
Sparse Games Are Hard

Xi Chen1, Xiaotie Deng2, and Shang-Hua Teng3

1 Department of Computer Science, Tsinghua University, Beijing
xichen00@mails.tsinghua.edu.cn

2 Department of Computer Science, City University of Hong Kong, Hong Kong
deng@cs.cityu.edu.hk

3 Department of Computer Science, Boston University, Boston
steng@cs.bu.edu

Abstract. A two-player game is sparse if most of its payoff entries are
zeros. We show that the problem of computing a Nash equilibrium re-
mains PPAD-hard to approximate in fully polynomial time for sparse
games. On the algorithmic side, we give a simple and polynomial-time
algorithm for finding exact Nash equilibria in a class of sparse win-lose
games.

1 Introduction

Motivated by the growing possibilities in both Internet applications and net-
work computations, Game Theory has attracted a great deal of attention from
Theoretical Computer Science community. Central to such game theoretical ap-
plications is the problem of computing a Nash equilibrium in a non-cooperative
game.

A series of significant progress on the complexity of this problem was initiated
by a recent work of Daskalakis, Goldberg, and Papadimitriou [1,2] who intro-
duced a reduction technique and showed that a Nash equilibrium in a four-player
game is hard to find, unless PPAD [3] is in P. Shortly afterward, this hardness
result was extended to three-player games [4,5]. Chen and Deng [6] finally settled
a long-term open problem, and proved that computing a Nash equilibrium in a
two-player game is PPAD-complete.

These breakthrough work left the problem of computing approximate Nash
equilibria with less than exponential accuracy as a central remaining open ques-
tion in the area of computing Nash equilibria. In a recent paper [7], we solved
this problem by showing that two-player games do not have a fully polynomial-
time approximation scheme unless PPAD is in P. Hence, it is unlikely that the
nO(log n/ε2)-time algorithm of Lipton, Markakis, and Mehta [8], the fastest algo-
rithm known today for approximating Nash equilibria, can be further improved
to poly(n, 1/ε). This result also implies that, unlike the simplex algorithm for
zero-sum two-player games [9], the smoothed complexity of the classical Lemke-
Howson algorithm for non-zero-sum two-player games is not polynomial, unless
PPAD ⊆ RP. Thus the average-case polynomial-time result of Barany, Vem-
pala, and Vetta [10] is not likely extendible to the smoothed model. Recently,

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 262–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sparse Games Are Hard 263

Chen, Teng, and Valiant [11] extended this result and proved that win-lose two-
player games, in which the payoff entries are either 0 or 1, are PPAD-hard to
approximate in fully polynomial time.

A two-player game is specified by two m×n matrices A = (ai,j) and B = (bi,j).
They state the payoffs when the first player makes a choice of a row and the
second player makes a choice of a column. In general, each player can pick a
distribution over its choices in advance, and during the playing time, selects
a choice according to this distribution, simultaneously. The concept of a Nash
equilibrium captures the notion of rational play in such non-cooperative games.
It is rather a strong notion of rationality, stating the condition that neither player
can gain by changing its own distribution, when the opponent’s distribution is
revealed. Each two-player game has at least one Nash equilibrium [12].

In this paper, we consider sparse games in which most of the payoff entries
are zeros. Particularly, we focus on sparse two-player games in which each row
and column of the two payoff matrices has at most a constant number of non-
zero entries. We prove that a Nash equilibrium in such sparse games is equally
hard to compute and essentially equally hard to approximate as in general two-
player games. Our result shows that sparsity alone does not make game easier
to solve and that sparse two-player games do not have a fully polynomial-time
approximation scheme unless PPAD ⊆ P.

To establish our complexity result, we construct a set of new arithmetic and
logic gadgets, for the reduction from a discrete Brouwer’s fixed point problem
to an equilibrium computation problem. These new gadgets enable us to reduce
the degree of influence in the simulation of arithmetic and logic computations in
two-player games, resulting in hard sparse instances.

On the positive side, we give a polynomial-time algorithm for computing an
exact Nash equilibrium for a subclass of sparse win-lose games. Our algorithm
takes advantage of the 0-1 payoff structure and effectively reduces the compu-
tation of a Nash equilibrium of a two-player win-lose game to the computation
of an equilibrium in a smaller game. We were informed by the conference com-
mittee that Codenotti, Leoncini, and Resta [13] very recently and independently
obtained the same result for finding Nash equilibria in this subclass of sparse
win-lose games. As our algorithm appears to be simpler than theirs, we decide
to keep our algorithm and its analysis in this conference version.

2 Sparse Two-Player Games and Our Main Result

Definition 1 (Sparse Normalized Games). A bimatrix game G = (A,B) is
normalized if every entry of matrices A and B is between −1 and 1. A matrix
A is row (column) sparse if there are at most 10 nonzero entries in every row
(column). A is sparse if it is both row sparse and column sparse. A two-player
game G = (A,B) is sparse if both A and B are sparse.

We use P
n to denote the set of all probability vectors in R

n, i.e., non-negative
vectors whose entries sum to 1. Recall that an ε-approximate Nash equilibrium of

264 X. Chen, X. Deng, and S.-H. Teng

game (A,B) is a pair (x∗ ∈ P
m,y∗ ∈ P

n) such that, for all probability vectors
x ∈ P

m,y ∈ P
n,

(x∗)TAy∗ ≥ xT Ay∗ − ε and (x∗)T By∗ ≥ (x∗)T By − ε.

Following [7], an ε-well-supported Nash equilibrium of game (A,B) is a pair
(x∗,y∗), such that for all i, j, 〈bi|x∗〉 > 〈bj |x∗〉 + ε ⇒ y∗

j = 0, and 〈ai|y∗〉 >

〈aj |y∗〉 + ε ⇒ x∗
j = 0, where ai and bi denote the ith row of A and the ith

column of B, respectively. Motivated by the next lemma proved in [7]. we define
the following search problem called Sparse Bimatrix.

Lemma 1 ([7]). In a normalized game (A,B), for every 0 ≤ ε ≤ 1, (1) every
ε-well-supported Nash equilibrium (x,y) is also an ε-approximate Nash equilib-
rium; (2) from every ε2/(8n)-approximate Nash equilibrium (u,v), one can find
in polynomial time an ε-well-supported Nash equilibrium (x,y).

Definition 2 (Sparse Bimatrix). The input instance is a bimatrix game G =
(A,B) which is both normalized and sparse. A and B are n × n matrices.

The output is an n−6-well-supported Nash equilibrium of game G.

Our main result is the following theorem.

Theorem 1 (Main). Problem Sparse Bimatrix is PPAD-complete.

Clearly, Sparse Bimatrix belongs to PPAD [6]. To prove its completeness, we
will reduce the PPAD-complete problem Brouwerf [7] to it, where f(n) = 3.
We also notice that, in contrast, a (10/n)-approximate Nash equilibrium of a
sparse normalized game can be found in polynomial time.

3 Review of the Reduction in [7]

In this section, we review the reduction in [7], from Brouwerf to the problem
of finding an n−6-well-supported Nash equilibrium in a normalized game.

Let U = (C, 03n) be an input instance of Brouwerf , where C is a boolean
circuit. Let m be the smallest integer such that 2m > Size [C] > n. Here we let
Size [C] denote the number of gates plus the number of input and output vari-
ables in C. In the reduction, we construct a game GU = (AU ,BU) in polynomial
time, where AU and BU are N × N = 26m+1 = 2K matrices, satisfying

Property P1: |aU
i,j |, |bU

i,j | ≤ N3 for all i, j: 1 ≤ i, j ≤ N ;

Property P2: From every ε-well-supported Nash equilibrium of GU , where
ε = 2−18m = 1/K3, one can find a panchromatic simplex P of circuit C in
polynomial time.

Then we normalize GU to obtain GU = (AU ,BU) by setting AU = AU/N3 and
BU = BU/N3. Property P2 implies that, from any 1/N6-well-supported Nash
equilibrium of GU , one can find a panchromatic simplex of circuit C efficiently.

Sparse Games Are Hard 265

As a result, the problem of finding an n−6-well-supported Nash equilibrium in
a normalized bimatrix game is PPAD-hard.

The construction of GU starts with a zero-sum game G∗ = (A∗,B∗) called
Matching Pennies with payoff parameter M = 218m+1 = 2K3. A∗ is a K × K
block diagonal matrix, where each block is a 2× 2 matrix of all M ’s, and B∗ =
−A∗. Ultimately, we obtain GU by perturbing the payoff entries of G∗.

At a high level, we partition the rows of G∗ and hence of GU into K groups:
the ith group consists of rows 2i − 1, 2i. Every row group (2i − 1, 2i) is referred
as an arithmetic node v. Let VA denote the set of all such nodes (|VA| = K),
and CA denote the one-to-one correspondence from VA to {1, 2...K } such that
v corresponds to the CA(v)th row group, for all v ∈ VA. We also partition the
columns of G∗ into K groups: the jth group consists of columns 2j − 1, 2j, and
every group is referred as an internal node w. Let VI denote the set of internal
nodes and CI denote the one-to-one correspondence from VI to {1, 2...K }.

Let (x ∈ P
N ,y ∈ P

N) be a profile of mixed strategies. For each v ∈ VA, we
let x[v] = x2k−1 and xC [v] = x2k−1 + x2k denote the value and capacity of v in
(x,y), respectively, where k = CA(v). For each w ∈ VI , we let y[w] = y2t−1 and
yC [w] = y2t−1 + y2t denote the value and capacity of w in (x,y), respectively,
where t = CI(w). For x, y ∈ R and c ∈ R

+, by x = y ± c, we mean that y − c
≤ x ≤ y + c. All our perturbations of G∗ have the following nice property.

Lemma 2 ([7]). Let (A,B) be a game with 0 ≤ A−A∗,B−B∗ ≤ 1. For any
t ≤ 1, let (x,y) be a t-well-supported Nash equilibrium of (A,B), then it must
satisfy constraint P = [xC [v] = 1/K ± ε, yC [w] = 1/K ± ε, ∀ v ∈ VA, w ∈ VI].

To construct GU , we transform the prototype game G∗ by adding “gadget”
games: we first build a collection of gadgets SU = {T1..., Tl } for some l < K.
Each T ∈ SU defines [7] an N × N “gadget” game (L[T],R[T]). We then build
game GU by invoking function BuildGame on SU . BuildGame takes a collec-
tion S of gadgets and returns a bimatrix game (A,B) as

A = A∗ +
∑

T∈S L[T] and B = B∗ +
∑

T∈S R[T].

A gadget T is a 6-tuple (G, v1, v2, v, c, w). Here G is the type of the gadget
where G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬ }. v1 ∈ VA ∪ {nil} and v2 ∈
VA ∪ {nil} are the first and second input nodes of T , respectively. v ∈ VA is the
output node, and w ∈ VI is the internal node. Parameter c ∈ R ∪ {nil} is only
used in Gζ and G×ζ gadgets: when G = Gζ , 0 ≤ c ≤ 1/K − ε; when G = G×ζ ,
0 ≤ c ≤ 1; otherwise, c = nil.

Every gadget T = (G, v1, v2, v, c, w) implements an arithmetic or logic con-
straint P [T], which requires the values of nodes v, v1 and v2 to satisfy certain
functional relationship. All the nine types of constraints are listed in Figure 1.
Among the nine types of gadgets, G∧, G∨ and G¬ are logic gadgets. They are
used to simulate the logic gates in C. Associated with probability vectors (x,y),
the value of v ∈ VA represents boolean 1 (x[v] =B 1) if x[v] = xC [v]; it repre-
sents boolean 0 (x[v] =B 0) if x[v] = 0.

266 X. Chen, X. Deng, and S.-H. Teng

G+: P [T] = [x[v] = min(x[v1] + x[v2], xC [v]) ± ε]

Gζ : P [T] = [x[v] = c ± ε]

G×ζ : P [T] = [x[v] = min(cx[v1], xC [v]) ± ε]

G=: P [T] = [x[v] = min(x[v1], xC [v]) ± ε]

G<: P [T] = [x[v] =B 1 if x[v1] < x[v2] − ε; x[v] =B 0 if x[v1] > x[v2] + ε]

G−: P [T] = [min(x[v1] − x[v2], xC [v]) − ε ≤ x[v] ≤ max(x[v1] − x[v2], 0) + ε]

G¬: P [T] = [x[v] =B 0 if x[v1] =B 1; x[v] =B 1 if x[v1] =B 0]

G∨: P [T] =

[
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1;

x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

]

G∧: P [T] =

[
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0;

x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1

]

Fig. 1. Constraint P [T], where T = (G, v1, v2, v, c, w)

The collection SU we construct is valid, that is, for each pair T = (G, v1, v2,
v, w, c) and T ′ = (G′, v′1, v

′
2, v

′, c′, w′) in SU , v �= v′ and w �= w′. In [7], we prove
the following two lemmas for valid collections of gadgets.

Lemma 3 ([7]). Let S be a valid collection and G = (A,B) = BuildGame(S),
then we have 0 ≤ A − A∗,B − B∗ ≤ 1. So, by Lemma 2, each ε-well-supported
Nash equilibrium of G satisfies constraint P.

Lemma 4 ([7]). Let S be a valid collection of gadgets, and (x,y) be any ε-well-
supported Nash equilibrium of BuildGame(S), then for each T ∈ S, constraint
P [T] as defined in Figure 1 is satisfied by (x,y).

Property P1 follows directly from Lemma 3. From Lemma 3 and 4, every ε-
well-supported Nash equilibrium of GU satisfies a set of |SU | + 1 constraints:
{P ,P [T1], ...,P [Tl]}, which can be used to prove Property P2.

4 The New Reduction

Although the prototype game G∗ is sparse (for each row and column, there are
exactly two nonzero entries), GU constructed in [7] is not always sparse:

1. There are three types of “bad” gadgets used in the construction of GU : Gζ ,
G∧ and G∨. For every T = (G, v1, v2, v, c, w) ∈ SU with G ∈ {Gζ , G∧, G∨ },
every entry in the (2CI(w))th column of matrix R[T] is non-zero [7]. As a
result, BU is not column sparse.

2. There exist some arithmetic nodes v ∈ VA which are used by more than 5
gadgets in SU as one of their input nodes. Suppose they are T1...Tk ∈ SU ,
then in both the (2CA(v) − 1)st and (2CA(v))th rows of

∑
1≤i≤k R[Ti], we

have 2k > 10 non-zero entries [7]. As a result, BU is not row sparse.

Sparse Games Are Hard 267

In this section, we will reduce problem Brouwerf to Sparse Bimatrix. The
reduction is very similar to the one in [7]. We will develop new “gadget” games
to overcome the first obstacle above. Then we will perturb the prototype game
G∗ to build a sparse game HU which satisfies both Property P1 and P2. One
can normalize the sparse game HU to prove Theorem 1.

4.1 New Gadgets and Constraints

To build game HU , we transform the prototype game G∗ = (A∗,B∗) by adding
“gadget” games. We first build a collection T U = {T1, ..., Tl } of gadgets. For
every gadget T , we construct a “gadget” game (M[T],N[T]) according to Fig-
ure 2. Given any collection of gadgets T , one can construct a two-player game
(A,B) = BuildGame(T) by setting

A = A∗ +
∑

T∈T M[T] and B = B∗ +
∑

T∈T N[T].

From T U , we obtain game HU = BuildGame(T U).
Here a gadget is a 7-tuple T = (G, v1, v2, v3, v, c, w). v3 ∈ VA ∪ {nil} is the

auxiliary input node of T , while the meanings of all the other components are
the same as those in the previous reduction. In the new reduction, we have to-
tally eleven types of gadgets: G ∈ {G+, G−, G=, G<, G×ζ , G¬, G∗

ζ , G
∗
∧, G∗

∨, GH ,
GB= }. Similarly, every gadget T implements an arithmetic or logic constraint
R[T], which requires the values of v1, v2, v3, v to satisfy certain functional rela-
tionship. Before describing constraints R[T] for each type of gadgets, we claim
the following two lemmas, whose proofs are very similar to those of Lemma 3
and Lemma 4 in [7]. Here a collection T is valid if for every pair T = (G, v1,
v2, v3, v, c, w) and T ′ = (G′, v′1, v

′
2, v

′
3, v

′, c′, w′) in T , v �= v′ and w �= w′.

Lemma 5. Let T be a valid collection and (A,B) = BuildGame(T), then we
have 0 ≤ A − A∗,B − B∗ ≤ 1. So from Lemma 2, every ε-well-supported Nash
equilibrium of (A,B) satisfies constraint P.

Lemma 6 (Gadget Constraints). Let T be a valid collection of gadgets, and
(x,y) be an ε-well-supported Nash equilibrium of BuildGame(T), then for each
T ∈ T , constraint R[T] is satisfied by (x,y).

By Lemma 5 and 6, every ε-well-supported Nash equilibrium (x,y) of game
BuildGame(T) satisfies |T |+ 1 constraints: {P ,R[T], T ∈ T }. Let T = (G, v1,
v2, v3, v, c, w) be a gadget in T , then R[T] on (x,y) is described as follows:

– If type G ∈ {G×ζ , G=, G+, G−, G<, G¬ }, then v3 = nil. We have M[T] =
L[T ′] and N[T] = R[T ′], where T ′ = (G, v1, v2, v, c, w), and naturally, con-
straint R[T] is the same as P [T ′].

– If G = GB=, then v1 ∈ VA and v2 = v3 = c = nil. (x,y) satisfies constraint
R[T] = [x[v] =B 1 if x[v1] =B 1; x[v] =B 0 if x[v1] =B 0].

– If G = G∗
ζ , then the auxiliary input node v3 ∈ VA, v1 = v2 = nil, and 0 ≤

c ≤ 1/K − ε. (x,y) satisfies R[T] = [x[v] = c ± 4ε if x[v3] = 1/(2K) ± ε].
So, R[T] is very close to constraint P [T ′], where T ′ = (Gζ , nil, nil, v, c, w),
when the value of the auxiliary input node v3 in (x,y) is close to 1/(2K).

268 X. Chen, X. Deng, and S.-H. Teng

Construction of M[T] and N[T], where T = (G, v1, v2, v3, v, c, w)

Set M[T] = (Mi,j) = N[T] = (Ni,j) = 0

k = CA(v), k1 = CA(v1), k2 = CA(v2), k3 = CA(v3) and t = CI(w)

G+ : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t−1 = N2k−1,2t = 1

G− : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t = N2k−1,2t = 1

G= : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k−1,2t = 1

G< : M2k−1,2t = M2k,2t−1 = N2k1−1,2t−1 = N2k2−1,2t = 1

G×ζ : M2k−1,2t−1 = M2k,2t = N2k−1,2t = 1, N2k1−1,2t−1 = c

G¬ : M2k−1,2t = M2k,2t−1 = N2k1−1,2t−1 = N2k1,2t = 1

G∗
ζ : M2k−1,2t = M2k,2t−1 = 1, N2k−1,2t−1 = 1/2, N2k1−1,2t = Kc

G∗
∧ : M2k−1,2t−1 = M2k,2t = N2k3−1,2t = 1, N2k1−1,2t−1 = N2k2−1,2t−1 = 1/3

G∗
∨ : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t−1 = N2k3−1,2t = 1

GB= : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k1,2t = 1

GH : M2k−1,2t = M2k,2t−1 = N2k−1,2t−1 = N2k,2t = 1

Fig. 2. Construction of “Gadget” Game (M[T],N[T])

– If G = G∗
∨, then v1, v2, v3 ∈ VA and c = nil. (x,y) satisfies constraint R[T]

[

x[v3] =
1

2K
± ε =⇒

{
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

}]

.

Similarly, if G = G∗
∧, then (x,y) must satisfy constraint R[T]

[

x[v3] =
1

2K
± ε =⇒

{
x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0

}]

.

Clearly, constraint R[T] is the same as P [T ′] where T ′ = (G∨ or G∧, v1, v2,
v, c, w), when the value of v3 in (x,y) is close to 1/(2K).

– If type G = GH , then v1 = v2 = v3 = nil. (x,y) satisfies R[T] = [x[v] =
1/2K ± ε]. We will use GH gadgets to “generate” auxiliary nodes for G∗

ζ ,
G∗

∧ and G∗
∨ gadgets to simulate the old Gζ , G∧ and G∨ gadgets used in [7].

We next show that, if a valid collection T also satisfies the following property,
then bimatrix game BuildGame(T) must be sparse.

Definition 3. Collection T is said to be sparse if for every v∗ in VA, there exist
at most two gadgets T = (G, v1, v2, v3, v, c, w) ∈ T such that v∗ ∈ {v1, v2, v3 }.

Lemma 7. If T is both valid and sparse, then BuildGame(T) is sparse.

Sparse Games Are Hard 269

CopyA(T ; v; v1, v2, ..., vk)

1: pick unused nodes v′
1, v

′
2, ..., v

′
k−1 ∈ VA and w′, w′′, w1..., wk−1, w

′
1..., w

′
k−2 ∈ VI

2: Insert(T , (G=, v, nil, nil, v1, nil, w′)) and Insert(T , (G=, v, nil, nil, v′
1, nil, w′′))

3: for i from 1 to k − 1, Insert(T , (G=, v′
i, nil, nil, vi+1, nil, wi))

4: for i from 1 to k − 2, Insert(T , (G=, v′
i, nil, nil, v′

i+1, nil, w′
i))

Fig. 3. Function CopyA

Proof. For each T = (G, v1, v2, v3, v, c, w) ∈ T , (M[T],N[T]) satisfies:

Property 1. Let k = CA(v), t = CI(w) and ki = CA(vi) for every 1 ≤ i ≤ 3. In
matrices M[T] = (Mi,j) and N[T] = (Ni,j), only the following entries are possi-
bly nonzero: {M2k−1,2t−1, M2k−1,2t, M2k,2t−1, M2k,2t} and {N2l−1,2t−1, N2l−1,2t,

N2l,2t−1, N2l,2t, where l ∈ {k1, k2, k3, k}}, and all these entries are in [0, 1].

Property 1 follows directly from the construction of M[T] and N[T] in Figure 2.
Let (A = (ai,j),B = (bi,j)) = BuildGame(T).

Let v be an arithmetic node in VA and k = CA(v). According to Property 1,
for any 1 ≤ j ≤ 2K, a2k,j �= a∗

2k,j implies that there exists a gadget T ∈ T
whose output node is v and internal node w satisfies j ∈ {2CI(w), 2CI(w) − 1}.
Since T is valid, there can be at most one gadget whose output node is v and
thus, there are at most two integers 1 ≤ j ≤ 2K such that a2k,j �= a∗

2k,j . On the
other hand, the (2k)th row of A∗ has exactly two nonzero entries. As a result,
the number of nonzero entries in the (2k)th row of A is at most four. The case
for the (2k − 1)st row can be proved similarly, and thus, A is row sparse. One
can prove similarly that both A and B are column sparse.

Let v be an arithmetic node in VA and k = CA(v). According to Property 1,
b2k,j �= b∗2k,j implies there exists a gadget T = (G, v1, v2, v3, v, c, w) ∈ T such
that v ∈ {v1, v2, v3, v} and j ∈ {2CI(w), 2CI(w)− 1}. Since T is both valid and
sparse, there can be at most three gadgets T = (G, v1, v2, v3, v, c, w) ∈ T such
that v ∈ {v1, v2, v3, v}, and at most six integers j such that b2k,j �= b∗2k,j . So the
number of nonzero entries in the (2k)th row of B is at most eight. The case for
the (2k − 1)st row can be proved similarly, and thus, B is row sparse.

4.2 The Copy Network

In this subsection, we build a network of gadgets which will be referred to as
a copy network. Let us define some notations that will be useful.

Let T be a valid collection of gadgets. An arithmetic node v ∈ VA (or an
internal node w ∈ VI) is unused in T if none of the gadgets in T uses v (or w)
as its output node (or internal node). We use Unused[T] to denote the number
of unused nodes v ∈ VA in T . Suppose T �∈ T is a gadget such that T ∪ {T }
is still valid. We use Insert(T , T) to denote the insertion of gadget T into T .

270 X. Chen, X. Deng, and S.-H. Teng

1: set T = ∅
2: for every gadget T = (G, v1, v2, v, c, w) ∈ SU constructed in [7] do

3: if G ∈ {G×ζ , G=, G+, G−, G<, G¬ } then

4: Insert(T , (G, v1, v2, nil, v, c, w))

5: else [if G = Gζ (or G∧, G∨), we use G∗ to denote G∗
ζ (or G∗

∧, G∗
∨)]

6: pick nodes v′ ∈ VA and w′ ∈ VI , which are unused in both SU and T
7: Insert(T , (GH , nil, nil, nil, v′, nil, w′)), Insert(T , (G∗, v1, v2, v

′, v, c, w))

Fig. 4. Step 1: from SU to T

1: set T U = T
2: for every v ∈ VA which is used by k > 2 gadgets in T U as their input nodes do

3: suppose these gadgets are T1, T2, ..., Tk ∈ T U

4: pick k nodes v1, v2, ..., vk ∈ VA which are unused in T U

5: for every 1 ≤ i ≤ k, replace the v in Ti ∈ T U by vi

6: if we intend to store a boolean value in v (which should be clear from [7])

7: CopyB(T U ; v; v1, v2, ..., vk)

8: else

9: CopyA(T U ; v; v1, v2, ..., vk)

Fig. 5. Step 2: from T to T U

Let T be a valid collection with Unused[T] ≥ 2k − 1, and k ≥ 3. Let v ∈
VA, and v1, v2, ..., vk ∈ VA be k unused nodes in T . We insert 2k − 1 gadgets
into T by invoking the function CopyA(T ; v; v1, v2, ..., vk) in Figure 3. We let
T ′ denote the collection T after executing CopyA(T ; v; v1, v2, ..., vk), then

Lemma 8. In every ε-well-supported Nash equilibrium (x,y) of bimatrix game
BuildGame(T ′), x[vi] = x[v] ± 3tε for all 1 ≤ t ≤ k.

Furthermore, by replacing every G= gadget in CopyA with a GB= gadget, we
immediately get a function CopyB(T ; v; v1, v2...vk) for inserting a boolean copy
network into T , such that

Lemma 9. In every ε-well-supported Nash equilibrium (x,y) of bimatrix game
BuildGame(T ′), if x[v] =B b where b ∈ {0, 1}, then x[vt] =B b, ∀ 1 ≤ t ≤ k.

4.3 Construction of T U and HU

Let U = (C, 03n) be an input instance of search problem Brouwerf , and SU

be the collection of gadgets constructed in [7]. We now convert it into a new
collection T U that is both valid and sparse, such that HU = BuildGame(T U)

Sparse Games Are Hard 271

satisfies both Property P1 and P2. Notice that, since T U is valid and sparse,
game HU is sparse by Lemma 7. We build T U with a two-step construction:

Step 1 [Figure 4]. We build a collection T by replacing each Gζ , G∧ and G∨
gadget in SU with two gadgets: one GH gadget and one G∗

ζ , G
∗
∧ or G∗

∨ gadget.
Note that, every G∗

ζ , G
∗
∧ or G∗

∨ gadget in T has a “private” GH gadget.
Step 2 [Figure 5]. For every v ∈ VA which is used by k > 2 gadgets in T as
one of their input nodes, we pick k unused nodes v1, ..., vk in VA and insert a
copy network to connect v with v1, ..., vk. Then, each of the k gadgets gets one
node in {v1, v2, ..., vk} as its input node.

4.4 Correctness of the Reduction

The main item we need to check carefully is the number of nodes used in T U .
The number of nodes used in SU is O(Size [C]4) [7]. Thus the number of nodes
used in T is also O(Size [C]4). On the other hand, every T ∈ T can appear in
line 3 of Figure 5 for at most three times, since T only has three input nodes.
The number of nodes used in T U is still O(Size [C]4) � K. So we always have
Unused[T] > 0 and Unused[T U] > 0, during the construction of T and T U .

Because SU is valid, one can check that T U is both valid and sparse. As a
corollary of Lemma 5, HU satisfies Property P1. Following the line of proof
in [7], we can show that, with the same procedure used in [7], one can recover
a panchromatic simplex of C from every ε-well-supported Nash equilibrium of
two-player game HU . Therefore, HU also satisfies Property P2.

By Lemma 7, we know that game HU is sparse. Finally, we get a reduction
from problem Brouwerf to Sparse Bimatrix, and Theorem 1 is proven.

5 An Algorithm for Very Sparse Win-Lose Games

In this section, we describe an algorithm for finding exact Nash equilibria in a
class of very sparse win-lose games.

A bimatrix game G = (A,B) is a win-lose game if every entry of A and B
is either 0 or 1. A win-lose game G = (A,B) is very sparse if in each row of
A and each column of B, there are at most two non-zero entries. We use P to
denote the set of very sparse win-lose games. First we define a subclass Q of P .
Every game in Q has an exact Nash equilibrium that can be computed easily.

Definition 4. Let A be a {0, 1}-matrix. The row i of A is said to be dominated
if one of the following conditions is true: 1). all the entries in it are zero; 2).
only one entry ai,j = 1 is non-zero, and there exists another i′ �= i such that
ai′,j = 1. Similarly, the column j of matrix B is dominated if the row j of BT is
dominated. A bimatrix game G = (A,B) ∈ P belongs to Q if none of the rows
of A is dominated, and none of the columns of B is dominated.

For every game G = (A,B) ∈ Q where A and B are n × m matrices, we build
a pair of vectors (x∗ ∈ R

n,y∗ ∈ R
m) as follows: 1) For each 1 ≤ j ≤ m, if there

272 X. Chen, X. Deng, and S.-H. Teng

SparseWinLose (G = (A,B) ∈ P)

1: if n = 1 or m = 1 then

2: output a Nash equilibrium of G
3: else if G ∈ Q then

4: output a Nash equilibrium of G using Lemma 10

5: else if the row i of A is dominated then

6: (x′,y′) = SparseWinLose (G′), G′ is obtained by deleting row i from G
7: output a Nash equilibrium of G using Lemma 11

8: else [assume the column j of B is dominated]

9: (x′,y′) = SparseWinLose (G′), G′ is obtained by deleting column j from G
10: output a Nash equilibrium of G using Lemma 12

Fig. 6. An Algorithm for Very Sparse Win-Lose Games

exists an 1 ≤ i ≤ n such that the row i of A has exactly one non-zero entry:
ai,j = 1, then y∗

j = 2, otherwise y∗
j = 1; 2) For each 1 ≤ i ≤ n, if there is an

1 ≤ j ≤ m such that the column j of matrix B has exactly one nonzero entry:
bi,j = 1, then x∗

i = 2, otherwise x∗
i = 1.

Lemma 10. For every G = (A,B) ∈ Q, let (x∗ ∈ R
n,y∗ ∈ R

m) be the pair of
vectors constructed above, then (x,y) is a Nash equilibrium of G where

xi = x∗
i

/ ∑

1≤k≤n

x∗
k and yj = y∗

j

/ ∑

1≤k≤m

y∗
k, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. From the definition of Q, one can check that, for every 1 ≤ i ≤ n and
1 ≤ j ≤ m, 〈Ai|y〉 = 2/

∑
1≤k≤m y∗

k and 〈x|Bj〉 = 2/
∑

1≤k≤n x∗
k, where Ai

denotes the ith row vector of matrix A, and Bj denotes the jth column vector
of B. This implies that (x,y) is an exact Nash equilibrium of game G.

Our algorithm is recursive. If the input game is small (n = 1 or m = 1) or
belongs to Q, then a Nash equilibrium can be found easily. Otherwise, we delete
one row or column from G, and obtain a smaller game G′. From every Nash
equilibrium (x′,y′) of the new game G′, one can “recover” a solution to the old
one quickly. The algorithm is supported by the following two lemmas. Here we
use G = (A,B) to denote a game in P , where A and B are n × m matrices.

Lemma 11. If the row k of A is dominated, letting (x′ ∈ P
n−1,y′ ∈ P

m) be an
exact Nash equilibrium of G′, where G′ is obtained by deleting row k from game
G, then (x,y) is a Nash equilibrium of G, where y = y′, xk = 0, xi = x′

i for all
1 ≤ i < k, and xi = x′

i−1 for all k < i ≤ n.

Lemma 12. If the column k of B is dominated, letting (x′ ∈ P
n,y′ ∈ P

m−1) be
a Nash equilibrium of G′, where G′ is obtained by deleting column k from game

Sparse Games Are Hard 273

G, then (x,y) is a Nash equilibrium of G, where x = x′, yk = 0, yi = y′
i for all

1 ≤ i < k, and yi = y′
i−1 for all k < i ≤ m.

Acknowledgements

We thank Li-Sha Huang for a discussion on market equilibria which led us to
study this problem. Part of Teng’s work was done while visiting Microsoft Beijing
Research Lab. His work is supported by the NSF grants CCR-0311430 and ITR
CCR-0325630. Part of Deng’s work was done while visiting Tsinghua University.

References

1. Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. (In:
STOC 2006)

2. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
nash equilibrium. (In: STOC 2006)

3. Papadimitriou, C.: On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences (1994) 498–532

4. Chen, X., Deng, X.: 3-nash is ppad-complete. ECCC, TR05-134 (2005)
5. Daskalakis, C., Papadimitriou, C.: Three-player games are hard. ECCC, TR05-139

(2005)
6. Chen, X., Deng, X.: Settling the complexity of two-player nash-equilibrium. (In:

FOCS 2006)
7. Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and

smoothed complexity. (In: FOCS 2006)
8. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.

(In: ACM EC 2003) 36–41
9. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time. J. ACM 51 (2004) 385–463
10. Barany, I., Vempala, S., Vetta, A.: Nash equilibria in random games. (In: FOCS

2005)
11. Chen, X., Teng, S.H., Valiant, P.A.: The approximation complexity of win-lose

games. Manuscript: Tsinghua-BU-MIT (2006)
12. Nash, J.: Equilibrium point in n-person games. Porceedings of the National

Academy of the USA 36 (1950) 48–49
13. Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria

for very sparse win-lose bimatrix games. (In: ESA 2006)

	Introduction
	Sparse Two-Player Games and Our Main Result
	Review of the Reduction in CDT
	The New Reduction
	New Gadgets and Constraints
	The Copy Network
	Construction of TU and HU
	Correctness of the Reduction

	An Algorithm for Very Sparse Win-Lose Games

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

