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Randomness requirement on the Clauser-Horne-Shimony-Holt Bell test in the multiple-run scenario
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The Clauser-Horne-Shimony-Holt inequality test is widely used as a means of invalidating the local
deterministic theories and a tool of device-independent quantum cryptographic tasks. There exists a randomness
(free will) loophole in the test, which is widely believed impossible to be closed perfectly, that is, certain random
inputs are required for the test. Following a randomness quantification method used in literature, we investigate
the randomness required in the test under various assumptions. By comparing the results, we conclude that, in
order to make the test result reliable, it is more important to rule out the correlation between multiple runs than
the correlation between two parties.
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I. INTRODUCTION

Historically, Bell tests [1] are proposed for distinguishing
quantum theory from local hidden variable models (LHVMs)
[2]. In a general picture, a Bell test involves multiple
parties who randomly choose inputs and generate outputs
with pre-shared physical resources. Based on the probability
distributions of inputs and outputs, an inequality, called Bell’s
inequality, is defined. A Bell test is meaningful when all
LHVMs satisfy the underlying Bell’s inequality, while such
inequality can be violated via certain quantum settings. Then,
a violation of the Bell’s inequality in experiment would show
that LHVMs are not sufficient to describe the world, and other
theories, such as the quantum mechanics, are demanded.

In this work, we focus on the bipartite scenario and
investigate one of the most well-known Bell tests, the Clauser-
Horne-Shimony-Holt (CHSH) inequality [3]. As shown in
Fig. 1(a), two spacelike separated parties, Alice and Bob,
randomly choose input bits x and y and generate output bits a

and b, respectively. In general, the output bits depend on the
inputs and pre-shared quantum (ρ) and classical (λ) resources.
The probability distribution p(a,b|x,y), obtaining outputs a

and b conditioned on inputs x and y, are determined by specific
strategies of Alice and Bob. By assuming that the input settings
x and y are chosen fully randomly and equally likely, the
CHSH inequality is defined by a linear combination of the
probability distribution p(a,b|x,y) according to

S =
∑

a,b,x,y

(−1)a⊕b+xyp(a,b|x,y) � SC = 2, (1)

where the plus operation ⊕ is modulo 2, and SC is the
(classical) bound of Bell value S for all LHVMs. Similarly,
there is an achievable bound SQ = 2

√
2 for the quantum theory

[4]. In this case, a violation of the classical bound SC indicates
the need for alternative theories other than LHVMs, such
as quantum theory. For general no signaling (NS) theories
[5], denote the corresponded upper bound as SNS = 4. It is
straightforward to see that SNS � SQ � SC .

In practice, the technique of violating a Bell’s inequality
can be applied to other quantum information tasks, such
as device-independent quantum key distribution [6,7] and
randomness expansion [8,9]. Security proofs of these tasks are
generally independent of the realization devices or correctness
of quantum theory, but rely on violating a Bell’s inequality.

For instance, consider the devices of Alice and Bob as
black boxes. In this case, assume, in the worse scenario,
that an adversary Eve, instead of Alice and Bob, performs
measurements as shown in Fig. 1(b). Because the two parties
are spacelike separated, the probability distribution generated
in this way is always within the scope of LHVMs, that is,
p(a,b|x,y) = p(a|x,λ)p(b|y,λ), where λ is a hidden variable
that is controlled by Eve. Therefore, Eve cannot fake a
violation of any Bell tests, which intuitively explains the
security of the device-independent tasks.

Since the first experiment in the early 1980s [10], lots of
laboratory demonstrations of the CHSH inequality have been
presented. These experiment results show explicit violations
of the LHVMs bound SC , and meanwhile, suffer from a
few technical and inherent loopholes, which might invalidate
the conclusions. Two well-known technical obstacles are
due to the locality loophole and the detection efficiency
loophole, which can be closed with more delicately designed
experiments and developed instruments [11–13]. In contrast to
the technical loopholes, there also exists an inherent loophole
that cannot be closed completely in any Bell test—the input
settings may not be chosen randomly. In the worst case, the
inputs can be all predetermined, which makes it possible to
violate the Bell inequalities even with LHVMs. In this case,
witnessing a violation of a Bell’s inequality does not imply
the demand for non-LHVM theories and such a Bell test
cannot be used for the device-independent tasks either. On the
other hand, without the quantum theory or violation of Bell’s
inequalities, one cannot get provable randomness. Therefore,
the assumption of true input randomness is indispensable in
Bell tests because one cannot prove or disprove its existence.

The case of not fully random inputs can be modeled by
the scenario where the input settings are partially controlled
by an adversary Eve, who wants to convince Alice and Bob
a violation of Bell’s inequality with classical settings. In this
case, Eve is able to simultaneously control the input settings
and measurement devices, as shown in Fig. 1(c). We model
the imperfect randomness by assuming that the inputs x

and y are chosen according to some probability distribution
q(x,y|λ), conditioned on Eve’s local hidden variable λ which
also controls the measurement devices. Now, the probability
distribution p(a,b|x,y) of LHVMs is defined by

p(a,b|x,y) =
∑

λ pA(a|x,λ)pB(b|y,λ)q(x,y|λ)q(λ)

q(x,y)
, (2)
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FIG. 1. Bell tests in the bipartite scenario. (a) The inputs of Alice and Bob, x and y, are decided by perfect random number generators
(RNGs), which produce uniformly distributed random numbers. (b) The measurement devices are controlled by an adversary Eve through local
hidden variables λ. (c) The input random numbers are also controlled by the same local hidden variable λ, which is accessible to Eve.

where q(λ) is the prior probability distribution of λ, and
q(x,y) = ∑

λ q(x,y|λ)q(λ) is the observed average probabil-
ity of the input settings x and y. Notice that q(λ) is normalized
by restricting

∑
λ q(λ) = 1. Now, the CHSH S value under the

classical strategy given in Fig. 1(c) can be rewritten according
to

S = 4
∑

λ

∑
a,b,x,y

(−1)a⊕b+xypA(a|x,λ)

×pB(b|y,λ)q(x,y|λ)q(λ), (3)

where we additionally require the observed probability of
choosing x and y to be uniform, that is, q(x,y) = 1/4,∀x,y.

Notice that, in the extreme (deterministic) case where
q(x,y|λ) = 0 or 1 for all x, y, the local hidden variable λ

deterministically controls the input settings. Then Eve is able
to violate Bell tests to an arbitrary value with LHVMs. On the
other hand, if Eve has no control of the input settings where
q(x,y|λ) = 1/4 for all x, y, she cannot fake a violation at
all. Therefore, a meaningful question to ask is how one can
assure that a violation of the CHSH inequality is not caused by
Eve’s attack on imperfect input randomness. That is, we want
to know what the requirement of the input randomness is to
guarantee that an observed violation truly stems from quantum
effects. In the following, we first introduce the quantification of
input randomness and review previous works on this question
in Sec. II. Then we study a simplified case to gain the
intuition behind Eve’s optimal strategy in Sec. III. Finally,
we investigate the randomness requirement of the CHSH test
and conclude our result in Sec. IV.

II. RANDOMNESS REQUIREMENT

Let us start with quantifying the input randomness. Here,
we make use of the randomness parameter P adopted in
Ref. [14] to fulfill such an attempt; other tools such as
the Santha-Vazirani source [15] may work similarly. The
parameter P is defined to be the maximum probability of
choosing the inputs conditioned on the hidden variable λ,

P = max
x,y,λ

q(x,y|λ). (4)

With this definition, the larger P is, the less input randomness,
the more information about the inputs Eve has, and the easier
for her to fake a quantum violation with LHVMs. In the CHSH

test, P takes values in the regime of [1/4,1]. When P = 1, it
represents the case that Eve has whole information of Alice and
Bob’s inputs, that is, Eve can always correctly infer the values
of x and y by accessing the local hidden variable λ. When
P = 1/4, it corresponds to the case of complete randomness,
where the adversary has no additional information on the
inputs compared to a naive guess. Note that the definition
of P essentially follows the min entropy, which is widely used
to quantify randomness of a random variable X in information
theory, Hmin = − log2[maxx prob(X = x)].

Intuitively, given complete randomness where P = 1/4, the
value S with LHVMs are bounded by SC as shown in Eq. (1);
while given the most dependent (on λ) randomness where
P = 1, the value S with LHVMs could reach the mathematical
maximum, SNS in the CHSH test. Then it is interesting to
check the maximal S value for P ∈ (1/4,1) with LHVMs. In
this work, we are interested in when the adversary can fake a
quantum violation given certain randomness P . We thus exam
the lower bound PQ of P such that the Bell test result can
reach the quantum bound SQ with an optimal LHVM. This
lower bound PQ puts a minimal randomness requirement in a
Bell test experiment. Only if the freedom of choosing inputs
satisfies P < PQ, can one claim that the Bell test is free of the
randomness loophole.

Recently, lots of efforts have been spent on investigating
such a requirement of randomness needed to guarantee the
correctness of Bell tests [14,16–21]. These works analyze
under different conditions. One condition is about whether
the input settings of the same party are dependent or not in
different runs. We call it single run, referring to the case that the
input settings of Alice (Bob) are correlated for different runs,
and multiple run referring to otherwise. The other condition
is about whether the random inputs of Alice and Bob are
correlated or not. Conditioned on these different assumptions
of the input randomness, the lower bound PQ that allows
LHVMs to saturate the quantum bound SQ in the CHSH Bell
test is summarized in Table I.

In the single-run scenario, the optimal strategies for Eve
reach S = 24P − 4 and S = 8P in the case that Alice’s and
Bob’s input settings are correlated and uncorrelated, respec-
tively [14,16]. To achieve the maximum quantum violation
SQ = 2

√
2, the critical randomness requirement is shown in

Table I. It is worth mentioning that if one has randomness
P � PNS = 1/3 and P � PNS = 1/2 for the case of correlated
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TABLE I. The lower bound for randomness parameter P defined
in Eq. (4) that allows the CHSH value S, defined in Eq. (3), to reach
the quantum bound SQ by LHVMs in the CHSH test under different
conditions.

Correlated inputs Uncorrelated inputs

Single run 0.285 [14,16] 0.354 [14]
Multiple run 0.258 [19] �0.264 (Our work)

and uncorrelated inputs, respectively, Eve is able to recover
arbitrary NS correlations.

In a more realistic scenario, the multiple-run case, the input
settings of Alice (Bob) are dependent in different runs. Now,
suppose the inputs may correlate for each N sequent runs,
where N = 1 stands for the single-run case, and N > 1 for the
multiple-run case. For each unit of N runs, denote xj (yj ) and
aj (bj ) to be the input and output of Alice (Bob) for the j th
run, where j = 1,2, . . . ,N , respectively. In the multiple-run
scenario, correlations of the inputs of each N runs can be
represented by

q(x1,x2, . . . ,xN ,y1,y2, . . . ,yN |λ). (5)

Therefore, similar to the definition of Eq. (3), the S value with
LHVMs in the multiple-run case can be defined by

S = 4

N

N∑
j=1

∑
λ

∑
aj ,bj ,xj ,yj

(−1)aj ⊕bj +xj yj pA(aj |xj ,λ)

×pB(bj |yj ,λ)q(x,y|λ)q(λ), (6)

where the index j denotes the j th run, and x = (x1,x2, . . . ,xN ),
y = (y1,y2, . . . ,yN ). Notice that we only consider the corre-
lations of inputs in the unit of N runs, which is not the total
number of runs in experiment. To get an accurate estimation
of the S value defined in Eq. (6), one also needs to perform the
N runs multiple times similar to the single-run case.

In the multiple-run scenario, as an extension of Eq. (4), the
input randomness parameter is defined according to

P = ( max
x,y,λ

q(x,y|λ))1/N . (7)

It is quite straightforward that the adversary is easier to fake a
violation of a Bell test with LHVMs with an increasing number
of correlation N of the inputs. This is because the adversary
can take advantage of additional dependence of the inputs
in different runs. It has been shown that with randomness
P � PQ ≈ 0.258, Eve is able to fake the maximum quantum
violation SQ [19] when the number of input correlation N goes
to infinity. This result [19] lower bounds PQ for all finite N ,
and thus puts a very strict requirement on the input randomness
to guarantee a faithful CHSH test.

A remaining meaningful question is thus to consider the
multiple run but uncorrelated case. As all Bell experiments
must run many times to sample the probability distribution, it
is reasonable and also practical to consider a joint attack by
Eve. On the other hand, the uncorrelated assumption is also
reasonable when the inputs of Alice and Bob are independent
conditioned on λ, qA(x|λ,y) = qA(x|λ) and qB(y|λ,x) =
qB(y|λ). Equivalently, the probability of the inputs are required

to be factorizable,

q(x,y|λ) = qA(x|λ)qB(y|λ). (8)

This factorizable (uncorrelated) condition constrains the power
of Eve in controlling or inferring the inputs of Alice and Bob. A
general distribution q(x,y|λ) requires Eve to jointly control the
instruments that Alice and Bob use to generate random inputs.
In the case when the experiment instruments of Alice and Bob
are manufactured independently or the inputs are determined
by sources causally disconnected from each other, such as
cosmic photons [22], the inputs x and y can be assumed to be
independent to each other conditioned on the hidden variable
λ. That is, Eve can only control each of the input settings
independently according to Eq. (8).

In the multiple-run and uncorrelated scenario, the S value
with LHVMs is defined by

S = 4

N

N∑
j=1

∑
λ

∑
aj ,bj ,xj ,yj

(−1)aj ⊕bj +xj yj pA(aj |xj ,λ)

×pB(bj |yj ,λ)qA(x|λ)qB(y|λ)q(λ). (9)

Our purpose is to investigate the optimal attack of the CHSH
test with restricted randomness input P . Therefore we want to
maximize Eq. (9) with the constraint of Eq. (7). In particular,
we are interested to see when this maximal value can reach
SQ = 2

√
2.

III. SINGLE-RUN CASE

We first review the optimal strategy in the single-run
scenario [14] to get an intuition behind the optimal attack of
the adversary. Hereafter, we mainly focus on the scenario that
Alice and Bob’s inputs are uncorrelated as defined in Eq. (8).
Thus, what we want is to maximize the S value,

S =
∑

λ

q(λ)Sλ, (10)

where

Sλ = 4
∑

a,b,x,y

(−1)a⊕b+xypA(a|x,λ)pB(b|y,λ)qA(x|λ)qB(y|λ),

(11)

with restricted randomness P , given in Eq. (4).
Since any probabilistic LHVM, that is, pA(a|x,λ)

pB(b|y,λ), could be realized by a convex combination of
deterministic ones [23], it is therefore sufficient to only con-
sider deterministic LHVMs. Due to the symmetric definition
of the CHSH inequality, we only need to consider a specific
strategy of pA(0|x,λ) = pB(0|y,λ) = 1, and pA(1|x,λ) =
pB(1|y,λ) = 0 for some given λ, and all the other ones work
similarly. By substituting the special strategy into Eq. (11), we
get

Sλ = 4[qA(0)qB(0) + qA(0)qB(1)

+ qA(1)qB(0) − qA(1)qB(1)]. (12)
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Suppose PA = maxx,λ{qA(x|λ)}, PB = maxy,λ{qB(x|λ)}, and
hence P = PAPB , Sλ can be maximized to

Sλ � 4 [1 − 2(1 − PA)(1 − PB)] = 8(PA + PB − P ) − 4.

(13)
Given P , Sλ is upper bounded by

Sλ � 8P, (14)

where the equality holds when PB = 1/2 and PA = 2P . Thus,
the optimal strategy with LHVMs is S = 8P . Note that when
the input settings are fully random, P = 1/4, the optimal
strategy of LHVMs is S = 2, which recovers the original
LHVMs bound SC . It is easy to see that, to saturate the
quantum bound SQ = 2

√
2, the randomness should be at least

PQ = SQ/8 = √
2/4 ≈ 0.354, as shown in Table I.

In the single-run case, we only need to consider one specific
deterministic strategy of p(a,b|x,y) due to the symmetric
definition of the CHSH inequality. We also take advantage
of this property in the derivation of the multiple-run case. In
addition, we can see that the optimal strategy of LHVMs is
to choose x or y fully randomly and the other one as biased
as possible. This biased optimal strategy is counterintuitive
since the adversary does not need to control the inputs of
both parties, but only those of one party. We show that this
counterintuitive feature does not hold in the optimal strategy
in the multiple-run case.

IV. MULTIPLE-RUN CASE

Now we consider the multiple-run scenario with uncor-
related input randomness, that is, optimizing Eve’s LHVM
strategy Eq. (9) with constraints defined in Eq. (7). Similar
to the single-run case, from the symmetric argument, we can
also solely consider one specific deterministic strategy, that is,
pA(0|x,λ) = pB(0|y,λ) = 1, and pA(1|x,λ) = pB(1|y,λ) =
0. Given the probabilities of Alice’s and Bob’s inputs, qA(x|λ),
qB(y|λ), the S value, defined in Eq. (9), for this specific strategy
labeled with λ is given by

Sλ = 4

⎛
⎝1 − 2

N

∑
x,y∈{0,1}N

(x · y)qA(x|λ)qB(y|λ)

⎞
⎠ , (15)

where · is the vector inner product. Our attempt is therefore to
maximize Eq. (15) with constraints

qA(x|λ)qB(y|λ) � P N, (16)

for all qA(x|λ) and qB(y|λ).
Since in the single-run scenario, the optimal strategy

requires only one party with biased conditional probability,
we first analyze the case with only Alice’s inputs biased and
Bob’s inputs uniformly distributed. Then we investigate the
case where the inputs of both parties are biased. We can see that
the one-party-biased strategy is not optimal in the multiple-run
case, even when N = 2.

A. One party biased

In the case when Eve only (partially) controls one of
the inputs, say Alice’s, the probability of Alice’s input
string qA(x|λ) is biased and Bob’s input string is uniformly

distributed, that is,

qB(y|λ) = 1

2N
. (17)

The randomness is characterized by Eq. (7), after substituting
Eq. (17),

P = PA

2
, (18)

where PA is defined by PA = maxλ,x qA(x|λ)1/N . Then, the S

value, defined in Eq. (15), becomes

Sλ = 4

⎛
⎝1 − 1

N2N−1

∑
x,y∈{0,1}N

x · yqA(x|λ)

⎞
⎠ . (19)

Denote the number of bit 1 in an N string a as L1(a). Given
the number of bit 1 in x, kA = L1(x), we can sum over y,

∑
y∈{0,1}N

x · y =
kA∑

j=1

2N−kAj

(
kA

j

)
= 2N−1kA, (20)

and group the summation of x according to kA,

Sλ = 4

⎛
⎝1 − 1

N

N∑
kA=0

∑
L1(x)=kA

qA(x|λ)kA

⎞
⎠ . (21)

One only need to consider the LHVMs whose probabilities
of qA(x|λ) with the same kA are the same. Otherwise, we can
always take an average of qA(x|λ) with the same kA without
increasing the randomness parameter P . Thus we can rewrite
Sλ as

Sλ = 4

(
1 − 1

N

N∑
kA=0

qkA
(x|λ)

(
N

kA

)
kA

)
, (22)

with normalization requirement,

N∑
kA=0

qkA
(x|λ)

(
N

kA

)
= 1, (23)

and constraints defined in Eq. (16).
The optimization of Eq. (22) can be solved efficiently via

linear programming. Intuitively, to maximize Sλ with given P

defined in Eq. (18), we can simply assign qkA
(x|λ) that has

large kA as 0 and small kA as (2P )N . Suppose there exists an
integer l such that P can be written as

P = 1

2

[
l∑

kA=0

(
N

kA

)]−1/N

, (24)

then, Eq. (22) can be rewritten as

S = 4

⎡
⎣1 − 1

N

N∑
kA=0

1

2

(
l∑

kA=0

(
N

kA

))−1/N (
N

kA

)
kA

⎤
⎦ . (25)

For a general case where an integer l cannot be found satisfying
Eq. (24), we can first find an integer l such that

1

2

[
l+1∑

kA=0

(
N

kA

)]−1/N

< P � 1

2

[
l∑

kA=0

(
N

kA

)]−1/N

. (26)
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FIG. 2. (Color online) Optimal values of the CHSH test for
different randomness P with various rounds N based on only Alice’s
inputs biased when conditioned on the hidden variable λ. The solid
line is the optimal strategy for N → ∞, which upper bounds all finite
N rounds. Note that the curve is not smooth for finite runs N because
the optimal strategy qkA

defined in Eq. (27) jumps on l. With N grows
larger, the curve tends to be smoother.

Then we can assign qkA
(x|λ) to be

qkA
(x|λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2P )N kA � l

[
1−∑l

kA=0(2P )N ( N

kA
)
]−1/N

( N

l+1)
kA = l + 1

0 kA > l + 1

. (27)

For finite N , one can numerically solve the problem
according to Eq. (27). As shown in Fig. 2, the optimal strategies
for N = 1,10,100 are calculated. With increasing N , the
optimal value S increases and hence a valid Bell test requires
a smaller P (more randomness).

In the case of N → ∞, we can derive an analytic bound
for all finite N strategies. By following the technique used in
Ref. [19], we first estimate P defined in Eq. (26) with the limit
of N → ∞ by

lim
N→∞

P = 1
2 l̄ l̄(1 − l̄)1−l̄ , (28)

where l̄ = l/N , and similarly S by

lim
N→∞

S = 4 − 4l̄. (29)

Then we can substitute Eq. (29) into Eq. (28), and get a
relation between the optimized S value and the corresponding
randomness parameter P ,

P = 1

2

(
4 − S

4

)(4−S)/4 (
S

4

)(S/4)

. (30)

By substituting the quantum bound SQ = 2
√

2 into
Eq. (30), we can get the critical randomness requirement to
be PQ ≈ 0.273. Note that, although Eve only controls Alice’s
input settings, she can still fake a quantum violation with
sufficiently low randomness, which is lower than the single-run
case even when Alice’s and Bob’s inputs are correlated.
Thus we show that the randomness is more demanded for

the conditions of multiple and single runs compared to the
correlation between Alice and Bob.

B. Both parties biased

Now we consider a general attack, where Eve controls both
inputs of Alice and Bob. In this case, we need to optimize
Eq. (15) with constraints defined in Eq. (16). Similarly, we
group the summation of x and y according to the corresponded
number of bit 1, kA = L1(x) and kB = L1(y),

Sλ = 4

⎛
⎝1 − 2

N

N∑
kA,kB=0

∑
L1(x)=kA

∑
L1(y)=kB

qA(x|λ)qB(y|λ)x · y

⎞
⎠.

(31)

Now, if we assume that qA(x|λ) (qB(y|λ)) has the same value
for equal kA (kB), we can sum over x and y for given kA and
kB ,

∑
kA,kB

x · y =
(

N

kA

) min{kA,kB }∑
j=max{1,kA+kB−N}

j

(
kA

j

)(
N − kA

kB − j

)

=
(

N

kA

)
kA

(
N − 1

kB − 1

)

= kAkB

N

(
N

kA

)(
N

kB

)
. (32)

We can then get the S value,

Sλ = 4

(
1 − 2

N2

N∑
kA,kB=0

qkA
(x|λ)

(
N

kA

)
qkB

(y|λ)

(
N

kB

)
kAkB

)
,

(33)

with the constraints of qA(x|λ) and qB(y|λ),

N∑
kA=1

qkA
(x|λ)

(
N

kA

)
= 1,

(34)
N∑

kB=1

qkB
(y|λ)

(
N

kB

)
= 1.

It is worth mentioning that the assumption that qA(x|λ)
(qB(y|λ)) takes the same value for equal kA (kB) is not
obviously equivalent to the original optimization problem
defined in Eq. (31). We thus take this step as an additional
assumption, and conjecture it to be true for certain cases.

The problem defined in Eq. (33) with constraints of Eq. (34)
cannot be solved by linear programming directly, as for
the nonlinear terms qkA

(x|λ)qkB
(y|λ). However, we can still

optimize it with similar methods used in the previous section.
Define the maximum randomness on each side,

PA = [max
λ,x

qkA
(x|λ)]1/N ,

(35)
PB = [max

λ,y
qkB

(y|λ)]1/N .

To maximize Sλ, we can first optimize Alice’s side qkA
, and

then Bob’s side qkB
. By doing so, it is not hard to see that Sλ is

maximized by assigning qkA
that has the small number of kA

as PA and the large number of kA as 0, and similarly for qkB
.
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FIG. 3. (Color online) Possible optimal values of the CHSH test
for different randomness P with various rounds N based on uncorre-
lated inputs of Alice and Bob. The solid line corresponds the strategy
for N → ∞, which upper bounds all finite N cases. The curves are
not smooth for finite N for similar reasons like in the one-party-biased
case, and it tends to be smooth with N → ∞.

Thus we need to first find lA and lB for Alice and Bob, such
that [

lA+1∑
kA=0

(
N

kA

)]−1/N

< PA �
[

lA∑
kA=0

(
N

kA

)]−1/N

,

(36)[
lB+1∑
kB=0

(
N

kB

)]−1/N

< PB �
[

lB∑
kB=0

(
N

kB

)]−1/N

.

Then we can assign qkA
(x|λ) and qkB

(y|λ) to be

qkA
(x|λ) =

⎧⎪⎪⎨
⎪⎪⎩

(PA)N kA � lA[
1−∑lA

kA=0 P N
A ( N

kA
)
]−1/N

( N

lA+1)
kA = lA + 1

0 kA > lA + 1

,

(37)

qkB
(y|λ) =

⎧⎪⎪⎨
⎪⎪⎩

(PB)N kB � lB[
1−∑lB

kB =0 P N
B ( N

kB
)
]−1/N

( N

lB +1)
kB = lB + 1

0 kB > lB + 1

,

to optimize Sλ defined in Eq. (33).
For finite N , we can also numerically solve the optimization

problem defined in Eq. (33) as shown in Fig. 3. The value S

increases with the number of runs N , thus the strategy with
infinite rounds puts a bound on the strategy with finite rounds.

In the case of N → ∞, we can also find an analytical rela-
tion between optimized S and the corresponded P . Similarly,
we first estimate PA and PB defined in Eq. (36) with the limit
of N → ∞ by

lim
N→∞

PA = l̄
l̄A
A (1 − l̄A)1−l̄A ,

(38)
lim

N→∞
PB = l̄

l̄B
B (1 − l̄B)1−l̄B ,

where l̄A = lA/N and l̄B = lB/N , and S according to

S = 4 − 8l̄Al̄B . (39)

As we still have to optimize over all possible PA and PB that
satisfies PAPB = P , we cannot get a direct analytic formula
like in Eq. (30), while we can still numerically solve and plot it
in Fig. 3. To reach a maximum quantum violation SQ = 2

√
2

with a LHVM, the randomness is required to be P � PQ ≈
0.264, which is larger than the case where Eve only controls
Alice’s input.

V. DISCUSSION

We take an additional assumption in the derivation of the
both-parties-biased case, thus the obtained bound PQ ≈ 0.264
is still an upper bound of a general optimal attack for the case
of N goes to infinity. As we already know, the randomness
requirement for the worst case, that is, multiple run with Alice
and Bob’s inputs correlated, is strictly bounded by PQ ≈ 0.258
[19]. Thus, we know that the tight PQ for the case of multiple
run but Alice and Bob uncorrelated should lie in the interval
of [0.258,0.264].

To gain intuition why we take the additional assumption,
first notice that what we want is to minimize the average
contribution of x · y in Eq. (31). In our case, where P is near
1/4, qA(x|λ) and qB(y|λ) can be regarded as an approximately
flat distribution. On average, the x (y) that contains the smaller
number of 1s will contribute more to S, which means we
should assign the corresponded probability qA(x|λ) (qB(y|λ))
larger in order to maximize S. As qA(x|λ) (qB(y|λ)) is upper
bounded by PA (PB), an intuitive optimal strategy is then to
let qA(x|λ) (qB(y|λ)) be PA (PB) for the x (y) that contains
the smaller number of 1s, and be 0 for the ones that contain
more numbers of 1s. As qA(x|λ) (qB(y|λ)) should also satisfy
the normalization condition shown in Eq. (34), we can simply
follow the strategy defined in Eq. (37) to realize the intuition,
which on the other hand satisfies the assumption we take. Fol-
lowing the above intuition, we conjecture the assumption to be
true for certain cases of N . That is, for finite N , we conjecture
it to be true when equalities are taken in Eq. (36) for both PA

and PB .
On the other hand, we want to emphasize that for a finite N ,

the assumption will not generally hold in the optimal strategy
if the equalities in Eq. (36) are not fulfilled. For example,
if the probability of lA + 1 and lB + 1 in Eq. (37) is not 0
but very small, we should not take all qA(x|λ) and qB(y|λ)
equally as qkA

and qkB
, especially for the case of L1(x) = lA +

1 and L1(y) = lB + 1, respectively. In fact, there does exist a
cleverer assignment of qA(x|λ) and qB(y|λ). For all of x and y,
satisfying L1(x) = lA + 1 and L1(y) = lB + 1, only the x and y
that give small x · y have a nonzero probability. However, with
increasing runs N , this kind of clever attack stops working as
the equalities can be more approximately satisfied with larger
N . Therefore, we also conjecture the assumption to be true for
all possible P when N goes to infinity.

As we can see, our obtained PQ ≈ 0.264 is already very
close to the worst case value that is 0.258; we can therefore
conclude that the multiple-run correlation is already a strong
resource for the adversary, no matter whether the inputs of
Alice and Bob are correlated or not. In addition, as we know
that the bound PQ for the most loose case, that is, single run
and Alice and Bob uncorrelated, is given to be 0.354 [14]; we
also suggest that the key loophole of the input randomness is
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the correlation between multiple runs instead of the correlation
of Alice and Bob.

VI. CONCLUSION

In this work, we consider the randomness requirement of
the CHSH test in the multiple-run scenario. By considering
an adversary Eve who independently controls the input
randomness of Alice and Bob, we investigate the minimum
randomness requirement to guarantee that a violation of the
CHSH inequality is not due to Eve’s attack (LHVM).

Considering that Eve controls only Alice’s input but leaves
Bob’s input uniformly distributed, we found the least random-
ness Eve needed to control to fake a quantum violation is PQ ≈
0.273. And the least randomness required when controlling
both Alice and Bob is PQ � 0.264. By comparing the results to
the ones listed in Table I, we conclude that the key randomness
loophole is due to the correlation between multiple runs.
Since the multiple-run correlation puts a high requirement
on randomness which is not easy to fulfill in practice, we
suggest that correlations of the input settings between different
runs should be eliminated in real experiments. To guarantee
the security of the device-independent tasks, we also suggest
that one should check whether there are correlations between
random inputs from different runs.

For further research, we are interested to know whether
there exist Bell inequalities that suffer less from the random-
ness loophole. By assuming different kinds of assumptions,
the randomness requirement behaves differently. For example,
it is interesting to investigate the scenario where the input
settings are uncorrelated with the measurement devices by
assuming the manufacturers are different. That is, there are two
uncorrelated hidden variables in Fig. 1(c), controlling the input
settings and measurement devices independently. Moreover,
recently, by considering a nonzero lower bound for the input
random probability p(x,y|λ), Pütz et al. show a Bell inequality
which suffers very little from the randomness loophole [21].
That is, no adversary can fake a quantum violation as long
as the lower bound of p(x,y|λ) is nonzero regardless of its
upper bound P defined in Eq. (4). Therefore, it is interesting
to investigate the multiple-run randomness requirement of the
CHSH inequality with additional assumptions.
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