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Abstract

In this paper, we study the broadcast authentication problem for both erasure and adversarial networks. Two important
concerns for authentication protocols are the authentication delay and the packet overhead. In this paper, we address
those points by proposing two schemes based on cryptographic accumulators. Our first scheme is developed for erasure
channels and its packet overhead is less than the length of a digest most of the time. This makes our construction one
of the least expensive protocols for this network model. Even if the sender processes the stream slightly in delay, the
receivers can authenticate packets on-the-fly. Our second scheme isdesigned for adversarial networks. We show that our
packet overhead is less than for the construction by Karlofet al. in 2004 and the protocol by Tartary and Wang in2006

which are two recent efficient schemes dealing with adversarial networks.

Keywords: Stream Authentication, Polynomial Reconstruction, Erasure Channel, Adversarial Channel, Cryptographic
Accumulator.

1 Introduction

In this early XXI century, communication networks have expended to such an extent that most human beings are daily
connected to them. They are used for many applications such as video-conferences, pay-TV and air traffic control to name
a few. A generalized way to distribute information through these networks is broadcasting. However, large-scale broad-
casts have the drawback that lost content cannot be retransmitted as the size of the communication group would imply
that a single deletion could lead to an overwhelming number of redistribution requests at the sender end. Furthermore, the
communication network can be under the influence of malicious users altering the data stream1. As a consequence, the
security of a broadcasting protocol depends on the properties of the communication network as well as the computational
power of the adversaries. In this work, we present authentication protocols secure against computationally bounded oppo-
nents.

The goal of streaming is to distribute continuous data such as stock market information. Therefore, the digital content
obtained at the receiver end must be authenticated within a short period of delay upon reception. Moreover, many appli-
cations transmit private or sensitive information. Thus, non-repudiation of the stream source needs to be provided.

Network bandwidth availability and computational power ofend-users are two primary concerns for a stream authen-
tication protocol. Indeed, large packets may create a congestion of the network information flow while receivers with
small computational resources will need more time to authenticate data delaying the stream play. Thus, when designing a
protocol for stream authentication, one should aim at minimizing both the packet2 overhead and the computational cost
of authenticating information.

The multicast stream authentication problem has been widely studied [6]. Non-repudiation of the sender is provided
using a digital signature. However, signing each data packet is not a practical solution as such a cryptographic primitive is
generally expensive to generate and/or verify. Thus, a usual approach consists of generating a single signature and amor-
tizing its communication and computation overheads over several packets using hash functions for instance.

∗The original version of this paper appears in the proceedings of the 8th International Conference on Cryptology and Network Security (CANS
2009), Lecture Notes in Computer Science, vol. 5888, pp 315 - 333, Springer - Verlag.

1In broadcasting, the sequence of information sent into the network is calledstream.
2Since the stream size is large, it is divided into small fixed-size entities calledpackets.
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In order to deal with erasures, Perriget al. [26, 27], Challalet al. [7], Golle and Modadugu [10] as well as Miner and
Staddon [18] appended the hash of each packet to several followers according to specific patterns. They all modeled the
packet loss behavior of the network byk-state Markov chains [9] and they obtained bounds on the packet authentication
probability. Nevertheless, the drawbacks of these schemesare twofold. First, they are degrading3 as some received data
packets may not be authenticated. Second, they rely on the reception of signed packets which cannot be guaranteed over
networks such as the Internet where the User Datagram Protocol only provides a best effort delivery of information. These
two issues restrict the range of applications for the previous protocols.

To overcome the issue of signature reliable delivery, a common approach is to split the signature intok smaller parts
where onlyℓ of them(ℓ < k) are sufficient to recover it. Signature dispersion can be achieved via various techniques:
Parket al. [23, 24] as well as Park and Cho [25] used the Information Dispersal Algorithm [28], Al-Ibrahim and Pieprzyk
[1] combined linear equations and polynomial interpolation, Pannetrat and Molva [22] utilized erasure codes whereas
Desmedt and Jakimoski [8] employed cover-free families [30]. It should be noticed that each of those authentication
schemes is non-degrading as well.

The major shortcoming of the previous constructions is thatnone of them tolerates a single packet injection. This is a
central problem when data is distributed over large public networks since it is likely to have some unreliable nodes.

Using an algorithm developed by Guruswami and Sudan called Poly-Reconstruct to solve the polynomial reconstruc-
tion problem [11], Lysyanskayaet al. [14] constructed a non-degrading authentication protocol exhibitingO(1) signature
verification queries per block4 as a function of the block lengthn. Their construction was extended by Tartary and Wang
[32] who used a Maximal Distance Separable (MDS) code to allow total recovery of alln data packets. In this paper, we
denote this latter construction as TWMDS. The augmented packets5 of TWMDS areΩ(log2 n)-bit long as the underlying
field used for polynomial operations must have at leastn distinct points. Note that the same situation occurs in [14].

Another approach was followed by Karlofet al. in [12] when designing PRABS. This protocol combines an era-
sure code and an accumulator [4] based on a Merkle hash tree [17] to deal with injections. As TWMDS, PRABS only
requiresO(1) signature verification queries per block. However, its packet overhead isΘ(log2(n))-bit long as each aug-
mented packet carries⌈log2(n)⌉ hashes. Nonetheless, the implementations done in [31] tendto infer that, for practical
use, PRABS’ overhead is larger than TWMDS’.

There exist several cryptographic accumulators. The advantage of using a construction based on hash functions is that
aggregation and membership verification are fast contrary to [4, 20]. In [4], checking whether an element was accumulated
costs as much as verifying a RSA signature whereas, in [20], it requires two pairing evaluations which is even slower [2, 5].

Nyberg’s probabilistic accumulator is also based on hash functions [21]. Recently, Yumet al. proposed an improve-
ment allowing to reduce the probability of false membership[35]. In this paper, we present two non-degrading authen-
tication protocols based on this new accumulator, MDS codesand Poly-Reconstruct. Our first scheme is developed for
erasure channels. Its overhead is smaller than [22, 23, 24, 25] and it allows each receiver to process information on-the-fly
after a short part of the stream has been received. In particular, immediate data authentication can be achieved. Our second
protocol is designed for adversarial networks as TWMDS and PRABS. It allows complete recovery of the data stream as
TWMDS and we show on implementations that its overhead is smaller than TWMDS’ and PRABS’ in many situations.
Another point worth noting is that our implementations alsoreinforce the intuition that TWMDS has smaller overhead
than PRABS which has only been studied on a particular case sofar (n = 1000) [31].

This paper is organized as follows. In the next section, we present the mathematical tools needed for the understanding
of this paper. In particular, we recall the accumulator construction from [35] which plays a central role in our work. In
Section 3, we present our authentication protocol for erasure channels. Our scheme for adversarial networks is studiedin
Section 4. The last section summarizes our contributions tothe broadcast authentication problem.

2 Preliminaries

In this section, we present the network models and erasure correcting codes used in this paper. We also quote the poly-
nomial reconstruction problem which plays an important role for our authentication scheme over adversarial channels.
Finally, we recall the cryptographic accumulator construction developed in [35].

3An authentication scheme is said to benon-degradingif every receiver can authenticate all the data packets he obtained. Otherwise, the scheme is
said to bedegrading.

4In order to be processed, packets are gathered into fixed-size sets calledblocks.
5We callaugmented packetsthe elements sent into the network. They generally consist ofthe original data packets with some redundancy used to

prove the authenticity of the element.
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2.1 Network Models

We consider that the communication network is under the control of an opponentO.

Erasure Channels.In this model,O is simply an eavesdropper. Therefore, no injections of malicious packets occur.
In other words, any packet collected by the receiver is authentic. We can assume that both sender and receivers have a
buffering capacity ofn consecutive packets and that at mostt packets can be erased over a scope ofn elements. This model
generalizes the concept of bursts where, in the bursty model, the length of the longest burst occurring in the network is
t = n − 2 (one packet must been receive on each side of the burst). An illustration is given as Figure 1.

P1 P2 P3 · · · Pn Pn+1 Pn+2 · · ·

up tot erasures

up tot erasures

up tot erasures

Figure 1: Erasure Channel Model for Streaming

It should be noted that the bursty model has been used to analyze many authentication protocols [10, 18, 26, 27]. This
is justified by the work of Yajniket al. [34] who exhibited that the loss pattern of the Internet wasbursty in nature. Notice
that our model also encompasses [1, 8] as it does not require thet erasures to appear as a burst.

Adversarial Channels. In this case,O who can drop and rearrange packets of his choice as well as inject bogus data
into the network [16]. Without loss of generality, we can assume that a reasonable number of original augmented packets
reaches the receivers and not too many incorrect elements are injected byO. We split the data stream into blocks ofn
packets:P1, . . . , Pn. In this settings, we introduced two parameters:α (0 < α ≤ 1) (thesurvivalrate) andβ (β ≥ 1) (the
flood rate). It is assumed that at least a fractionα and no more than a multipleβ of the number of augmented packets are
received. This means that at least⌈αn⌉ original augmented packets are received amongst a total which does not exceed
⌊βn⌋ elements. The use of these two parameters to modelO first appeared in [14] and was subsequently used in [32].

2.2 Correction of Deletions

Since the communication network is a priori unreliable, it is likely that some packets do not reach all the receivers. As in
[32], we will use a linear correcting code to overcome this issue. A linear code of lengthN , dimensionK and minimum
distanceD is denoted[N, K, D].

Theorem 1 ([15]) Any[N, K, D] code satisfies:D − 1 ≤ N − K.

Since any[N, K, D] code can correct up toD − 1 erasures [36], such a code can correct at mostN − K erasures. To
maximize the efficiency of our protocols, we are interested in codes correcting exactlyN − K erasures. These codes are
calledMaximum Distance Separable(MDS) codes [15]. TWMDS is also based on this family of codes.

2.3 Reconstructing Polynomials

The Polynomial Reconstruction Problem (PRP) is the following mathematical problem.

Polynomial Reconstruction Problem
Input: IntegersD, T andN points{(xi, yi)}i∈{1,...,N} wherexi, yi ∈ F for a fieldF .
Output: All univariate polynomialsP (X) ∈ F [X] of degree at mostD such thatyi = P (xi) for at leastT values of
i ∈ {1, . . . , N}.

Guruswami and Sudan developed an algorithm called Poly-Reconstruct to solve the PRP [11]. We modify it as in [32]
where that new version was denoted MPR. LetF2q be the field of the polynomial coefficients. Every element ofF2q can
be represented as a polynomial of degree at mostq − 1 overF2. Operations inF2q are performed modulo an irreducible
polynomialQ(X) overF2 having degreeq [13]. MPR is represented as Algorithm 1.
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Algorithm 1 MPR
Input: The maximal degreeK of the polynomialQ(X), the minimal numberN of agreeable points,T points

{(xi, yi), 1 ≤ i ≤ T} and the polynomialQ(X) of degreeq.
1. If there are no more than

√
KN distinct points then the algorithm stops.

2. UsingQ(X), run Poly-Reconstruct on theT points to get the list of all polynomials of degree at mostK overF2q

passing through at leastN of the points.
3. Given the list{L1(X), . . . , Lµ(X)} obtained at Step2. For each polynomialLi(X) := Li,0 + . . . + Li,KXK where
∀i ∈ {0, . . . , K}Li,j ∈ F2q , form the elements:Li := Li,0‖ · · · ‖Li,K .

Output: {L1, . . . , Lµ}: list of candidates.

2.4 Cryptographic Accumulators

In [35], Yum et al. proposed a modified version of Nyberg’s cryptographic accumulator [21]. A list {x1, . . . , xm} is
aggregated into an accumulated valueA using Algorithm 2.

Algorithm 2 ACCUMULATE
Input: Two cryptographic hash functionsh andh′ outputting(r d)-bit long and(k log2(r))-bit long digests respectively,

a security parameterǫ, a list of elements to be aggregated{x1, . . . , xm}.

/* Digests Computation */

1. Compute the digestsh(xi) := yi,1‖ · · · ‖yi,r where eachyi,j is d-bit long for i ∈ {1, . . . , m}.
2. Compute the digestsh′(xi) := y′

i,1‖ · · · ‖y′
i,r where eachy′

i,j is log2(r)-bit long for i ∈ {1, . . . , m}.

/* Binary Strings Generation */

3. Fori ∈ {1, . . . , m}, create the stringbi,1‖ · · · ‖bi,r as follows:
3.1. Setbi,j = 1 for j ∈ {1, . . . , r}.
3.2. Forτ ∈ {1, . . . , k}, do the following:

3.2.1. Set:j = y′
i,τ + 1.

3.2.2. Set:bi,j = 0 if yi,j

2d−1
≤ ǫ.

/* Accumulated Value */

4. Compute the binary products:∀j ∈ {1, . . . , r} aj :=
m∏

i=1

bi,j .

Output: A := (a1, . . . , ar): accumulated value for the list{x1, . . . , xm}.

One verifies the membership of an elementx̃ to the list{x1, . . . , xm} using Algorithm 3.

Algorithm 3 MEMBERSHIP
Input: Two cryptographic hash functionsh andh′ outputting(r d)-bit long and(k log2(r))-bit long digests respectively,

a security parameterǫ, the accumulated valueA = (a1, . . . , ar) corresponding to the list{x1, . . . , xm} and a candidate
element̃x.

/* Digests Computation */

1. Compute the digesth(x̃) := ỹ1‖ · · · ‖ỹr where each̃yj is d-bit long.
2. Compute the digesth′(x̃) := ỹ′

1‖ · · · ‖ỹ′
r where each̃y′

j is log2(r)-bit long.

/* Binary Strings Generation */

3. Create the string̃b1‖ · · · ‖b̃r as follows:
3.1. Set̃bj = 1 for j ∈ {1, . . . , r}.
3.2. Forτ in {1, . . . , n}, do the following:

3.2.1. Set:j = ỹ′
τ + 1.

3.2.2. Set:̃bj = 0 if
ỹ′

j

2d−1
≤ ǫ.

/* Accumulated Value */

4. Forj ∈ {1, . . . , r}, do the following:
If ( b̃j = 1 andaj = 1) then Return NO.

5. Return YES.

Output: Decide whether̃x belongs to{x1, . . . , xm}.

Yum et al. have shown that Algorithm 3 was a YES-bias Monte-Carlo algorithm [29]. They demonstrated that the
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value of the bias was:

f(ǫ, k) :=

[
1 − ǫ

(
1 − ǫ

r

)k m
]k

based on theRandom Oracle(RO) model forh andh′.

The issue in [35] is that Yumet al. only provide an asymptotic analysis off(ǫ, k). Indeed, they substituted
(
1 − ǫ

r

)k m

by exp(− k m ǫ
r

). However, it is unlikely that a very large number of elementsm be accumulated so that this approximation
holds.

Fortunately, we can still get some information on how to chooseǫ. Indeed, the partial derivative∂f
∂ǫ

is negative. This
involves:

∀ǫ ∈ [0, 1] f(ǫ, k) ≥ f(1, k)

Thus, it is suggested to chooseǫ = 1. In this situation, the bias of the algorithm gets:

f(1, k) =

[
1 −

(
1 − 1

r

)k m
]k

As observed in [35], settingǫ = 1 allows us to completely removeh from the structure of the accumulator. That is, only
the cryptographic hash functionh′ is needed. Given this observation, we assume in the remaining of this paper thatǫ = 1.

Remark 1 The use of a cryptographic hash function to instantiate the RO model is frequent [33]. In2007, the National
Institute of Standards and Technology (NIST) set a competition for a new cryptographic hash algorithm SHA-3 [19].
One of the requirement that the candidates must satisfy is tosupport pseudo-random functions, in particular, the HMAC
construction [3].

3 Stream Authentication over Erasure Channels

In the remaining of this paper, we work with a unforgeableS-bit long digital signature(SignSK, VerifyPK) [29] the key pair
of which (SK,PK) is created by a generator KeyGen and a cryptographic hash functionh′ outputingH′-bit long digests
with H′ = k log2(r).

3.1 Authentication Protocol

The stream is a continuous flow of information. First, the sender generates the signatureσ on the digesth′(P1) of the first
stream packet. He then encodes the concatenationσ‖h′(P1) using a MDS code of lengthn and dimensionn − t. The
corresponding codeword is denoted(C1 · · · Cn) where eachCi is⌈ S+H′

n−t
⌉- bit long.

Second, the sender buffers the firstn packetsP1, . . . , Pn as listL1. He computes the accumulated valueA1 of L1 and
builds the augmented packet: AP1 := 1‖P1‖A1‖C1. Third, when a new stream packetPn+j−1 (j ≥ 2) is available,
the sender builds the listLj := {Pj , . . . , Pn+j−1} ∪ {h′(P1)}. He computes the corresponding accumulated valueAj

and builds the augmented packet: APj := j‖Pj‖Aj‖C[j] where[j] denotes the unique integer in{1, . . . , n} congruent to
j modulon. In particular:[n] = [2n] = [3n] = · · · = n. We notice that the delay at the sender isn packets as it sends into
the network APj afterPn+j−1 be available.

The receiver buffers the firstn − t packets APr1
, . . . , APrn−t

he collects. He can recover the whole codeword
(C1 · · · Cn) from them and then the signatureσ on h′(P1). This allows to authenticate then − t accumulated values
thanks toh′(P1) aggregated in them. Those values can in turn be used to authenticate all the received packets. The re-
ceiver buffers the accumulated valueArn−t

.

When the receiver gets the(n − t + 1)
th packet APrn−t+1

, then it can be authenticated usingArn−t
. The receiver

buffersArn−t+1
and the process repeats throughout the stream. One notices that any receiver can verify the authenticity

of any packet on-the-fly from the(n − t + 1)
th received packet.

The packet overhead of the scheme isr + ⌈ S+H′

n−t
⌉ bits.

3.2 Analysis of the Protocol

Security. We have the following theorem the proof of which is in Appendix A.
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Theorem 2 Our authentication scheme is a non-degrading authentication protocol. The sender processes data with a
delay ofn packets throughout streaming while the receiver can authenticate packets on-the-fly from the(n − t + 1)

th

received element.

Remark 2 A single signature is needed to ensure non-repudiation of the whole stream.

Remark 3 One can notice that, whenn is fixed, the lowert is, the larger the delay gets. This might seem to be surprising
at first but having lowt’s implies having small redundancy for the codeword coordinates asn − t is large. That is why one
requires more codeword information to reconstruct(C1 · · · Cn). The trade-off delay/overhead is an efficiency trade-off.

Packet Overhead.An important point to notice is that the valuef(1, k) does not have any impact on the security of our
protocol for erasure channels. Therefore, the only restriction that we have to take into account is0 < k ≤ r as this is
necessary to construct the accumulator. We minimize the overhead of our construction by tuning the pair(r, k) so that the
bit sizeH′ of the digest output byh′ is k log2(r). More precisely, we need to chooser as:

rmin := min{R ∈ N : (0 < K ≤ R andK ∈ N andH′ = K log2(R))}

In the case of the SHA-3 competition, NIST has required that the new hash function provides message digests of224, 256, 384
and512 bits at least [19]. In this situation, the optimal choice forr is given in Table 1.

H′ 224 256 384 512
rmin 128 256 64 256

Table 1: Optimal choice for the parameterr.

We plotted the behavior of the packet overhead when the ratiot
n

represented10%, 30%, 50%, 70% and 90% for
n varying between100 and 1000 as Figure 2. We chose to use a1024-bit long signature to illustrate this result (i.e.
S = 1024).
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Figure 2: Overhead of our authentication protocol for erasure channels.
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We see that in most cases, our packet overhead is less than a digest long. In particular, it is less than in [22, 23, 24, 25].

Remark 4 Desmedt and Jakimoski’s scheme has small overhead as well [8]. Their result is based on optimal choices for
cover-free families. The issue is that those optimal families have been shown to exist but they have yet to be constructed
as the underlying result by Stinsonet al. is a non-constructive proof of existence [30].

4 Stream Authentication over Adversarial Channels

In this channel model,O can inject bogus data packets into the network. In this situation, we will process the whole data
stream per block ofn packetsP1, . . . , Pn. Each of these blocks is located within the whole stream using an identification
value BID. This approach is used in the different schemes designed for adversarial networks quoted in Section 1 including
TWMDS and PRABS. This is to be opposed to the on-the-fly authentication process from the(n − t + 1)

th packet at the
receiver for our protocol presented in Section 3.1.

4.1 Scheme Overview

Due to erasure of information, we want to generaten augmented packets AP1, . . . , APn such that we can reconstruct all
packetsP1, . . . , Pn from any⌈α n⌉-subset of{AP1, . . . , APn}. Therefore, our first step consists of encodingP1, . . . , Pn

using a[n, ⌈α n⌉, n − ⌈α n⌉ + 1] code since it can correct up ton − ⌈α n⌉ erasures. Note that this approach implies that
the elements of the code alphabet are larger than the size of adata packet as the message(M1 · · · M⌈α n⌉) to be encoded
into the codeword(C1 · · · Cn) should represent the concatenationP1‖ · · · ‖Pn.

To ensure non-repudiation of data and to allow new members tojoin the communication group at any time, we need to
generate and distribute a signature which can be reconstructed despite bogus injections byO. Our idea consists of aggre-
gating then codeword coordinatesC1, . . . , Cn and signing the corresponding accumulated valueA asσ. We construct a
polynomialA(X) of degree at mostρ n (for some rational constantρ), the coefficients of which representA‖σ. We build
the augmented packets as:

∀i ∈ {1, . . . , n} APi := BID‖i‖Ci‖A(i)

Upon reception of data, the receiver checks the signature byreconstructingA(X) using MPR. Once the signatureσ is
verified, the receiver knows the original accumulated valueA. Thus, he can identify the correctCi’s amongst the list
of elements he got using MEMBERSHIP. According to the definition of α, there must be at least⌈α n⌉ symbols from
C1, . . . , Cn in his list. Finally, he corrects the erasures using the MDS code and recovers the data packetsP1, . . . , Pn.

4.2 Authentication Protocol

We assume that the valuesα andβ are rational numbers so that we can represent them over a finite number of bits. In
order to run Poly-Reconstruct as a subroutine of MPR, we haveto choose a parameterρ ∈ (0, α2

β
). Notice thatρ has to be

rational sinceρ n is an integer. Without loss of generality, one can consider that the valueρ is uniquely determined when
n, α andβ are known. Table 2 summarizes the scheme parameters which are assumed to be publicly known. The bit size
S of the signature and its public key PK are also publicly known. They do not appear in Table 2 as they are considered as
general parameters. Note that, oncer is known, thenk is uniquely determined since the digests ofh′ are (k log2(r))-bit
long.

n: Block length A list of irreducible polynomials overF2

α: Survival rate β: Flood rate
P: Bit size of data packets r, k: Parameters of the accumulator hash functionh′

Table 2: Public parameters for our authentication scheme over adversarial channels.

The sender of data process the stream as in Algorithm 4. Note that the list of irreducible polynomials is used at Step
1 and Step3. Furthermore, since any element ofF

2q̃
can be represented asλ0Y 0 + λ1Y1 + . . . + λq̃−1Y q̃−1 where each

λi belongs toF2, we can define the firstn elements as(0, . . . , 0) , (1, 0, . . . , 0) , (0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0) and so on
until the binary decomposition ofn − 1 (Step3).
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Algorithm 4 AUTHENTICATOR
Input: The secret key SK, the block number BID, Table 2 andn data packetsP1, . . . , Pn.

/* Packet Encoding */

1. ParseP1‖ · · · ‖Pn as M1‖ · · · ‖M⌈α n⌉ after padding. Encode the message(M1 · · · M⌈α n⌉) into the codeword

(C1 · · · Cn) using the MDS code overF2q with q =
⌈

n P
⌈α n⌉

⌉
.

/* Signature Generation and Representation */

2. Compute the accumulated value:A = ACCUMULATE(C1, . . . , Cn). Construct the block signature as:σ =
SignSK(h′(BID‖n‖α‖β‖P‖r‖A)).

3. Denoteξ the smallest element ofN such that:
⌈

r + S + ξ

ρ n + 1

⌉
≥ ⌈log2 n⌉ (1)

Denoteq̃ the left hand side of Inequality (1). WriteA‖σ as the concatenationa0‖ · · · ‖aρ n of (ρ n + 1) elements ofF
2q̃

after suitable padding. Form the polynomialA(X) := a0 + · · · + aρ n Xρ n and evaluate it at the firstn points ofF
2q̃

:

∀i ∈ {1, . . . , n} yi := A(i).

/* Construction of Augmented Packets */

4. Build the augmented packets as:

∀i ∈ {1, . . . , n} APi := BID‖i‖Ci‖yi

Output: {AP1, . . . , APn}: set of augmented packets.

Upon reception of data, the receivers use Algorithm 5 to authenticate information.

Algorithm 5 DECODER
Input: The public key PK, the block number BID, Table 2 and the set of received packets RP.

/* Signature Verification */

1. Write the packets as BIDi‖ji‖Ĉji
‖ŷji

and discard those having BIDi 6= BID or ji /∈ {1, . . . , n}. DenoteN the
number of remaining elements. If(N < ⌈α n⌉ or N > ⌊β n⌋) then the algorithm stops.

2. Rename the remaining elements as{ÂP1, . . . , ÂPN } and write each element as:̂APi = BID‖ji‖Ĉji
‖ŷji

where
ji ∈ {1, . . . , n}. Computeq̃ as in Step3 of AUTHENTICATOR. Get the irreducible polynomial of degreeq̃ from the
sender’s public list and run MPR on the set{(ji, ŷji

), 1 ≤ i ≤ N} to get a list{c1, . . . , cµ} of candidates for signature
verification. If MPR rejects that set then the algorithm stops.

3. Initialize Â = ∅. While the list has not been exhausted (and the signature not verified yet), pickci and write it as:
Ai‖σi after removing the pad whereAi is r-bit long. If VerifyPK(h′(BID‖n‖α‖β‖P‖r‖Ai), σi) = TRUE then set
Â = Ai and break out the loop. Otherwise, incrementi by 1 and start again the While loop.

/* Codeword Reconstruction */

4. If A′ = ∅ then the algorithm stops. Otherwise, setC ′
k := ∅ for all k ∈ {1, . . . , n}. For eacĥAPi written as at Step2,

if MEMBERSHIP(h′, 1, Â, Ĉji
) = TRUE thenC ′

ji
= Ĉji

.

5. If (C ′
1 · · · C ′

n) has less than⌈α n⌉ non-empty symbols then the algorithm stops. Otherwise, denote it into the message
(M ′

1 · · · M ′
⌈α n⌉).

/* Packet Recovery */

6. If the decoding fails then the algorithm stops. Otherwise, remove the pad fromM ′
1‖ · · · ‖M ′

⌈α n⌉ and write the re-
maining string asP ′

1‖ · · · ‖P ′
n where eachP ′

i is P bits long.

Output: {P ′
1, . . . , P ′

n}: set of authenticated packets.

4.3 Analysis of the Protocol

Security. As the channel model allows an adversary to inject bogus elements into the network, we adopt the same security
definition as in [32].

Definition 1 The collection of algorithms(KeyGen,AUTHENTICATOR,DECODER)constitutes asecureand (α, β)-
correctprobabilistic multicast authentication scheme if no probabilistic polynomial-time opponentO can win with a
non-negligible probability the following game:
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i) A key pair (SK,PK) is generated byKeyGen.

ii) O is given:(a) The public keyPK and(b) Oracle access toAUTHENTICATOR (but O can only issue at most one
query with the same block identification tagBID).

iii) O outputs(BID, n, α, β, P, r, RP).

O wins if one of the following happens:

a) (violation of the correctness property)O succeeds to outputRPsuch that even if it contains⌈α n⌉ packets (amongst
a total not exceeding⌊β n⌋ elements) of some authenticated packet setAPi for block identification tagBID and
parametersn, α, β, P, the decoder fails to authenticate all the correct packets.

b) (violation of the security property)O succeeds to outputRPsuch that the decoder outputs{P ′
1, . . . , P ′

n} that was
never authenticated byAUTHENTICATOR for the valueBID and parametersn, α, β, P.

Remark 5 A protocol with is secure and(α, β)-correct is non-degrading.

We have the following theorem the proof of which can be found as Appendix B.

Theorem 3 If our authentication scheme is either insecure or not(α, β)−correct, then one can create a genuine element
passing successfullyMEMBERSHIP.

Packet Overhead.Due to Theorem 3, we have to chooser in order to reduce the value of the YES-biasf(1, k) as much
as possible to ensure the security of the authentication protocol.

Since the packet overhead is: (
n P

⌈α n⌉ − P
)

+

⌈
r + S + ξ

ρ n + 1

⌉
bits

we look for the smallest value ofr such that:
f(1, k) ≤ tbias

wheretbias is the threshold value for the bias. Note that this minimal value for r is independent from both ratesα andβ.

Figure 3 represents the minimal values ofr for n between100 and1000 whentbias = 10−10. As in Section 3.2, we
used four digest length sizes forh′: 224, 256, 384, 512.
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Figure 3: Overhead of our authentication protocol for erasure channels.
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In order to provide a fair comparison with PRABS, we have to slightly modify Karlof et al.’s construction so that
it also allows recovery of the whole data stream as TWMDS and our construction. This is at the cost of using a MDS
code which leads to the additional overhead for PRABS ofn P

⌈α n⌉ − P bits. Therefore, in our implementations, the packet
overhead for PRABS becomes:

(
n P

⌈α n⌉ − P
)

+ H′ ⌈log2(n)⌉ bits

We performed comparisons forα ∈ {0.5, 0.75, 0.8, 0.9} and β = {1.1, 1.25, 1.5, 2} for the four digest sizesH′ ∈
{224, 256, 384, 512}. We choseρ = α

2 β2 as suggested in [32] . The results of our implementations aredepicted from
Figure 4.
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Figure 4: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.5 andβ = 1.1.
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Figure 5: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.5 andβ = 1.25.
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Figure 6: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.5 andβ = 1.5.
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Figure 7: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.5 andβ = 2.
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Figure 8: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.75 andβ = 1.1.
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Figure 9: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.75 andβ = 1.25.
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Figure 10: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.75 andβ = 1.5.
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Figure 11: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.75 andβ = 2.
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Figure 12: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.8 andβ = 1.1.
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Figure 13: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.8 andβ = 1.25.
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Figure 14: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.8 andβ = 1.5.
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Figure 15: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.8 andβ = 2.
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Figure 16: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.9 andβ = 1.1.
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Figure 17: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.9 andβ = 1.25.
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Figure 18: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.9 andβ = 1.5.
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Figure 19: Overhead comparison between PRABS, TWMDS and our scheme whenα = 0.9 andβ = 2.

Our results show that, in most situations, the overhead of our new scheme is much smaller than PRABS’ and TWMDS’.
This is particularly acute whenn gets large. Furthermore, those implementations demonstrate that the overhead of
TWMDS is smaller than PRABS’. This extends the comparative survey between PRABS and TWMDS done so far which
was only focused on the casen = 1000 [31, 32].

5 Conclusion

In this paper, we presented two protocols for the broadcast authentication problem using a modified version of Nyberg’s
accumulator due to Yumet al. Our first scheme was related to erasure channels. We showed that its packet overhead was
less than the length of a digest and, in particular, far less than [22, 23, 24, 25]. Even if the sender processes the stream in
delay ofn packets, the receivers can authenticate packets on-the-flyfrom the(n − t + 1)

th received element to the end
of the stream (if any). In addition, a single signature is needed to provide the non-repudiation of the whole stream. Our
second scheme was designed for adversarial networks. It is obvious that the number of signature queries at the receiver
is the same as for TWMDS due to the use of Poly-Reconstruct in both constructions. This number turns to beO(1) as a
function of the block lengthn [32]. Furthermore, the packet overhead of our new scheme is smaller than PRABS’ and
TWMDS’. Another interesting result from this comparative study was that we obtained more a extensive comparison
between PRABS and TWMDS showing that the overhead of TWMDS was smaller.
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A Proof of Theorem 2

Denote APr1
, . . . , APrn−t

, the firstn − t augmented packets obtained by the receiver. Due to our channel model, we have
rn−t − r1 < n.

As a consequence,[r1], . . . , [rn−t] aren − t distinct values from{1, . . . , n}. Thus, the receiver can uniquely identify
C[r1], . . . , C[rn−t] to their n − t corresponding values fromC1, . . . , Cn by using the mappingx 7→ [x] over the values
r1, . . . , rn−t contained within APr1

, . . . , APrn−t
.

Using the correction capacity of the MDS code, the receiver can recover the codeword(C1 · · · Cn) and then its corre-
sponding message(M1 · · · Mn−t). This message easily leads toσ‖h′(P1) as this string represents the firstS + H′ bits of
M1‖ · · · ‖Mn−t. Finally, the receiver verifies the authenticity of the signatureσ onh′(P1) using VerifyPK.

So far, the receiver only authenticatedh′(P1). It should be noticed that, since we are working over an erasure channel,
it is sufficient to show thath′(P1) has been accumulated within the valueAr1

to authenticate this value and therefore
every single element aggregated within (using MEMBERSHIP). We have two cases to consider.
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1. r1 = 1 : The receiver obtained the first augmented AP1 of the stream. In this case, he can verify the authenticity ofAP1

by computingh′(P1). He authenticatesA1 usingh′(P1) and MEMBERSHIP. The remainingn− t−1 augmented packets
APr2

, . . . , APrn−t
belong to{AP1, . . . , APn}. SinceL1 = {P1, . . . , Pn}, the validity ofPr2

, . . . , Prn−t
can be checked

using MEMBERSHIP andA1.

2. r1 ≥ 2 : The receiver did not receive AP1. This case can also be seen as the receiver joining the communication group
after the beginning of streaming.

Since the receiver authenticatedh′(P1) thanks to the digital signature, he can check the authenticity of Ar1
using

h′(P1) and MEMBERSHIP.

The remainingn − t − 1 augmented packets APr2
, . . . APrn−t

can be authenticated usingAr1
and MEMBERSHIP

sincePr2
, . . . , Prn−t

have been aggregated intoAr1
since:r1 < r2 < · · · < rn−t ≤ r1 + (n − 1).

Up to this point, we showed that the receiver could authenticate the firstn − t augmented packets he got. In order
to terminate the demonstration of this theorem, it remains to prove that the receiver can authenticate (on-the-fly) all the
following augmented packets he obtains: APrn−t+1

, APrn−t+2
, . . ..

Consider APrn−t+1
. The accumulated valueArn−t

is contained within the authenticated augmented packet APrn−t
.

This value represents the aggregation of listLrn−t
which includes the set{Prn−t

, Prn−t+1
, . . . , Prn−t+(n−1)

} ∪ {h′(P1)}.
Therefore,Arn−t

can be used to authenticateP1 using MEMBERSHIP since:r(n−t)+1 − rn−t ≤ t + 1 ≤ n − 1.

OnceAr(n−t)+1
is authenticated, the receiver can discardArn−t

and bufferAr(n−t)+1
which will be used to authenti-

cate APr(n−t)+2
and so on.

This recursive process shows that the receiver can authenticate every packet he obtains, that is to say, the scheme is
non-degrading.

B Proof of Theorem 3

Assume that the scheme is either insecure or not(α, β)-correct. By definition, a probabilistic polynomial time opponent
O can break the scheme security or correctness with a non-negligible probabilityπ(k) wherek is the security parameter
setting up the digital signature and the hash function. Notethat, sinceh′ is a cryptographic hash function in the RO model,
it is assumed to be collision-resistant. We must have eithercases:

1. With probability at leastπ(k)/2, O breaks the scheme correctness.

2. With probability at leastπ(k)/2, O breaks the scheme security.

It should be noticed that sinceπ(k) is a non-negligible function ofk, so isπ(k)/2.

In both cases, we will demonstrate thatO can turn an attack against either the correctness or the security of the scheme in
polynomial time into forging an element̂C passing successfully MEMBERSHIP in polynomial time as well.

Point 1.For this attack,O will have access to the signing algorithm SignSK (but O will not have access to SK itself). He
can use the public key PK as well as the hash functionh′. O will be allowed to run AUTHENTICATOR whose queries are
written as(BIDi, ni, αi, βi, ¶i, ri, DPi) where DPi is the set ofni data packets to be authenticated. As said in Section 4.2,
the knowledge ofri determines the value ofki as the digest output byh′ are (ki log2(ri))-bit long withH′ = ki log2(ri).
In order to get the corresponding output, the signature is obtained by querying SignSK as a black-box at Step2 of AU-
THENTICATOR.

According to our hypothesis,O broke the correctness of the authentication protocol. Thismeans that, following the
previous process,O obtained values BID, n, α, β, P, r and a set of received packets RP such that:

• ∃i : (BID, n, α, β, P, r) = (BIDi, ni, αi, βi, Pi, ri).
Denote DP= {P1, . . . , Pn}(= DPi) then data packets associated with this query and AP the response given toO.
In particular, we denoteσ the signature corresponding to DP and generated as in Step2 of AUTHENTICATOR.

• |RP∩ AP| ≥ ⌈α n⌉ and|RP| ≤ ⌊β n⌋.

• {P ′
1, . . . , P ′

n} = DECODER(PK, BID, n, α, β, P, r, RP) whereP ′
j 6= Pj for somej ∈ {1, . . . , n}.
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It should be noticed that the valuesn, α, β, P, r as well as PK are publicly known.

Since the digital signature is unforgeable and the hash function is collision resistant, it is impossible to obtain either a
forgery (digital signature) or a collision (hash function)in polynomial time with non-negligible probabilityπ(k)/2. This
observation will be used to reduce the security of the authentication scheme to the security of the accumulator.

Since|RP∩AP| ≥ ⌈α n⌉ and|RP| ≤ ⌊β n⌋, Step1 of DECODER ends successfully. The consistency of Poly-Reconstruct
involves that the list returned by MPR at Step2 contains the elementA‖σ corresponding to DP after removing the

pad. It should be noticed that the pad length can be uniquely determined from the public values as̃q =
⌈

r+S+ξ
ρ n+1

⌉
(see

Inequality (1)).

As the digital signature is unforgeable and the hash function is collision resistant, the pair message/signature goingthrough
the verification process at Step3 corresponds to DP. Therefore, at the end of that step, we have:

Â = A

At the beginning of Step4, the receiver has recovered the accumulated valueA corresponding to the original codeword
(C1 · · · Cn) related to DP.

Assume thatO cannot forge anŷC /∈ {C1, . . . , Cn} passing successfully MEMBERSHIP.

In this case, only elements from RP∩ AP will successfully pass MEMBERSHIP. As a consequence, at the end of Step
4, we get:

∀i ∈ {1, . . . , n} C ′
i ∈ {∅, Ci}

and at least⌈α n⌉ valuesC ′
i ’s are non-empty.

Thus, at Step5, (C ′
1 · · · C ′

n) is first corrected into(C1 · · · Cn) and then decoded as(M1 · · · M⌈α n⌉). Finally, at the end
of Step6, we have:∀i ∈ {1, . . . , n} P ′

i = Pi. We obtain a contradiction with our original hypothesis which stipulated:

∃j ∈ {1, . . . , n} P ′
j 6= Pj

Therefore,O was able to construct a new valuêC passing MEMBERSHIP successfully with non-negligible probability
in polynomial time.

Point 2.We consider the same kind of reduction as in Point 1. The opponentO breaks the security of the scheme if one of
the following holds:

I. AUTHENTICATOR was never queried on input BID, n, α, β, P, r and the decoding algorithm DECODER does not
reject RP, i.e.{P ′

1, . . . , P ′
n} 6= ∅ where:

{P ′
1, . . . , P ′

n} = DECODER(PK, BID, n, α, β, P, r, RP).

II. AUTHENTICATOR was queried on input BID, n, α, β, P, r for some data packets DP= {P1, . . . , Pn}. Neverthe-
less, the output of DECODER verifiesP ′

j 6= Pj for somej ∈ {1, . . . , n}.

Case I.Since DECODER output some non-empty packets, Step3 had to terminate successfully. Thus, it has been found a
pair (h′(BID‖n‖α‖β‖P‖r‖A), σ) such that:

VerifyPK(h′(BID‖n‖α‖β‖P‖r‖A), σ) = TRUE

If O never queried AUTHENTICATOR for block tag BID, then either the previous pair is a forgery of the digital signature
or BID‖n‖α‖β‖P‖r‖A collides with one of the queries BIDi‖ni‖αi‖βi‖Pi‖ri‖Ai made byO for the hash functionh′.
Since none of those cases can occur in polynomial time with non-negligible probability, we get a contradiction in this
situation.

If O queried AUTHENTICATOR for block tag BID then denote(BID, n̂, α̂, β̂, P̂, r̂) his query. By hypothesis, we have:

(n̂, α̂, β̂, P̂, r̂) 6= (n, α, β, P, r)

We conclude as above. That is to say that we get a contradiction with the security of either the digital signature of the hash
function.

Case II.We have the same situation as in Point 1.
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