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Abstract. A hypergraph dictatorship test is first introduced by Samorodnitsky
and Trevisan and serves as a key component in their unique games based PCP
construction. Such a test has oracle access to a collection of functions and de-
termines whether all the functions are the same dictatorship, or all their low de-
gree influences are o(1). Their test makes q ≥ 3 queries, has amortized query

complexity 1 + O
(

log q
q

)
, but has an inherent loss of perfect completeness. In

this paper we give an (adaptive) hypergraph dictatorship test that achieves both

perfect completeness and amortized query complexity 1 + O
(

log q
q

)
.
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1 Introduction

Linearity and dictatorship testing have been studied in the past decade both for their
combinatorial interest and connection to complexity theory. These tests distinguish
functions which are linear/dictator from those which are far from being a linear/dictator
function. The tests do so by making queries to a function at certain points and receiv-
ing the function’s values at these points. The parameters of interest are the number of
queries a test makes and the completeness and soundness of a test.

In this paper we shall work with boolean functions of the form f : {0, 1}n → {-1, 1}.
We say a function f is linear if f = (−1)

∑
i∈S xi for some subset S ⊆ [n]. A dictator

function is simply a linear function where |S| = 1, i.e., f(x) = (−1)xi for some
i. A dictator function is often called a long code, and it is first used in [1] for the
constructions of probabilistic checkable proofs (PCPs), see e.g., [2,3]. Since then, it
has become standard to design a PCP system as the composition of two verifiers, an
outer verifier and an inner verifier. In such case, a PCP system expects the proof to be
written in such a way so that the outer verifier, typically based on the verifier obtained
from Raz’s Parallel Repetition Theorem [4], selects some tables of the proof according
to some distribution and then passes the control to the inner verifier. The inner verifier,
with oracle access to these tables, makes queries into these tables and ensures that the
tables are the encoding of some error-correcting codes and satisfy some joint constraint.
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The long code encoding is usually employed in these proof constructions, and the inner
verifier simply tests whether a collection of tables (functions) are long codes satisfying
some constraints. Following this paradigm, constructing a PCP with certain parameters
reduces to the problem of designing a long code test with similar parameters.

One question of interest is the tradeoff between the soundness and query complex-
ity of a tester. If a tester queries the functions at every single value, then trivially the
verifier can determine all the functions. One would like to construct a dictatorship test
that has the lowest possible soundness while making as few queries as possible. One
way to measure this tradeoff between the soundness s and the number of queries q is
amortized query complexity, defined as q

log s−1. This investigation, initiated in [5], has
since spurred a long sequence of works [6,7,8,9]. All the testers from these works run
many iterations of a single dictatorship test by reusing queries from previous iterations.
The techniques used are Fourier analytic, and the best amortized query complexity from

this sequence of works has the form 1 + O
(

1√
q

)
.

The next breakthrough occurs when Samorodnitsky [10] introduces the notion of a
relaxed linearity test along with new ideas from additive combinatorics. In property
testing, the goal is to distinguish objects that are very structured from those that are
pseudorandom. In the case of linearity/dictatorship testing, the structured objects are
the linear/dictator functions, and functions that are far from being linear/dictator are in-
terpreted as pseudorandom. The recent paradigm in additive combinatorics is to find the
right framework of structure and pseudorandomness and analyze combinatorial objects
by dividing them into structured and pseudorandom components, see e.g. [11] for a sur-
vey. One success is the notion of Gowers norm [12], which has been fruitful in attacking
many problems in additive combinatorics and computer science. In [10], the notion of
pseudorandomness for linearity testing is relaxed; instead of designating the functions
that are far from being linear as pseudorandom, the functions having small low degree
Gowers norm are considered to be pseudorandom. By doing so, an optimal tradeoff be-
tween soundness and query complexity is obtained for the problem of relaxed linearity
testing. (Here the tradeoff is stronger than the tradeoff for the traditional problem of
linearity testing.)

In a similar fashion, in the PCP literature since [13], the pseudorandom objects in
dictatorship tests are not functions that are far from being a dictator. The pseudorandom
functions are typically defined to be either functions that are far from all “juntas” or
functions whose “low-degree influences” are o(1). Both considerations of a dictator-
ship test are sufficient to compose the test in a PCP construction. In [14], building on
the analysis of the relaxed linearity test in [10], Samorodnitsky and Trevisan construct a
dictatorship test (taking the view that functions with arbitrary small “low-degree influ-

ences are pseudorandom) with amortized query complexity 1+O
(

log q
q

)
. Furthermore,

the test is used as the inner verifier in a conditional PCP construction (based on unique
games [15]) with the same parameters. However, their dictatorship test suffers from an
inherent loss of perfect completeness. Ideally one would like testers with one-sided er-
rors. One, for aesthetic reasons, testers should always accept valid inputs. Two, for some
hardness of approximation applications, in particular coloring problems (see e.g. [16]
or [17]), it is important to construct PCP systems with one-sided errors.

In this paper, we prove the following theorem:
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Theorem 1 (main theorem). For every q ≥ 3, there exists an (adaptive) dictatorship

test that makes q queries, has completeness 1, and soundness O(q3)
2q ; in particular it has

amortized query complexity 1 + O
(

log q
q

)
.

Our tester is a variant of the one given in [14]. Our tester is adaptive in the sense that it
makes its queries in two stages. It first makes roughly log q nonadaptive queries into the
function. Based on the values of these queries, the tester then selects the rest of the query
points nonadaptively. Our analysis is based on techniques developed in [8,14,16,18].

1.1 Future Direction

Unfortunately, the adaptivity of our test is a drawback. The correspondence between
PCP constructions and hardness of approximation needs the test to be fully nonadap-
tive. However, a more pressing issue is that our hypergraph dictatorship test does not
immediately imply a new PCP characterization of NP. The reason is that a dictatorship
test without “consistency checks” is most easily composed with the unique label cover
defined in [15] as the outer verifier in a PCP reduction. As the conjectured NP-hardness
of the unique label cover cannot have perfect completeness, the obvious approach in com-
bining our test with the unique games-based outer verifier does not imply a new PCP
result. However, there are variants of the unique label cover (e.g., Khot’s d to 1 Con-
jecture) [15] that do have conjectured perfect completeness, and these variants are used
to derive hardness of coloring problems in [17]. We hope that our result combined with
similar techniques used in [17] may obtain a new conditional PCP construction and will
motivate more progress on constraint satisfaction problems with bounded projection.

1.2 Related Works

The problem of linearity testing was first introduced in [19]. The framework of property
testing was formally set up in [20]. The PCP Theorems were first proved in [2,3]; dic-
tatorship tests first appeared in the PCP context in [1], and many dictatorship tests and
variants appeared throughout the PCP literature. Dictatorship test was also considered
as a standalone property testing in [21]. As mentioned, designing testers and PCPs fo-
cusing on amortized query complexity was first investigated in [5], and a long sequence
of works [6,7,8,9] followed. The first tester/PCP system focusing on this tradeoff while
obtaining perfect completeness was achieved in [16].

The orthogonal question of designing testers or PCPs with as few queries as possible
was also considered. In a highly influential paper [13], Håstad constructed a PCP sys-
tem making only three queries. Many variants also followed. In particular PCP systems
with perfect completeness making three queries were also achieved in [18,22]. Similar
to our approach, O’Donnell and Wu [23] designed an optimal three bit dictatorship test
with perfect completeness, and later the same authors constructed a conditional PCP
system [24].

2 Preliminaries

We fix some notation and provide the necessary background in this section. We let [n]
denote the set {1, 2, . . . , n}. For a vector v ∈ {0, 1}n, we write |v| =

∑
i∈[n] vi. We let
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∧ denote the boolean AND, where a∧ b = 1 iff a = b = 1. For vectors v, w ∈ {0, 1}n,
we write v ∧w to denote the vector obtained by applying AND to v and w component-
wise. We abuse notation and sometimes interpret a vector v ∈ {0, 1}n as a subset v ⊆
[n] where i ∈ v iff vi = 1. For a boolean function f : {0, 1}n → {0, 1}, we make the
convenient notational change from {0, 1} to {-1, 1} and write f : {0, 1}n → {-1, 1}.

2.1 Fourier Analysis

Definition 1 (Fourier transform). For a real-valued function f : {0, 1}n → R, we
define its Fourier transform f̂ : {0, 1}n → R to be f̂(α) = Ex∈{0,1}n f(x)χα(x),
where χα(x) = (−1)

∑
i∈[n] αixi . We say f̂(α) is the Fourier coefficient of f at α, and

the characters of {0, 1}n are the functions {χα}α∈{0,1}n .

It is easy to see that for α, β ∈ {0, 1}n, E χα · χβ is 1 if α = β and 0 otherwise. Since
there are 2n characters, they form an orthonormal basis for functions on {0, 1}n, and
we have the Fourier inversion formula f(x) =

∑
α∈{0,1}n f̂(α)χα(x) and Parseval’s

Identity
∑

α∈{0,1}n f̂(α)2 = Ex[f(x)2].

2.2 Influence of Variables

For a boolean function f : {0, 1}n → {-1, 1}, the influence of the i-variable, Ii(f),
is defined to be Prx∈{0,1}n [f(x) �= f(x + ei)], where ei is a vector in {0, 1}n with
1 on the i-th coordinate 0 everywhere else. This corresponds to our intuitive notion of
influence: how likely the outcome of f changes when the i-th variable on a random
input is flipped. For the rest of this paper, it will be convenient to work with the Fourier
analytic definition of Ii(f) instead, and we leave it to the readers to verify that the two
definitions are equivalent when f is a boolean function.

Definition 2. Let f : {0, 1}n → R. We define the influence of the i-th variable of f to
be

Ii(f) =
∑

α∈{0,1}n: αi=1

f̂(α)2.

We shall need the following technical lemma, which is Lemma 4 from [14], and it gives
an upper bound on the influence of a product of functions.

Lemma 1 (from [14]). Let f1, . . . , fk : {0, 1}n → [−1, 1] be a collection of k bounded
real-valued functions, and define f(x) =

∏k
i=1 fi(x) to be the product of these k func-

tions. Then for each i ∈ [n],

Ii(f) ≤ k ·
k∑

j=1

Ii(fj).

When {fi} are boolean functions, it is easy to see that Ii(f) ≤ ∑k
j=1 Ii(fj) by the

union bound.
We now define the notion of low-degree influence.
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Definition 3. Let w be an integer between 0 and n. We define the w-th degree influence
of the i-th variable of a function f : {0, 1}n → R to be

I≤w
i (f) =

∑
α∈{0,1}n: αi=1, |α|≤w

f̂(α)2.

2.3 Gowers Norm

In [12], Gowers uses analytic techniques to give a new proof of Szemerédi’s Theo-
rem [25] and in particular, initiates the study of a new norm of a function as a measure
of pseudorandomness. Subsequently this norm is termed the Gowers uniformity norm
and has been intensively studied and applied in additive combinatorics, see e.g. [11] for
a survey. The use of the Gowers norm in computer science is initiated in [10,14].

Definition 4. Let f : {0, 1}n → R. We define the d-th dimension Gowers uniformity
norm of f to be

||f ||Ud
=

⎛⎝ E
x, x1,...,xd

⎡⎣ ∏
S⊆[d]

f

(
x +

∑
i∈S

xi

)⎤⎦⎞⎠1/2d

.

For a collection of 2d functions fS : {0, 1}n → R, S ⊂ [d], we define the d-th
dimension Gowers inner product of {fS}S⊆d to be

〈{fS}S⊆[d]

〉
Ud

= E
x, x1,...,xd

⎡⎣ ∏
S⊆[d]

fS

(
x +

∑
i∈S

xi

)⎤⎦ .

When f is a boolean function, one can interpret the Gowers norm as simply the expected
number of “affine parallelepipeds” of dimension d.

For the analysis of hypergraph-based dictatorship test, we shall encounter the fol-
lowing expression.

Definition 5. Let {fS}S⊆[d] be a collection of functions where fS : {0, 1}n → R. We
define the d-th dimension Gowers linear inner product of {fS} to be

〈{fS}S⊆[d]

〉
LUd

= E
x1,...,xd

⎡⎣ ∏
S⊆[d]

fS

(∑
i∈S

xi

)⎤⎦ .

This definition is a variant of the Gowers inner product and is in fact upper bounded by
the square root of the Gowers inner product as shown in [14]. Furthermore they showed
that if a collection of functions has large Gowers inner product, then two functions must
share an influential variable. Thus, one can infer the weaker statement that large linear
Gowers inner product implies two functions have an influential variable.

Lemma 2 (from [14] ). Let {fS}S⊆[d] be a collection of bounded functions of the form
fS : {0, 1}n → [−1, 1]. Suppose

〈{fS}S⊆[d]

〉
LUd

≥ ε and E f[d] = 0. Then there
exists some variable i, some subsets S �= T ⊆ [d] such that the influences of the i-th
variable in both fS and fT are at least ε4

2O(d) .
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3 Dictatorship Test

Definition 6 (dictatorship). For i ∈ [n], the i-th dictator is the function f(x) =
(−1)xi .

In the PCP literature, the i–th dictator is also known as the long code encoding of
i, 〈(−1)xi〉x∈{0,1}n , which is simply the evaluation of the i-th dictator function at all
points.

Now let us define a t-function dictatorship test. Suppose we are given oracle access
to a collection of boolean functions f1, . . . , ft. We want to make as few queries as
possible into these functions to decide if all the functions are the same dictatorship, or
no two functions have some common structure. More precisely, we have the following
definition:

Definition 7. We say that a test T = T f1,...,ft is a t–function dictatorship test with
completeness c and soundness s if T is given oracle access to a family of t functions
f1, . . . , ft : {0, 1}n → {-1, 1}, such that

– if there exists some variable i ∈ [n] such that for all a ∈ [t], fa(x) = (−1)xi , then
T accepts with probability at least c, and

– for every ε > 0, there exist a positive constant τ > 0 and a fixed positive inte-
ger w such that if T accepts with probability at least s + ε, then there exist two
functions fa, fb where a, b ∈ [t], a �= b and some variable i ∈ [n] such that
I≤w
i (fa), I≤w

i (fb) ≥ τ .

A q-function dictatorship test making q queries, with soundness q+1
2q was proved

in [14], but the test suffers from imperfect completeness. We obtain a (q − O(log q))–
dictatorship test that makes q queries, has completeness 1, soundness O(q3)

2q , and in

particular has amortized query complexity 1 + O
(

log q
q

)
, the same as the test in [14].

By a simple change of variable, we can more precisely state the following:

Theorem 2 (main theorem restated). For infinitely many t, there exists an adaptive
t-function dictatorship test that makes t + log(t + 1) queries, has completeness 1, and

soundness (t+1)2

2t .

Our test is adaptive and selects queries in two passes. During the first pass, it picks
an arbitrary subset of log(t + 1) functions out of the t functions. For each function
selected, our test picks a random entry y and queries the function at entry y. Then
based on the values of these log(t+1) queries, during the second pass, the test selects t
positions nonadaptively, one from each function, then queries all t positions at once. The
adaptivity is necessary in our analysis, and it is unclear if one can prove an analogous
result with only one pass.

3.1 Folding

As introduced by Bellare, Goldreich, and Sudan [1], we shall assume that the functions
are “folded” as only half of the entries of a function are accessed. We require our dic-
tatorship test to make queries in a special manner. Suppose the test wants to query f at
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the point x ∈ {0, 1}n. If x1 = 1, then the test queries f(x) as usual. If x1 = 0, then
the test queries f at the point 1 + x = (1, 1 + x2, . . . , 1 + xn) and negates the value it
receives. It is instructive to note that folding ensures f(1 + x) = −f(x) and E f = 0.

3.2 Basic Test

For ease of exposition, we first consider the following simplistic scenario. Suppose we
have oracle access to just one boolean function. Furthermore we ignore the tradeoff
between soundness and query complexity. We simply want a dictatorship test that has
completeness 1 and soundness 1

2 . There are many such tests in the literature; however,
we need a suitable one which our hypergraph dictatorship test can base on. Our basic
test below is a close variant of the one proposed by Guruswami, Lewin, Sudan, and
Trevisan [18].

BASIC TEST T : with oracle access to f ,

1. Pick xi, xj , y, z uniformly at random from {0, 1}n.
2. Query f(y).
3. Let v = 1−f(y)

2 . Accept iff

f(xi)f(xj) = f(xi + xj + (v1 + y) ∧ z).

Lemma 3. The test T is a dictatorship test with completeness 1.

Proof. Suppose f is the �-th dictator, i.e., f(x) = (−1)x� . First note that

v + y� =
1 − (−1)y�

2
+ y�,

which evaluates to 0. Thus by linearity of f

f(xi + xj + (v1 + y) ∧ z) = f(xi)f(xj)f((v1 + y) ∧ z)

= f(xi)f(xj)(−1)(v+y�)∧z�

= f(xi)f(xj)

and the test always accepts. �
To analyze the soundness of the test T , we first need to derive a Fourier analytic expres-
sion for the acceptance probability of T . Its proof is standard and omitted due to space
limitation. Readers may find a proof in the full version of this paper [26].

Proposition 1. Let p be the acceptance probability of T . Then

p =
1
2

+
1
2

∑
α∈{0,1}n

f̂(α)3 2−|α|

⎛⎝1 +
∑
β⊆α

f̂(β)

⎞⎠ .
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For sanity check, let us interpret the expression for p. Suppose f = χα for some α �=
0 ∈ {0, 1}n, i.e., f̂(α) = 1 and all other Fourier coefficients of f are 0. Then clearly
p = 1

2 +2−|α|, which equals 1 whenever f is a dictator function as we have just shown.
If |α| is large, then T accepts with probability close to 1

2 . We now analyze the soundness
of the test.

Lemma 4. The test T is a dictatorship test with soundness 1
2 .

Proof. Suppose the test T passes with probability at least 1
2 + ε, for some ε > 0. By

applying Proposition 1, Cauchy-Scharz Inequality, and Parseval’s Identity, respectively,
we obtain

ε ≤ 1
2

∑
α∈{0,1}n

f̂(α)3 2−|α|

⎛⎝1 +
∑
β⊆α

f̂(β)

⎞⎠
≤ 1

2

∑
α∈{0,1}n

f̂(α)3 2−|α|

⎛⎜⎝1 +

⎛⎝∑
β⊆α

f̂(β)2

⎞⎠
1
2

· 2 |α|
2

⎞⎟⎠
≤

∑
α∈{0,1}n

f̂(α)3 2−
|α|
2 .

Pick the least positive integer w such that 2−
w
2 ≤ ε

2 . Then by Parseval’s again,

ε

2
≤

∑
α∈{0,1}n:|α|≤w

f̂(α)3

≤ max
α∈{0,1}n:|α|≤w

∣∣∣f̂(α)
∣∣∣ .

So there exists some β ∈ {0, 1}n
, |β| ≤ w such that ε

2 ≤
∣∣∣f̂(β)

∣∣∣ . With f being folded,

β �= 0. Thus, there exists an i ∈ [n] such that βi = 1 and

ε2

4
≤ f̂(β)2 ≤

∑
α∈{0,1}n:αi=1,|α|≤w

f̂(α)2.

�

3.3 Hypergraph Dictatorship Test

We prove the main theorem in this section. The basis of our hypergraph dictatorship
test will be very similar to the test in the previous section. We remark that we did not
choose to present the exact same basic test for hopefully a clearer exposition.

We now address the tradeoff between query complexity and soundness. If we sim-
ply repeat the basic test a number of iterations independently, the error is reduced, but
the query complexity increases. In other words, the amortized query complexity does
not change if we simply run the basic test for many independent iterations. Follow-
ing Trevisan [5], all the dictatorship tests that save query complexity do so by reusing
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queries made in previous iterations of the basic test. To illustrate this idea, suppose test
T queries f at the points x1 + h1, x2 + h2, x1 + x2 + h1,2 to make a decision. For the
second iteration, we let T query f at the points x3 + h3 and x1 + x3 + h1,3 and reuse
the value f(x1 + h1) queried during the first run of T . T then uses the three values to
make a second decision. In total T makes five queries to run two iterations.

We may think of the first run of T as parametrized by the points x1 and x2 and the
second run of T by x1 and x3. In general, we may have k points x1, . . . , xk and a graph
on [k] vertices, such that each edge e of the graph corresponds to an iteration of T
parametrized by the points {xi}i∈e. We shall use a complete hypergraph on k vertices
to save on query complexity, and we will argue that the soundness of the algorithm
decreases exponentially with respect to the number of iterations.

Formally, consider a hypergraph H = ([k], E). Let {fa}a∈[k]∪E be a collection of
boolean functions of the form fa : {0, 1}n → {-1, 1}. We assume all the functions are
folded, and so in particular, E fa = 0. Consider the following test:

HYPERGRAPH H -TEST: with oracle access to {fa}a∈[k]∪E ,

1. Pick x1, . . . , xk, y1, . . . , yk, and {za}a∈[k]∪E independently and uniformly at
random from {0, 1}n.

2. For each i ∈ [k], query fi(yi).
3. Let vi = 1−fi(yi)

2 .
Accept iff for every e ∈ E,

∏
i∈e

[fi(xi + (vi1 + yi) ∧ zi)] = fe

(∑
i∈e

xi + (Σi∈e(vi1 + yi)) ∧ ze

)
.

We make a few remarks regarding the design of H-Test. The hypergraph test by
Samorodnitsky and Trevisan [14] accepts iff for every e ∈ E,

∏
i∈e fi(xi + ηi) equals

fe(
∑

i∈e xi+ηe), where the bits in each vector ηa are chosen independently to be 1 with
some small constant, say 0.01. The noise vectors ηa rule out the possibility that linear
functions with large support can be accepted. To obtain a test with perfect completeness,
we use ideas from [18,21,16] to simulate the effect of the noise perturbation.

Note that for y, z chosen uniformly at random from {0, 1}n
, the vector y ∧ z is a 1

4–
noisy vector. As observed by Parnas, Ron, and Samorodnitsky [21], the test f(y ∧ z) =
f(y) ∧ f(z) distinguishes between dictators and linear functions with large support.
One can also combine linearity and dictatorship testing into a single test of the form
f(x1 +x2 +y∧z)(f(y)∧f(z)) = f(x1)f(x2) as Håstad and Khot demonstrated [16].
However, iterating this test is too costly for us. In fact, Håstad and Khot also consider
an adaptive variant that reads k2 + 2k bits to obtain a soundness of 2−k2

, the same
parameters as in [7], while achieving perfect completeness as well. Without adaptivity,
the test in [16] reads k2 +4k bits. While both the nonadaptive and adaptive tests in [16]
have the same amortized query complexity, extending the nonadaptive test by Hstad and
Khot to the hypergraph setting does not work for us. So to achieve the same amortized
query complexity as the hypergraph test in [14], we also exploit adaptivity in our test.
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Theorem 3 (main theorem restated). For infinitely many t, there exists an adaptive
t-function dictatorship test with t + log(t + 1) queries, completeness 1, and soundness
(t+1)2

2t .

Proof. Take a complete hypergraph on k vertices, where k = log(t+1). The statement
follows by applying Lemmas 5 and 6. �
Lemma 5. The H-Test is a (k + |E|)-function dictatorship test that makes |E| + 2k
queries and has completeness 1.

Due to space limitation we omit the easy proof of Lemma 5. Readers can find the proof
in the full version of this paper [26].

Lemma 6. The H-Test has soundness 2k−|E|.

Before proving Lemma 6 we first prove a proposition relating the Fourier transform of
a function perturbed by noise to the function’s Fourier transform itself.

Proposition 2. Let f : {0, 1}n → {-1, 1} . Define g : {0, 1}2n → [−1, 1] to be

g(x; y) = E
z∈{0,1}n

f(c′ + x + (c + y) ∧ z),

where c, c′ are some fixed vectors in {0, 1}n
. Then

ĝ(α; β)2 = f̂(α)2 1{β⊆α}4−|α|.

Proof. This is a straightforward Fourier analytic calculation. By definition,

ĝ(α; β)2 =
(

E
x,y,z∈{0,1}n

f(c′ + x + (c + y) ∧ z)χα(x)χβ(y)
)2

.

By averaging over x it is easy to see that

ĝ(α; β)2 = f̂(α)2
(

E
y,z∈{0,1}n

χα((c + y) ∧ z)χβ(y)
)2

.

Since the bits of y are chosen independently and uniformly at random, if β\α is
nonempty, the above expression is zero. So we can write

ĝ(α; β)2 = f̂(α)2 1{β⊆α}

⎛⎝ ∏
i∈α\β

E
yi,zi

(−1)(ci+yi)∧zi ·
∏
i∈β

E
yi,zi

(−1)(ci+yi)∧zi+yi

⎞⎠2

.

It is easy to see that the term Eyi,zi(−1)(ci+yi)∧zi evaluates to 1
2 and the term

Eyi,zi(−1)(ci+yi)∧zi+yi evaluates to (−1)ci 1
2 . Thus

ĝ(α; β)2 = f̂(α)2 1{β⊆α} 4−|α|

as claimed. �
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Now we prove Lemma 6.

Proof. Let p be the acceptance probability of H-test. Suppose that 2k−|E| + ε ≤ p. We
want to show that there are two functions fa and fb such that for some i ∈ [n], some
fixed positive integer w, some constant ε′ > 0, it is the case that I≤w

i (fa), I≤w
i (fb) ≥ ε′.

As usual we first arithmetize p. We write

p=
∑

v∈{0,1}k

E
{xi},{yi},{za}

∏
i∈[k]

1 + (−1)vifi(yi)
2

∏
e∈E

1 + Acc({xi, yi, vi, zi}i∈e, ze)
2

,

where

Acc({xi, yi, vi, zi}i∈e, ze) =
∏
i∈e

[fi(xi + (vi1 + yi) ∧ zi)]

· fe

(∑
i∈e

xi + (Σi∈e(vi1 + yi)) ∧ ze

)
.

For each i ∈ [k], fi is folded, so (−1)vifi(yi) = fi(vi1 + yi). Since the vectors
{yi}i∈[k] are uniformly and independently chosen from {0, 1}n

, for a fixed v ∈ {0, 1}k
,

the vectors {vi1 + yi}i∈[k] are also uniformly and independently chosen from {0, 1}n
.

So we can simplify the expression for p and write

p = E
{xi},{yi},{za}

⎡⎣ ∏
i∈[k]

(1 + fi(yi))
∏
e∈E

1 + (Acc{xi, yi,0, zi}i∈e, ze)
2

⎤⎦ .

Instead of writing Acc({xi, yi,0, zi}i∈e, ze), for convenience we shall write Acc(e) to
be a notational shorthand. Observe that since 1 + fi(yi) is either 0 or 2, we may write

p ≤ 2k
E

{xi},{yi},{za}

[ ∏
e∈E

1 + Acc(e)
2

]
.

Note that the product of sums
∏

e∈E
1+Acc(e)

2 expands into a sum of products of the
form

2−|E|

⎛⎝1 +
∑

∅
=E′⊆E

∏
e∈E′

Acc(e)

⎞⎠ ,

so we have

ε

2k
≤ E

{xi},{yi},{za}

⎡⎣ 2−|E| ∑
∅
=E′⊆E

∏
e∈E′

Acc(e)

⎤⎦ .

By averaging, there must exist some nonempty subset E′ ⊆ E such that

ε

2k
≤ E

{xi},{yi},{za}

[ ∏
e∈E′

Acc(e)

]
.
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Let Odd consists of the vertices in [k] with odd degree in E′. Expanding out the
definition of Acc(e), we can conclude

ε

2k
≤ E

{xi},{yi},{za}

[ ∏
i∈Odd

fi(xi + yi ∧ zi) ·
∏

e∈E′
fe

(∑
i∈e

xi +

(∑
i∈e

yi

)
∧ ze

)]
.

We now define a family of functions that represent the “noisy versions” of fa. For
a ∈ [k] ∪ E, define g′a : {0, 1}2n → [−1, 1] to be

g′a(x; y) = E
z∈{0,1}n

fa(x + y ∧ z).

Thus we have

ε

2k
≤ E

{xi},{yi}

[ ∏
i∈Odd

g′i(xi; yi) ·
∏

e∈E′
g′e

(∑
i∈e

xi;
∑
i∈e

yi

)]
.

Following the approach in [8,14], we are going to reduce the analysis of the iterated test
to one hyperedge. Let d be the maximum size of an edge in E′, and without loss of gen-
erality, let (1, 2, . . . , d) be a maximal edge in E′. Now, fix the values of xd+1, . . . , xk

and yd+1, . . . , yk so that the following inequality holds:

ε

2k
≤ E

x1,y1,...,xd,yd

[ ∏
i∈Odd

g′i(xi; yi) ·
∏

e∈E′
g′e

(∑
i∈e

xi;
∑
i∈e

yi

)]
. (1)

We group the edges in E′ based on their intersection with (1, . . . , d). We rewrite
Inequality 1 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

⎡⎣ ∏
S⊆[d]

∏
a∈Odd∪E′:a∩[d]=S

ga

(∑
i∈S

xi;
∑
i∈S

yi

)⎤⎦ ,

(2)
where for each a ∈ [k]∪E, ga(x; y) = g′a(c′a + x; ca + y), with c′a =

∑
i∈a\[d] xi and

ca =
∑

i∈a\[d] yi fixed vectors in {0, 1}n
.

By grouping the edges based on their intersection with [d], we can rewrite Inequality
2 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

⎡⎣ ∏
S⊆[d]

GS

(∑
i∈S

(xi; yi)

)⎤⎦
=
〈{GS}S⊆[d]

〉
LUd

,

where GS is simply the product of all the functions ga such that a ∈ Odd∪E′ and
a ∩ [d] = S.

Since (1, . . . , d) is maximal, all the other edges in E′ do not contain (1, . . . , d) as a
subset. Thus G[d] = g[d] and E G[d] = 0. By Lemma 2, the linear Gowers inner product
of a family of functions {GS} being positive implies that two functions from the family



460 V. Chen

must share a variable with positive influence. More precisely, there exist S �= T ⊆ [d],
i ∈ [2n], τ > 0, such that Ii(GS), Ii(GT ) ≥ τ, where τ = ε4

2O(d) .
Note that G∅ is the product of all the functions g′a that are indexed by vertices or

edges outside of [d]. So G∅ is a constant function, and all of its variables clearly have
influence 0. Thus neither S nor T is empty. Since GS and GT are products of at most 2k

functions, by Lemma 1 there must exist some a �= b ∈ [d]∪E′ such that Ii(ga), Ii(gb) ≥
τ

22k . Recall that we have defined ga(x; y) to be Ez fa(c′a + x + (ca + y) ∧ z). Thus we
can apply Proposition 2 to obtain

Ii(ga) =
∑

(α,β)∈{0,1}2n;i∈(α,β)

ĝa(α; β)2

=
∑

α∈{0,1}n;i∈α

∑
β⊆α

f̂a(α)2 4−|α|

=
∑

α∈{0,1}n;i∈α

f̂a(α)2 2−|α|.

Let w be the least positive integer such that 2−w ≤ τ
22k+1 . Then it is easy to see

that I≤w
i (fa) ≥ τ

22k+1 . Similarly, I≤w
i (fb) ≥ τ

22k+1 as well. Hence this completes the
proof. �
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13. Håstad, J.: Some optimal inapproximability results. J. of ACM 48(4), 798–859 (2001)
14. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and PCPs. In:

STOC 2006: Proceedings of the thirty-eighth annual ACM symposium on Theory of com-
puting, pp. 11–20. ACM, New York (2006)

15. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC 2002: Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, Montreal, Quebec,
Canada, pp. 767–775. ACM, New York (2002)
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