fact that S and T are
functions on disjoint sets of variables.

Note that S is a linear form on k variables, so we can use
the Berry-Esseen theorem on S with σ =

√
k to get

Pr
x

[S(x) ∈ [0, t)] ≥ (Φ(t/
√
k)− Φ(0))− C1/

√
k

≥ (Φ(t/
√
k)− 1/2)− C1/

√
k (1)

where C1 is the constant from the Berry-Esseen theorem.

Similarly, T is a linear form on αk variables, so we can
use the Berry-Esseen theorem on T with σ =

√
αk to get

Pr
x

[T (x) < −t] ≥ Φ(−t/
√
αk)− C1/

√
αk (2)

Setting t to be, say,
√
k, and then choosing k large enough

insures that the quantities in both (1) and (2) are positive,
and bigger than a constant which only depends on α.

ACKNOWLEDGMENTS

We thank Amit Weinstein and the anonymous referees
for insightful feedback on an earlier draft of this article. We
also thank Sourav Chakraborty, David Garcı́a-Soriano, and
Arie Matsliah for sharing their manuscript [14] with us. In
addition, E.B. wishes to thank Ryan O’Donnell for several
helpful discussions.

REFERENCES

[1] Noga Alon and Eric Blais. Testing boolean function isomor-
phism. In Proc. 14th International Workshop on Random-
ization and Approximation Techniques in Computer Science,
pages 394–405, 2010.

[2] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast ap-
proximate PCPs for multidimensional bin-packing problems.
In Proc. 3rd International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 245–
256, 1999.

[3] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya
Raskhodnikova, and David P. Woodruff. Transitive-closure
spanners of the hypercube and the hypergrid. Technical
Report TR09-046, ECCC, 2009.

[4] Eric Blais. Improved bounds for testing juntas. In Proc. 12th
International Workshop on Randomization and Approxima-
tion Techniques in Computer Science, pages 317–330, 2008.

[5] Eric Blais. Testing juntas nearly optimally. In Proc. 41st
Annual ACM Symposium on the Theory of Computing, pages
151–158, 2009.

[6] Eric Blais and Daniel Kane. Testing linear functions.
Manuscript, 2011.

[7] Eric Blais and Ryan O’Donnell. Lower bounds for testing
function isomorphism. In Proc. 25th Annual IEEE Conference
on Computational Complexity, pages 235–246, 2010.

[8] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems.
J. Comput. Syst. Sci., 47:549–595, 1993. Earlier version in
STOC’90.

[9] Jop Briët, Sourav Chakraborty, David Garcı́a-Soriano, and
Arie Matsliah. Monotonicity testing and shortest-path routing
on the cube. In Proc. 14th International Workshop on
Randomization and Approximation Techniques in Computer
Science, 2010.

219

[10] Joshua Brody, Amit Chakrabarti, Oded Regev, Thomas
Vidick, and Ronald de Wolf. Better Gap-Hamming lower
bounds via better round elimination. In Proc. 14th In-
ternational Workshop on Randomization and Approximation
Techniques in Computer Science, 2010.

[11] Joshua Brody, Kevin Matulef, and Chenggang Wu. Lower
bounds for testing computability by small-width branching
programs. In Proc. 8th Annual Theory and Applications of
Models of Computation, 2011.

[12] Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum
vs. classical communication and computation. In Proc. 30th
Annual ACM Symposium on the Theory of Computing, pages
63–68, 1998.

[13] Amit Chakrabarti and Oded Regev. An optimal lower
bound on the communication complexity of Gap-Hamming-
Distance. In Proc. 43rd Annual ACM Symposium on the
Theory of Computing, 2011.

[14] Sourav Chakraborty, David Garcı́a-Soriano, and Arie Mat-
sliah. Efficient sample extractors for juntas with applications.
Manuscript, 2011.

[15] Sourav Chakraborty, David Garcı́a-Soriano, and Arie Mat-
sliah. Nearly tight bounds for testing function isomorphism.
In Proc. 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, 2011.

[16] Hana Chockler and Dan Gutfreund. A lower bound for testing
juntas. Information Processing Letters, 90(6):301–305, 2004.

[17] Ronald de Wolf. A brief introduction to fourier analysis on
the boolean cube. Theory of Computing, Graduate Surveys,
1:1–20, 2008.

[18] Ilias Diakonikolas, Homin Lee, Kevin Matulef, Krzysztof
Onak, Ronitt Rubinfeld, Rocco Servedio, and Andrew Wan.
Testing for concise representations. In Proc. 48th Annual
IEEE Symposium on Foundations of Computer Science, pages
549–558, 2007.

[19] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya
Raskhodnikova, Dana Ron, and Alex Samorodnitsky. Im-
proved testing algorithms for monotonicity. In Proc. 3rd In-
ternational Workshop on Randomization and Approximation
Techniques in Computer Science, pages 97–108, 1999.

[20] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Ruben-
feld, and Mahesh Viswanathan. Spot-checkers. J. Comput.
Syst. Sci., 60:717–751, 2000.

[21] W. Feller. An introduction to probability theory and its
applications, volume 2. John Wiley & Sons, 1968.

[22] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and
Alex Samorodnitsky. Testing juntas. J. Comput. Syst. Sci.,
68:753–787, 2004.

[23] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhod-
nikova, Ronitt Rubinfeld, and Alex Samorodnitsky. Mono-
tonicity testing over general poset domains. In Proc. 34th
Annual ACM Symposium on the Theory of Computing, pages
474–483, 2002.

[24] Peter Frankl and Vojtěch Rödl. Forbidden intersections.
Trans. Amer. Math. Soc., 300(1):259–286, 1987.

[25] Oded Goldreich. On testing computability by small width
OBDDs. In Proc. 14th International Workshop on Random-
ization and Approximation Techniques in Computer Science,
pages 574–587, 2010.

[26] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron,
and Alex Samorodnitsky. Testing monotonicity. Combinator-
ica, 20(3):301–337, 2000.

[27] Johan Håstad and Avi Wigderson. The randomized commu-
nication complexity of set disjointness. Theory of Computing,
pages 211–219, 2007.

[28] Piotr Indyk and David Woodruff. Tight lower bounds for
the distinct elements problem. In Proc. 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 283–
289, 2003.

[29] Eyal Kushilevitz and Noam Nisan. Communication Complex-
ity. Cambridge University Press, Cambridge, 1997.

[30] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco
Servedio. Testing {-1,1}-weight halfspaces. In Proc. 13th In-
ternational Workshop on Randomization and Approximation
Techniques in Computer Science, 2009.

[31] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi
Wigderson. On data structures and asymmetric communica-
tion complexity. In Proc. 27th Annual ACM Symposium on
the Theory of Computing, pages 103–111, 1995.

[32] Ilan Newman. Private vs. common random bits in communi-
cation complexity. Information Processing Letters, 39(2):67–
71, 1991.

[33] Ryan O’Donnell. Some topics in analysis of boolean function.
In Proc. 40th Annual ACM Symposium on the Theory of
Computing, pages 569–578, 2008.

[34] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing
convexity and submodularity. SIAM J. Comput., 32(5):1158–
1184, 2003.

[35] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing
basic boolean formulae. SIAM J. Disc. Math., 16(1):20–46,
2002.

[36] Dana Ron. Property testing: A learning theory perspective.
Foundations and Trends in Machine Learning, 1(3):307–402,
2008.

[37] Dana Ron. Algorithmic and analysis techniques in property
testing. Foundations and Trends in Theoretical Computer
Science, 5(2):73–205, 2009.

[38] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations
of polynomials with applications to program testing. SIAM
J. Comput., 25:252–271, 1996.

[39] C. Seshadhri and Jan Vondrák. Is submodularity testable? In
Proc. 2nd Innovations in Computer Science, 2011.

220

