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Abstract

Solving geometric optimization problems over uncertain da-

ta has become increasingly important in many applications

and has attracted a lot of attentions in recent years. In

this paper, we study two important geometric optimization

problems, the k-center problem and the j-flat-center prob-

lem, over stochastic/uncertain data points in Euclidean s-

paces. For the stochastic k-center problem, we would like to

find k points in a fixed dimensional Euclidean space, such

that the expected value of the k-center objective is mini-

mized. For the stochastic j-flat-center problem, we seek a

j-flat (i.e., a j-dimensional affine subspace) such that the

expected value of the maximum distance from any point to

the j-flat is minimized. We consider both problems under

two popular stochastic geometric models, the existential un-

certainty model, where the existence of each point may be

uncertain, and the locational uncertainty model, where the

location of each point may be uncertain. We provide the

first PTAS (Polynomial Time Approximation Scheme) for

both problems under the two models. Our results generalize

the previous results for stochastic minimum enclosing ball

and stochastic enclosing cylinder.

1 Introduction

With the prevalence of automatic information extrac-
tion/integration systems, and predictive machine learn-
ing algorithms in numerous application areas, we are
faced with a huge volume of data which is inherent-
ly uncertain and noisy. The most principled way for
managing, analyzing and optimizing over such uncer-
tain data is to use stochastic models (i.e., use proba-
bility distributions over possible realizations to capture
the uncertainty). This has led to a surge of interests
in stochastic combinatorial and geometric optimization
problems in recent years from several research commu-
nities including theoretical computer science, databases,
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BA00301, the National Natural Science Foundation of China
Grant 61202009, 61033001, 61361136003.

machine learning. In this paper, we study two classic
geometric optimization problems, the k-center problem
and the j-flat center problem in Euclidean spaces. Both
problems are important in geometric data analysis. We
generalize both problems to the stochastic settings. We
first introduce the stochastic geometry models, and then
formally define our problems.

Stochastic Geometry Models: There are two nat-
ural and popular stochastic geometry models, under
which most of stochastic geometric optimization prob-
lems are studied, such as closest pairs [25], nearest
neighbors [6, 25], minimum spanning trees [22, 26], per-
fect matchings [22], clustering [12, 18], minimum en-
closing balls [30], and range queries [1, 5, 29]. We define
them formally as follows:

1. Existential uncertainty model: Given a set P of n
points in Rd, each point si ∈ P (1 ≤ i ≤ n) is
associated with a real number (called existential
probability) pi ∈ [0, 1], i.e., point ui is present
independently with probability pi. A realization
P ∼ P is a point set which is realized with
probability Pr[� P ] =

∏
si∈P pi

∏
si /∈P (1− pi).

2. Locational uncertainty model: Assume that there is
a set P of n nodes and the existence of each node is
certain. However, the location of each node ui ∈ P
(1 ≤ i ≤ n) might be a random point in Rd. We
assume that the probability distribution for each
ui ∈ P is discrete and independent of other points.
For a node ui ∈ P and a point sj ∈ Rd (1 ≤ j ≤ m),
we define pi,j to be the probability that the location
of node ui is sj .

Stochastic k-Center: The deterministic Euclidean k-
center problem is a central problem in geometric opti-
mization [4, 8]. It asks for a k-point set F in Rd such
that the maximium distance from any of the n given
points to its closest point in F is minimized. Its s-
tochastic version is naturally motivated: Suppose we
want to build k facilities to serve a set of uncertain de-
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mand points, and our goal is to minimize the expecta-
tion of the maximum distance from any realized demand
point to its closest facility.

Definition 1.1. For a set of points P ∈ Rd, and a
k-point set F = {f1, . . . , fk) | fi ∈ Rd, 1 ≤ i ≤ k},
we define K(P, F ) = maxs∈P min1≤i≤k d(s, fi) as the k-
center value of F w.r.t. P . We use F to denote the
family of all k-point sets in Rd. Given a set P of n
stochastic points (in either the existential or locational
uncertainty model) in Rd, and a k-point set F ∈ F , we
define the expected k-center value of F w.r.t P as

K(P, F ) = EP∼P [K(P, F )].

In the stochastic minimum k-center problem, our goal is
to find a k-point set F ∈ F which minimizes K(P, F ).
In this paper, we assume that both the dimensionality d
and k are fixed constants.

Stochastic j-Flat-Center: The deterministic j-flat-
center problem is defined as follows: given n points
in Rd, we would like to find a j-flat F (i.e., a j-
dimensional affine subspace) such that the maximum
distance from any given point to F is minimized. It
is a common generalization of the minimum enclosing
ball (j = 0), minimum enclosing cylinder (j = 1),
and minimum width problems (j = d − 1), and has
been well studied in computational geometry [8, 14, 34].
Its stochastic version is also naturally motivated by
the stochastic variant of the `∞ regression problem:
Suppose we would like to fit a set of points by an affine
subspace. However, those points may be produced by
some machine learning algorithm, which associates some
confidence level to each point (i.e., each point has an
existential probability). This naturally gives rise to the
stochastic j-flat-center problem. Formally, it is defined
as follows.

Definition 1.2. Given a set P of n points in Rd, and
a j-flat F ∈ F (0 ≤ j ≤ d − 1), where F is the family
of all j-flats in Rd, we define the j-flat-center value
of F w.r.t. P to be J(P, F ) = maxs∈P d(s, F ), where
d(s, F ) = minf∈F d(s, f) is the distance between point s
and j-flat F . Given a set P of n stochastic points (in
either the existential or locational model) in Rd, and a
j-flat F ∈ F (0 ≤ j ≤ d − 1), we define the expected
j-flat-center value of F w.r.t. P to be

J(P, F ) = EP∼P [J(P, F )].

In the stochastic minimum j-flat-center problem, our
goal is to find a j-flat F which minimizes J(P, F ).

1.1 Previous Results and Our contributions
Recall that a polynomial time approximation scheme
(PTAS) for a minimization problem is an algorithm A
that produces a solution whose cost is at most 1 + ε
times the optimal cost in polynomial time, for any fixed
constant ε > 0.

Stochastic k-Center: Cormode and McGregor [12]
first studied the stochastic k-center problem in a fi-
nite metric graph under the locational uncertainty mod-
el, and obtained a bi-criterion constant approximation.
Guha and Munagala [18] improved their result to a
single-criterion constant factor approximation. Recent-
ly, Wang and Zhang [35] studied the stochastic k-center
problem on a line, and proposed an efficient exact algo-
rithm. No result better than a constant approximation
is known for the Euclidean space Rd (d ≥ 2). We ob-
tain the first PTAS for the stochastic k-center problem
in Rd.

Theorem 1.1. Assume that both k and d are fixed
constants. There exists a PTAS for the stochastic
minimum k-center problem in Rd, under either the
existential or the locational uncertainty model.

Our result generalizes the PTAS for stochastic min-
imum enclosing ball by Munteanu et al. [30]. We remark
that the assumption that k is a constant is necessary for
getting a PTAS, since even the deterministic Euclidean
k-center problem is APX-hard for arbitrary k even in
R2 [13].

Stochastic j-Flat-Center: Our main result for the
stochastic j-flat-center is as follows.

Theorem 1.2. Assume that the dimensionality d is a
constant. There exists a PTAS for the stochastic mini-
mum j-flat-center problem, under either the existential
or the locational uncertainty model.

This result also generalizes the PTAS for stochas-
tic minimum enclosing ball (i.e., 0-flat-center) by
Munteanu et al. [30]. It also generalizes a previous P-
TAS for the stochastic minimum enclosing cylinder (i.e.,
1-flat-center) problem in the existential model where the
existential probability of each point is assumed to be
lower bounded by a small fixed constant [23].

Our techniques: Our techniques for both problems
heavily rely on the powerful notion of coresets. In a
typical deterministic geometric optimization problem,
an instance P is a set of deterministic (weighted) points.
A coreset S of P is a set of (weighted) points, such that
the solution for the optimization problem over S is a
good approximate solution for P . 1 Recently, Huang

1It is possible to define coresets for other classes of optimization
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et al. [23] generalized the notion of ε-kernel coreset
(for directional width) to stochastic points. However,
their technique can only handle directional width, and
extending it to problems such as stochastic minimum
enclosing cylinder requires certain technical assumption
(see [23] for the detailed discussion).

In this paper, we introduce a new framework for
solving geometric optimization problems over stochas-
tic points. For a stochastic instance P, we consider
P as a collection of realizations P = {P | P ∼ P}.
Each realization P has a weight Pr[� P ], which is its
realized probability. Now, we can think the stochastic
problem as a certain deterministic problem over (expo-
nential many) all realizations (each being a point set).
Our framework constructs an object S satisfying the
following properties.

1. Basically, S has a constant size description (the
constants may depend on d, ε, and k).

2. The objective value for a certain deterministic op-
timization problem over S can approximate the
objective for the original stochastic problem well.
Moreover, the solution to the deterministic opti-
mization over S is a good approximation for the
original problem as well.

At a high level, S serves very similar roles as the
coresets in the deterministic setting. Note that the form
of S may vary for different problems: in stochastic k-
center, it is a collection of weighted point sets (we call
S an SKC-Coreset); in stochastic j-flat-center, it is a
combination of two collections of weighted point sets
for two intermediate problems (we call S an SJFC-
Coreset).

For stochastic k-center under the existential model,
we construct an SKC-Coreset S in two steps. First,
we map all realizations to their additive ε-coresets (for
deterministic k-centers) [4]. Since there are only a poly-
nomial number of possible additive ε-coresets, the above
mapping can partition the space of all realizations into
a polynomial number of parts, such that the realiza-
tions in each part have very similar objective functions.
Moreover, for each additive ε-coresets, it is possible to
compute the total probability of the realizations that
are mapped to the coreset. In fact, this requires a sub-
tle modification of the construction in [4] so that we
can compute the aforementioned probability efficient-
ly. This step has reduced the exponential number of
realizations to a polynomial size representation. Nex-
t, we define a generalized shape fitting problem, call
the generalized k-median problem, over the collection of

problems.

above additive ε-coresets. Then, we need to properly
generalize the previous definition of coreset and the to-
tal sensitivity (a notion proposed in the deterministic
coreset context by Langberg and Schulman [28]), and
prove a constant upper bound for the generalized total
sensitivity by relating it to the total sensitivity of the
ordinary k-median problem. The SKC-Coreset S is a
generalized coreset for the generalized k-median prob-
lem, which consists of a constant number of weighted
point sets.

For stochastic k-center under the locational model,
computing the weight for each set in the SKC-Coreset
S is somewhat more complicated. We need to reduce the
computational problem to a family of bipartite holant
problems, and apply the celebrated result by Jerrum,
Sinclair, and Vigoda [24].

For the stochastic minimum j-flat-center problem,
we proposed an efficient algorithm for constructing an
SJFC-Coreset. We utilize several ideas in the recent
work [23], as well as prior results on the shape fitting
problem. We first partition the realizations P ∼ P into
two parts through a construction similar to the (ε, τ)-
quant-kernel construction in [23]. Roughly speaking,
after linearization, we need to find a convex set K in a
higher dimensional space such that the total probability
of any point falling outside K is small, but not so small
such that in each direction the expected directional
width of P is comparable to that of K. Then, for those
points inside K, it is possible to use a slight modification
of the construction in [23] to construct a collection of
weighted point sets. For the points outside K, since
the total probability is small, we reduce the problem to
a weighted j-flat-median problem, and use the coreset
in [34] (this step is similar to that in [30]). By combining
the two collections, we obtain the SJFC-Coreset S
for the problem, which is of constant size. Then, we
can easily obtain a PTAS by solving a constant size
polynomial system defined by S.

We remark that our overall approach is very d-
ifferent from that in Munteanu et al. [30] (except
one aforementioned step and that they also crucial-
ly used some machinary from the coreset literature).
Munteanu et al. [30] defined a near-metric distance mea-
sure m(A,B) = maxa∈A,b∈B d(a, b) for two non-empty
point sets A,B. This near-metric measure satisfies
many metric properties, like non-negativity, symmetry
and the triangle inequality. By lifting the problem to
the space defined by such metric and utilizing a previ-
ous coreset result for clustering, they obtained a PTAS
for the problem. However, in the more general stochas-
tic minimum k-center problem and stochastic minimum
j-flat-center problem, it is unclear how to translate the
distance function between point sets and k-centers or
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point sets and j-flat sets to a near-metric distance (and
still satisfies symmetry and triangle inequality).

1.2 Other Related work Recently, Huang et al.
[23] generalized the notion of ε-kernel coreset in [7]
to stochastic points and applied it to the stochastic
minimum spherical shell, minimum enclosing cylinder
and minimum cylindrical shell problems. However,
the stochasticity introduces certain complications in
lifting the problems to higher dimensional space and
converting the solution back. Hence, they could only
obtain PTAS for those problems under the assumption
that the existential probability of each point is lower
bounded by a small fixed constant. Abdullah et al. [1]
also studied coresets for range queries over stochastic
data.

Kamousi, Chan and Suri [26] studied the problem
of estimating the expected length of several geomet-
ric objects, such as MST, the nearest neighbor graph,
the Gabriel graph and the Delaunay triangulation in
stochastic geometry models. Huang and Li [22] consid-
ered several other problems including closest pair, di-
ameter, minimum perfect matching, and minimum cy-
cle cover. Many stochastic geometry problems have also
been studied recently, such as computing the expected
volume of a set of probabilistic rectangles in a Euclidean
space [36], convex hulls [3], and skylines over probabilis-
tic points [2, 9]

For the deterministic k-center problem, Gonzalez
gave a 2-approximation greedy algorithm in metric s-
pace. Hochbaum and Shmoys [21] showed that 2 is
optimal in general metric spaces unless P = NP . In
Euclidean spaces, the best hardness of approximation
known is 1.82 even for R2 [13]. Agarwal and Procopi-
uc [4] showed that there exists an additive coreset of a
constant size if both k and d are constants. Har-Peled
and Varadarajan [20] studied the minimum enclosing
cylinder (1-flat-center) problem in Rd, and obtained a

PTAS running in dn(1/ε)O(1)

time. Their algorithm can
be extended to the j-flat-center problem, and obtained

a PTAS running in dn(j/ε)O(1)

time. Badouiu, Clark-
son and Panigrahy [10, 31] improved their result of the
j-flat-center problem to a linear-time PTAS.

Note that both the k-center and j-flat center prob-
lems are special cases of the `∞ version of (j, k)-
projective clustering problem, where we want to find
k j-flats to minimize the maximum distance from any
point to its closest j-flat. 2 Har-Peled and Varadara-
jan [20] obtained the first PTAS when both j and k are

2The minimum k-center problem is the (0, k)-projective clus-

tering problem, and the minimum j-flat-center problem is the
(j, 1)-projective clustering problem.

constants (d can be arbitrary).
The `1 version of the projective clustering problem-

s (with the corresponding coresets) have also been s-
tudied extensively (see e.g., [14, 16, 33, 34]). In Eu-
clidean space Rd, Feldman and Langberg [14] gave a
coreset for the k-median problem, the subspace approx-
imation (i.e., j-flat median) problem, and the k-line-
median problem. Varadarajan et al. [34] also consid-
ered the k-line-median problem, and gave a coreset of
size O(kf(k)d(log n)2/ε2), where f(k) is a function de-
pending only on k.

2 Preliminaries

Generalized Shape Fitting Problems and
Coresets As we mentioned in the introduction, an
SKC-Coreset S is a collection of weighted point sets.
Hence, we need to define the generalized shape fitting
problems, which are defined over a collection of (weight-
ed) point sets, (recall that the traditional shape fitting
problems (see e.g., [34]) are defined over a set of (weight-
ed) points). We use Rd to denote the d-dimensional Eu-
clidean space. Let d(p, q) denote the Euclidean distance
between point p and q and d(p, F ) = minq∈F d(p, q) for
any F ⊂ Rd. Let Ud = {P | P ⊂ Rd, |P | is finite } be
the collection of all finite discrete point sets in Rd.

Definition 2.1. (Generalized shape fitting problems)
A generalized shape fitting problem is specified by a
triple (Rd,F , dist). Here the set F of shapes is a family
of subsets of Rd (e.g., all k-point sets, or all j-flats),
and dist : Ud × F → R≥0 is a generalized distance
function, defined as dist(P, F ) = maxs∈P d(s, F ) for a
point set P ∈ Ud and a shape F ∈ F . 3 An instance S
of the generalized shape fitting problem is a (weighted)
collection {S1, . . . , Sm} (Si ∈ Ud) of point sets, and each
Si has a positive weight wi ∈ R+. For any shape F ∈ F ,
define the total generalized distance from S to F to be
dist(S, F ) =

∑
Si∈S wi · dist(Si, F ). Given an instance

S, our goal is to find a shape F ∈ F , which minimizes
the total generalized distance dist(S, F ).

If we replace Ud with Rd, the above definition
reduces to the traditional shape fitting problem defined
in e.g., [34]. Here, we give an example for Definition 2.1.

Example. Consider a generalized shape fitting problem
where F is the collection of all 2-point sets in R2. In
this case, for a point s ∈ R2 and a 2-point set F ∈ F ,
the function d(s, F ) = minf∈F d(s, f) is the Euclidean
distance between s and its nearest point f ∈ F . For a
point set P ∈ U2 and a 2-point set F ∈ F , the function
dist(P, F ) = maxs∈P d(s, F ) is the farthest distance
from some point s ∈ P to F .

3Note that dist may not be a metric in general.
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Then we construct an instance S = {S1, S2, S3}
(Si ∈ U2) of this generalized shape fitting problem as
follows. Let S1 = {s1 = (0, 0), s2 = (0, 2)}, S2 = {s3 =
(6, 0), s4 = (6, 2)}, and S3 = {s5 = (0, 1)} ∈. Each Si
has a positive weight, where w1 = w2 = 1 and w3 = 2.
Then our goal is to find a 2-point set F ∈ F , which
minimizes the following total generalized distance

dist(S, F ) =
∑
Si∈S

wi · dist(Si, F )

= dist(S1, F ) + dist(S2, F ) + 2dist(S3, F ).

Consider a 2-point set F ∗ = {f1 = (0, 1), f2 =
(6, 1)}. We can compute that dist(S1, F

∗) =
maxs∈S1

d(s, F ∗) = d(s1, F
∗) = d(s1, f1) = 1. By the

same way, we compute that dist(S2, F
∗) = d(s3, f2) = 1

and dist(S3, F
∗) = d(s5, f1) = 0. Thus, we have that

dist(S, F ∗) = 1 + 1 + 0 = 2. In fact, we can prove that
F ∗ is the optimal 2-point set which minimizes the total
generalized distance dist(S, F ).

Now, we define what is a coreset for a generalized
shape fitting problem.

Definition 2.2. (Generalized Coreset) Given a
(weighted) instance S of a generalized shape fit-
ting problem (Rd,F , dist) with a weight function
w : S→ R+, a generalized ε-coreset of S is a (weighted)
collection S ⊆ S of point sets, together with a weight
function w′ : S → R+, such that for any shape F ∈ F ,
we have that∑

Si∈S
w′i · dist(Si, F ) ∈ (1± ε)

∑
Si∈S

wi · dist(Si, F )

(or more compactly, dist(S, F ) ∈ (1 ± ε)dist(S, F ) 4 ).
We denote the cardinality of the coreset S as |S|.

Definition 2.2 also generalizes the prior definition
in [34], where each Si ∈ S contains only one point.

Total sensitivity and dimension To bound the
size of the generalized coresets, we need the notion of
total sensitivity, originally introduced in [27].

Definition 2.3. (Total sensitivity of a generalized
shape fitting instance). Let Ud be the collection of
all finite discrete point sets P ⊂ Rd, and let dist :
Ud × F → R≥0 be a continuous function. Given an
instance S = {Si | Si ⊂ Ud, 1 ≤ i ≤ n} of a generalized
shape fitting problem (Rd,F , dist), with a weight func-
tion w : S → R+, the sensitivity Si ∈ S is σS(Si) :=
inf{β ≥ 0 | wi ·dist(Si, F ) ≤ β ·dist(S, F ),∀F ∈ F}. The
total sensitivity of S is defined by GS =

∑
Si∈S σS(Si).

4The notation (1±ε)B means the interval [(1−ε)B, (1+ε)B].

Note that this definition generalizes the one in [27].
In fact, if each Si ∈ S contains only one point and
the weight function wi = 1 for all i, this definition is
equivalent to the definition in [27].

We also need to generalize the definition of dimen-
sion defined in [14] (it is in fact the primal shattering
dimension (See e.g., [14, 19]) of a certain range space.
It plays a similar role to VC-dimension).

Definition 2.4. (Generalized dimension) Let S =
{Si | Si ∈ Ud, 1 ≤ i ≤ n} be an instance of a generalized
shape fitting problem (Rd,F , dist). Suppose wi is the
weight of Si. We consider the range space (S,R), where
R is a family of subsets RF,r of S defined as follows:
given an F ∈ F and r ≥ 0, let RF,r = {Si ∈ S |
wi · dist(Si, F ) ≥ r} ∈ R consist of the sets Si whose
weighted distance to the shape F is at least r. Finally,
we denote the generalized dimension of the instance S
by dim(S), to be the smallest integer m, such that for
any weight function w and A ⊆ S of size |A| = a ≥ 2,
we have |{A ∩RF,r | F ∈ F , r ≥ 0}| ≤ am.

The definition [27] is a special case of the above
definition when each Si ∈ S contains only one point. On
the other hand, the above definition is a special case of
Definition 7.2 [14] if thinking each wi · dist(Si, ·) = gi(·)
as a function from F to R≥0.

We have the following lemma for bounding the size
of generalized coresets by the generalized total sensi-
tivity and dimension. The proof is a straightforward
extension of a result in [14]. See Appendix A for the
details.

Lemma 2.1. Given any instance S = {Si | Si ⊂
Ud, 1 ≤ i ≤ n} of a generalized shape fitting problem
(Rd,F , dist), any weight function w : S→ R+, and any
ε ∈ (0, 1], there exists a generalized ε-coreset for S of
cardinality O((GS

ε )2 dim(S)).

3 Stochastic Minimum k-Center

In this section, we consider the stochastic minimum k-
center problem in Rd in the stochastic model. Let F
be the family of all k-point sets of Rd, and let P be
the set of stochastic points. Our main technique is to
construct an SKC-Coreset S of constant size. For
any k-point set F ∈ F , K(S, F ) should be a (1 ± ε)-
estimation for K(P, F ) = EP∼P [K(P, F )]. Recall that
K(P, F ) = maxs∈P minf∈F d(s, f) is the k-center val-
ue between two point sets P and F . Constructing S
includes two main steps: 1) Partition all realization-
s via additive ε-coresets, which reduces an exponential
number of realizations to a polynomial number of point
sets. 2) Show that there exists a generalized coreset of
constant cardinality for the generalized k-median prob-
lem defined over the above set of polynomial point sets.
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Finally, we enumerate polynomially many possible col-
lections Si (together with their weights). We show that
there is an SKC-Coreset S among those candidate.
By solving a polynomial system for each Si, and take
the minimum solution, we can obtain a PTAS.

We first need the formal definition of an additive
ε-coreset [4] as follows.

Definition 3.1. (additive ε-coreset) Let B(f, r) de-
note the ball of radius r centered at point f . For a set
of points P ∈ Ud, we call Q ⊆ P an additive ε-coreset
of P if for every k-point set F = {f1, . . . , fk}, we have

P ⊆ ∪ki=1B(fi, (1 + ε)K(Q,F )),

i.e., the union of all balls B(fi, (1+ε)K(Q,F )) (1 ≤ i ≤
k) covers P . 5

3.1 Existential uncertainty model We first con-
sider the existential uncertainty model.

Step 1: Partitioning realizations
We first provide an algorithm A, which can con-

struct an additive ε-coreset for any deterministic point
set. We can think A as a mapping from all realizations
of P to all possible additive ε-coresets. The mapping
naturally induces a partition of all realizations. Note
that we do not run A on every realization.

Algorithm A for constructing additive ε-coresets.
Given a realization P ∼ P, we first compute an
approximation value rP of the optimal k-center value
minF∈F K(P, F ). Then we build a Cartesian grid G(P )
of side length depending on rP . Let C(P ) = {C | C ∈
G,C ∩P 6= ∅} be the collection of those nonempty cells
(i.e., cells that contain at least one point in P ). In
each non-empty cell C ∈ C(P ), we maintain the point
sC ∈ C∩P of smallest index. Let E(P ) = {sC | C ∈ G},
which is an additive ε-coreset of P . Finally the output
of A(P ) is E(P ), G(P ), and C(P ). The details can be
found in Appendix B.

Note that we do not use the construction of additive
ε-coresets [4], because it is not easy to recover the
set of original realizations with a certain additive ε-
coreset. We need the set of additive ε-coresets to have
some extra properties (in particular, Lemma 3.3 below),
which allows us to compute certain probability values
efficiently.

We first have the following lemma.

Lemma 3.1. The running time of A on any n point
set P is O(knk+1). Moreover, the output E(P ) is an
additive ε-coreset of P of size at most O(k/εd).

5Our definition is slight weaker than that in [4]. The weaker
definition suffices for our purpose.

Denote E(P) = {E(P ) | P ∼ P} be the collection of
all possible additive ε-coresets. By Lemma 3.1, we know
that each S ∈ E(P) is of size at most O(k/εd). Thus, the

cardinality of E(P) is at most nO(k/εd). For a point set
S, denote PrP∼P [E(P ) = S] =

∑
P :P∼P,E(P )=S Pr[� P ]

to be the probability that the additive ε-coreset of a
realization is S. The following simple lemma states
that we can have a polynomial size representation for
the objective function K(P, F ).

Lemma 3.2. Given P of n points in Rd in the existen-
tial uncertainty model, for any k-point set F ∈ F , we
have that∑
S∈E(P)

PrP∼P [E(P ) = S] ·K(S, F ) ∈ (1± ε)K(P, F ).

Proof. By the definition of PrP∼P [E(P ) = S], we can
see that for any k-point set F ∈ F ,∑

S∈E(P)

PrP∼P [E(P ) = S] ·K(S, F )

=
∑

S∈E(P)

∑
P :P∼P,E(P )=S

Pr[� P ] ·K(S, F )

∈ (1± ε)
∑

S∈E(P)

∑
P :P∼P,E(P )=S

Pr[� P ] ·K(P, F )

= (1± ε)K(P, F ).

The inequality above uses the definition of additive ε-
coresets (Definition 3.1).

We can think P → E(P) as a mapping, which
maps a realization P ∼ P to its additive ε-coreset
E(P ). The mapping partitions all realizations P ∼ P
into a polynomial number of additive ε-coresets. For
each possible additive ε-coreset S ∈ E(P), we denote
E−1(S) = {P ∼ P | E(P ) = S} to be the collection of
all realizations mapping to S. By the definition of E(P),
we have that ∪S∈E(P)E−1(S) = P.

Now, we need an efficient algorithm to compute
PrP∼P [E(P ) = S] for each additive ε-coreset S ∈
E(P). The following lemma states that the mapping
constructed by algorithm A has some nice properties
that allow us to compute the probabilities. This
is also the reason why we cannot directly use the
original additive ε-coreset construction algorithm in [4].
The proof is somewhat subtle and can be found in
Appendix B.

Lemma 3.3. Consider a subset S of at most O(k/εd)
points. Run algorithm A(S), which outputs an additive
ε-coreset E(S), a Cartesian grid G(S), and a collection
C(S) of nonempty cells. If E(S) 6= S, then S /∈ E(P)
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Algorithm 1 Computing PrP∼P [E(P ) = S]

1 For each point set S ∼ P of size |S| = O(k/εd),
run algorithm A(S). Assume that the output is a point
set E(S), a Cartesian grid G(S), and a cell collection
C(S) = {C | C ∈ G,C ∩ S 6= ∅}.
2 If E(S) 6= S, output PrP∼P [E(P ) = S] = 0. If |S| ≤ k,
output PrP∼P [E(P ) = S] = Pr[� S].
3 For a cell C, suppose C∩P = {ti | ti ∈ P, 1 ≤ i ≤ m}.
W.l.o.g., assume that t1, . . . , tm are in increasing order
of their indices. For C 6∈ C(S), let

Q(C) = PrP∼P

[
P ∩ C = ∅

]
=

m∏
i=1

(1− pi)

be the probability that no point in C is realized. If
C ∈ C(S), assume that point tj ∈ C ∩ S, and let

Q(C) = PrP∼P

[
tj ∈ P and {t1, . . . , tj−1} ∩ P = ∅

]
=

pj ·
∏j−1
i=1 (1−pi) be the probability that tj appears, but

t1, . . . , tj−1 do not appear.
4 Output PrP∼P [E(P ) = S] =

∏
C∈G(S)Q(C).

(i.e., S is not the output of A for any realization P ∼
P). 6 If |S| ≤ k, then E−1(S) = {S}. Otherwise if
E(S) = S and |S| ≥ k + 1, then a point set P ∼ P
satisfies E(P ) = S if and only if

P1. For any cell C /∈ C(S), C ∩ P = ∅.

P2. For any cell C ∈ C(S), assume that point sC =
C ∩ S. Then sC ∈ P , and any point s′ ∈ C ∩ P
with a smaller index than that of sC does not appear
in the realization P .

Thanks to Lemma 3.3, now we are ready to show
how to compute PrP∼P [E(P ) = S] efficiently for each
S ∈ E(P). We enumerate every point set of size
O(k/εd). For a set S, we first run A(S) and output
a Cartesian grid G(S) and a point set E(S). We check
whether S ∈ E(P) by checking whether E(S) = S or
|S| ≤ k. If S ∈ E(P), we can compute PrP∼P [E(P ) = S]
using the Cartesian grid G(S). See Algorithm 1 for
details. We also give an example to explain Algorithm 1,
see Figure 3.1.

The following lemma asserting the correctness of
Algorithm 1 is a simple consequence of Lemma 3.3.

Lemma 3.4. For any point set S, Algorithm 1 computes
exactly the total probability

PrP∼P [E(P ) = S] =
∑

P :P∼P,E(P )=S

Pr[� P ]

6It is possible that some point set S satisfies Definition 3.1 for
some realization P , but is not the output of A(S).

G(S)

C1 C2

C3 C4

C1
s1

s2

s3

s4

s5

s6

s7

s8 s9

s10 s11

Figure 1: An example for Algorithm 1 when k = 2.
In this figure, P = {s1, . . . , s11} consists of all points,
and S = {s3, s5, s7} consists of black points. Then
by Lemma 3.3, we have that PrP∼P [E(P ) = S] =
p3p5p7(1 − p1)(1 − p2)(1 − p4)(1 − p10)(1 − p11). Now
we run Algorithm 1 on S. In Step 1, we first construct
a Cartesian grid G(S) as in the figure, and construct
a cell collection C(S) = {C1, C2, C3} since C4 ∩ S = ∅.
Note that E(S) = S (by Lemma 3.3) and |S| = 3 > k.
We directly go to Step 3 and want to compute the value
Q(Ci) for each cell Ci. For cell C1, two rectangle points
s1 and s2 are of smaller index than s3 ∈ S. So we
compute that Q(C1) = p3(1 − p1)(1 − p2). Similarly,
we compute Q(C2) = p5(1 − p4), Q(C3) = p7, and
Q(C4) = (1−p10)(1−p11). Finally in Step 4, we output
PrP∼P [E(P ) = S] =

∏
C∈G(S)Q(C) = p3p5p7(1 −

p1)(1− p2)(1− p4)(1− p10)(1− p11).

in O(nO(k/εd)) time.

Proof. Run A(S), and we obtain a point set E(S). If
E(S) 6= S, we have that S /∈ E(P) by Lemma 3.3.
Thus, PrP∼P [E(P ) = S] = 0. If |S| ≤ k, we have that
E−1(S) = {S} by Lemma 3.3. Thus, PrP∼P [E(P ) =
S] = Pr[� S].

Otherwise if E(S) = S and |S| ≥ k + 1, by
Lemma 3.3, each realization P ∈ E−1(S) satisfies P1
and P2. Then combining the definition of Q(C), and the
independence of all cells, we can see that

∏
C∈C Q(C) is

equal to
∑
P∈E−1(S) Pr[� P ] = PrP∼P [E(P ) = S].

For the running time, note that we only need to

consider at most nO(k/εd) point sets S ∼ P. For
each S, Algorithm 1 needs to run A(S), which costs
O(knk+1) time by Lemma 3.1. Step 2 and 3 only cost
linear time. Thus, we can compute all probabilities

PrP∼P [E(P ) = S] in O(nO(k/εd)) time.
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Step 2: Existence of generalized coreset via
generalized total sensitivity

Recall that E(P) is a collection of polynomially
many point sets of size O(k/εd). By Lemma 3.2, we
can focus on a generalized k-median problem: finding
a k-point set F ∈ F which minimizes K(E(P), F ) =∑
S∈E(P) PrP∼P [E(P ) = S] · K(S, F ). In fact, the gen-

eralized k-median problem is a special case of the gener-
alized shape fitting problem we defined in Definition 2.1.
Here, we instantiate the shape family F to be the collec-
tion of all k-point sets. Note that the k-center objective
K(E(P), F ) is indeed a generalized distance function in
Definition 2.1. To make things concrete, we formalize
it below. Recall that Ud is the collection of all finite
discrete point sets in Rd.

Definition 3.2. A generalized k-median problem is
specified by a triple (Rd,F ,K). Here F is the family
of all k-point sets in Rd, and K : Ud × F → R≥0

is a generalized distance function defined as follows:
for a point set P ∈ Ud and a k-point set F ∈ F ,
K(P, F ) = maxs∈P d(s, F ) = maxs∈P minf∈F d(s, f).
An instance S of the generalized k-median problem is
a (weighted) collection {S1, . . . , Sm} (Si ∈ Ud) of point
sets, and each Si has a positive weight wi ∈ R+. For
any k-point set F ∈ F , the total generalized distance
from S to F is K(S, F ) =

∑
Si∈S wi ·K(Si, F ). The goal

of the generalized k-median problem (GKM) is to find
a k-point set F which minimizes the total generalized
distance K(S, F ).

Recall that a generalized ε-coreset is a sub-
collection S ⊆ S of point sets, together with a weight
function w′ : S → R+, such that for any k-point set F ∈
F , we have

∑
S∈S w

′(S) ·K(S, F ) ∈ (1± ε)
∑
S∈S w(S) ·

K(S, F ) (or K(S, F ) ∈ (1±ε)K(S, F )). This generalized
coreset will serve as the SKC-Coreset for the original
stochastic k-center problem.

Our main lemma asserts that a constant sized
generalized coreset exists, as follows.

Lemma 3.5. (main lemma) Given an instance P of n
stochastic points in Rd, let E(P) be the collection of all
additive ε-coresets. There exists a generalized ε-coreset
S ⊆ E(P) of cardinality |S| = O(ε−(d+2)dk4), together
with a weight function w′ : S → R+, which satisfies that
for any k-point set F ∈ F ,∑

S∈S
w′(S) ·K(S, F )

∈ (1± ε)
∑

S∈E(P)

PrP∼P [E(P ) = S] ·K(S, F ).

Now, we prove Lemma 3.5 by showing a constan-
t upper bound on the cardinality of a generalized ε-

f∗i

d(s∗i , F
∗)

s∗i

K(Si, F
∗
i )

Figure 2: In the figure, Si is the black point set, F ∗ is
the white point set, and F ∗i is the dashed point set.
Here, s∗i ∈ Si is the farthest point to F ∗i satisfying
d(s∗i , F

∗
i ) = K(Si, F

∗
i ), and f∗i ∈ F ∗ is the closest point

to s∗i satisfying d(s∗i , f
∗
i ) = d(s∗i , F

∗).

coreset. This is done by applying Lemma 2.1 and pro-
viding constant upper bounds for both the total sensi-
tivity and the generalized dimension of the generalized
k-median instance.

Given an instance S = {Si | Si ∈ Ud, 1 ≤ i ≤ n} of
a generalized k-median problem with a weight function
w : S→ R+, we denote F ∗ to be the k-point set which
minimizes the total generalized distance K(S, F ) =∑
S∈S w(S) · K(S, F ) over all F ∈ F . W.l.o.g., we

assume that K(S, F ∗) > 0. Since if K(S, F ∗) = 0, there
are at most k different points in the instance.

We first construct a projection instance P ∗ of a
weighted k-median problem for S, and relate the total
sensitivity GS to GP∗ . Recall that GS =

∑
S∈S σS(S)

is the total sensitivity of S. Our construction of P ∗

is as follows. For each point set Si ∈ S, assume
that F ∗i ∈ F is the k-point set satisfying that F ∗i =

argmaxF
w(Si)·K(Si,F )

K(S,F ) , i.e., the sensitivity σS(Si) of Si

is equal to
w(Si)K(Si,F

∗
i )

K(S,F∗i ) . Let s∗i ∈ Si denote the point

farthest to F ∗i (breaking ties arbitrarily). Let f∗i ∈ F ∗
denote the point closest to s∗i (breaking ties arbitrarily).
Denote P ∗ to be the multi-set {f∗i | Si ∈ S}, and denote
the weight function w′ : P ∗ → R+ to be w′(f∗i ) = w(Si)
for any i ∈ [n]. Thus, P ∗ is a weighted k-median
instance in Rd with a weight function w′. See Figure 2
for an example of the construction of P ∗.

Lemma 3.6. Given an instance S = {Si | Si ∈ Ud, 1 ≤
i ≤ n} of a generalized k-median problem in Rd with a
weight function w : S → R+, let P ∗ be its projection
instance. Then, we have GS ≤ 2GP∗ + 1.

Proof. First note that we have the following fact. Given
i, j ∈ [n], recall that s∗j ∈ Sj is the farthest point to F ∗j ,
and f∗j ∈ F ∗ is the closest point to s∗j . Let f ∈ F ∗i be
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the point closest to s∗j .

K(Sj , F
∗
i ) + K(Sj , F

∗) ≥ d(s∗j , F
∗
i ) + d(s∗j , F

∗)

=d(s∗j , F
∗
i ) + d(s∗j , f

∗
j ) = d(s∗j , f) + d(s∗j , f

∗
j )

≥d(f∗j , f) ≥ d(f∗j , F
∗
i ),

(3.1)

The first inequality follows from the definitions of
K(Sj , F

∗
i ) and K(Sj , F

∗). The first equality follows from
the definition of f∗j . The second inequality follows from
the triangle inequality, and the last inequality is by the
definition of d(f∗j , F

∗
i ).

Then we have the following fact:∑
f∈P∗

w′(f) · d(f, F ∗i ) =
∑
f∗j ∈P∗

w′(f∗j )d(f∗j , F
∗
i )

≤
∑
Sj∈S

w(Sj) ·
(
K(Sj , F

∗) + K(Sj , F
∗
i )
)

=K(S, F ∗) + K(S, F ∗i ) ≤ 2K(S, F ∗i ),

(3.2)

since K(S, F ∗) ≤ K(S, F ∗i ) and Inequality (3.1).
Let f ′ ∈ F ∗i be the point closest to f∗i . We also

notice the following fact:

K(Si, F
∗) + d(f∗i , F

∗
i ) ≥ d(s∗i , f

∗
i ) + d(f∗i , F

∗
i )

=d(s∗i , f
∗
i ) + d(f∗i , f

′) ≥ d(s∗i , f
′)

≥d(s∗i , F
∗
i ) = K(Si, F

∗
i ).

(3.3)

The first inequality follows from the definition of f∗i , the
second inequality follows from the triangle inequality,
and the last inequality follows from the definition of
d(s∗i , F

∗
i ).

Now we are ready to analyze σS(Si) for some Si ∈ S.
We can see that

w(Si) ·K(Si, F
∗
i )

≤w(Si) ·K(Si, F
∗) + w(Si) · d(f∗i , F

∗
i ) [by (3.3)]

≤w(Si) ·K(Si, F
∗) + σP∗(f

∗
i ) ·

(∑
f∈P∗

w′(f) · d(f, F ∗i )

)
[by the definition of σP∗ ]

≤w(Si) ·K(Si, F
∗) + 2σP∗(f

∗
i ) ·K(S, F ∗i ) [by (3.2)]

=
w(Si) ·K(Si, F

∗)

K(S, F ∗i )
·K(S, F ∗i ) + 2σP∗(f

∗
i ) ·K(S, F ∗i )

≤
(
w(Si) ·K(Si, F

∗)

K(S, F ∗)
+ 2σP∗(f

∗
i )

)
K(S, F ∗i ).

[by K(S, F ∗i ) ≥ K(S, F ∗)]

Finally, we bound the total sensitivity as follows:

GS =
∑
Si∈S

σS(Si)

≤
∑
Si∈S

(
w(Si) ·K(Si, F

∗)

K(S, F ∗)
+ 2σP∗(f

∗
i )

)
= 1 + 2GP∗ .

This finishes the proof of the lemma.

Since P ∗ is an instance of a weighted k-median
problem, we know that the total sensitivity GP∗ is at
most 2k + 1, by [27, Theorem 9]. 7 Then combining
Lemma 3.6, we have the following lemma which bounds
the total sensitivity of GS.

Lemma 3.7. Consider an instance S of a generalized k-
median problem (Rd,F ,K). The total sensitivity GS is
at most 4k + 3.

Now the remaining task is to bound the generalized
dimension dim(S). Consider the range space (S,R), R
is a family of subsets RF,r of S defined as follows: given
an F ∈ F and r ≥ 0, let RF,r = {Si ∈ S | wi ·K(Si, F ) ≥
r} ∈ R. Here wi is the weight of Si ∈ S. We have the
following lemma.

Lemma 3.8. Consider an instance S of a generalized
k-median problem in Rd. If each point set S ∈ S is of
size at most L, then the generalized dimension dim(S)
is O(dkL).

Proof. Consider a mapping g : S → RdL constructed
as follows: suppose Si = {x1 = (x1

1, . . . , x
1
d), . . . , x

L =
(xL1 , . . . , x

L
d )} (if |Si| < L, we pad it with x1 =

(x1
1, . . . , x

1
d)). We let

g(Si) = (x1
1, . . . , x

1
d, . . . , x

L
1 , . . . , x

L
d ) ∈ RdL.

For any t ≥ 0 and any k-point set F ∈ F , we observe
that wi · K(Si, F ) ≥ r holds if and only if there exists
some 1 ≤ j ≤ L satisfying that wi · d(xj , F ) ≥ r, which
is equivalent to saying that point g(Si) is in the union
of the following L sets {(x1

1, . . . , x
1
d, . . . , x

L
1 , . . . , x

L
d ) |

d(xj , F ) ≥ r/wi} (j ∈ [L]).
Let X be the image set of g. Let (X,Rj) (1 ≤

j ≤ L) be L range spaces, where each Rj consists of
all subsets RjF,r = {(x1

1, . . . , x
1
d, . . . , x

L
1 , . . . , x

L
d ) ∈ X |

d(xj , F ) ≥ r} for all F ∈ F and r ≥ 0. Note that
each (X,Rj) has VC-dimension dk by [14]. Thus, we
have that each (X,Rj) has shattering dimension at most
its VC-dimension dk by Corollary 5.12 in [19]. Let
R′ = {∪Rj | Rj ∈ Rj , i ∈ [L]}. Using the standard
result for bounding the shattering dimension of the
union of set systems (e.g.,[19, Theorem 5.22]), we can
see that the shattering dimension of (X,R′) (which is
the generalized dimension of S) is bounded by O(dkL).

7Theorem 9 in [27] bounds the total sensitivity for the un-

weighted version. However, the proof can be extended to the
weighted version in a straightforward way.
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Note that an additive ε-coreset is of size at most
O(k/εd). Then combining Lemma 2.1, 3.7 and 3.8,
we directly obtain Lemma 3.5. Combining Lemma 3.2
and 3.5, we have the following theorem.

Theorem 3.1. Given an instance P of n points in Rd
in the existential uncertainty model, there exists an
SKC-Coreset S of O(ε−(d+2)dk4) point sets with a
weight function w′ : S → R+, which satisfies that,

1. For each point set S ∈ S, we have S ⊆ P and
|S| = O(k/εd).

2. For any k-point set F ∈ F , we have
∑
S∈S w

′(S) ·
K(S, F ) ∈ (1± ε)K(P, F ).

PTAS for stochastic minimum k-center. It re-
mains to give a PTAS for the stochastic minimum k-
center problem. For an instance E(P) of a general-
ized k-median problem, if we can compute the sen-
sitivity σE(P)(S) efficiently for each point set S ∈
E(P), then we can construct an SKC-Coreset by im-
portance sampling (The details of the sampling tech-
nique are the same as described in [14, Section 4.1]).
However, it is unclear how to compute the sensitiv-
ity σE(P)(S) efficiently. Instead, we enumerate al-
l weighted sub-collections Si ⊆ E(P) of cardinality at
most O(ε−(d+2)dk4). We claim that we only need to

enumerate O(nO(ε−(2d+2)dk5)) polynomially many sub-
collections Si together with their weight functions, such
that there exists a generalized ε-coreset of E(P). 8 We
will show the details later.

In the next step, for each weighted sub-collection
S ⊆ E(P) with a weight function w′ : S → R+,
we briefly sketch how to compute the optimal k-point
set F such that K(S, F ) is minimized. We cast the
optimization problem as a constant size polynomial
system.

Denote the space F = {(y1, . . . , yk) | yi ∈ Rd, 1 ≤
i ≤ k} to be the collection of ordered k-point sets
((y1, y2, . . . , yk) ∈ F and (y2, y1, . . . , yk) ∈ F to be two
different k-point sets if y1 6= y2). We first divide the
space F into pieces {F i}, as follows: Let L = O(k/εd)
and L = (l1, . . . , lL) (1 ≤ lj ≤ k, ∀j ∈ [L]) be a sequence
of integers, and let b ∈ [L] be an index. Consider a point
set S = {x1 = (x1

1, . . . , x
1
d), . . . , x

L = (xL1 , . . . , x
L
d )} ∈ S

and a k-point set F = {y1 = (y1
1 , . . . , y

1
d), . . . , yk =

(yk1 , . . . , y
k
d)} ∈ F . We give the following definition.

Definition 3.3. The k-center value K(S, F ) is decid-
ed by L and b if the following two properties hold.

8We remark that even though we enumerate the weight func-
tion, computing PrP∼P [E(P ) = S] is still important for our algo-

rithm. See Lemma 3.10 for the details of the enumeration algo-
rithm.

1. For any i ∈ [L] and any j ∈ [k], d(xi, yli) ≤
d(xi, yj), i.e., the closest point to xj is ylj ∈ F .

2. For any i ∈ [L], d(xi, yli) ≤ d(xb, ylb), i.e., the
k-center value K(S, F ) = d(xb, ylb).

For each point set Si ∈ S, we enumerate an integer
sequence Li and an index bi. Given a collection {Li, bi}i
(index i ranges over all Si in S), we construct a piece
F{Li,bi}i ⊆ F as follows: for any point set Si ∈
S and any k-point set F ∈ F{Li,bi}i , the k-center
value K(Si, F ) is decided by Li and bi. According
to Definition 3.3, F{Li,bi}i is defined by a polynomial
system.

Then, we solve our optimization problem in each
piece F{Li,bi}i . By definition 3.3, for any point set
Si ∈ S and any k-point set F ∈ F{Li,bi}i , the k-center
value K(Si, F ) = d(xbi , yLi(bi)) (xbi ∈ Si, yLi(bi) ∈ F ).
Here, the index Li(bi) is the bi-th item of Li. Hence, our
problem can be formulated as the following optimization
problem:

min
F

∑
Si∈S

w′(Si) · gi,

s.t., g2
i = ‖xbi − yLi(bi)‖2, gi ≥ 0,∀i ∈ [L];

yLi(bi) ∈ F ;F ∈ F{Li,bi}i .

By Definition 3.3, there are at most kL|S| constraints,
which is a constant. Thus, the polynomial system has dk
variables and O(kL|S|) constraints, hence can be solved
in constant time. Note that there are at most O(kL|S|)
different pieces F{Li,bi}i ⊆ F , which is again a constant.
Thus, we can compute the optimal k-point set for the
weighted sub-collection S in constant time.

Now we return to the stochastic minimum k-center
problem. Recall that we first enumerate all possi-
ble weighted sub-collections Si ⊆ E(P) of cardinali-
ty at most O(ε−(d+2)dk4). Then we compute the op-
timal k-point set F i for each weighted sub-collection
Si as above, and compute the expected k-center val-
ue K(P, F i). 9 Let F ∗ ∈ F be the k-point set which
minimizes the expected k-center value K(P, F i) over al-
l F i. By Lemma 3.10, there is one sub-collection Si
with a weight function w′ satisfying that K(Si, F i) ≤
(1 + ε) minF∈F K(P, F ). Thus, we conclude that F ∗

is a (1 + ε)-approximation for the stochastic minimum
k-center problem. For the running time, we enumer-

ate at most O(nO(ε−(2d+2)dk5)) weighted sub-collections.
Moreover, computing the optimal k-point set for each

9It is not hard to compute K(P, F i) in O(n logn) time by

sorting all points in P in non-increasing order according to their
distances to F i.
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sub-collection costs constant time. Then the total run-
ning time is at most O(nO(ε−(2d+2)dk5)). Thus, we have
the following corollary.

Corollary 3.1. If both k and d are constants, giv-
en an instance P of n stochastic points in Rd in
the existential uncertainty model, there exists a P-
TAS for the stochastic minimum k-center problem in

O(nO(ε−(2d+2)dk5)) time.

Enumerating possible generalized ε-coresets.
Given an instance S = {Si | Si ∈ Ud, 1 ≤ i ≤ N}
of a generalized k-median problem in Rd with a weight
function w : S → R+, now we show how to enumerate
polynomially many sub-collections Si ⊆ S together with
their weight functions, such that there exists a general-
ized ε-coreset of S. Recall that σS(Si) is the sensitivity
of Si, and GS =

∑
i∈[N ] σS(Si) is the total sensitivity.

Also recall that dim(S) is the generalized dimension of
S. Define q(Si) = σS(Si) + 1/N for 1 ≤ i ≤M , and de-
fine qS =

∑
1≤i≤N q(Si). Note that qS = GS+1 ≤ 4k+4

by Lemma 3.7. Our algorithm is as follows.

1. Let M = O(( qSε )2 dim(S)). Let L = 10
ε (logM +

logN + log k).

2. Enumerate all collections Si ⊆ S of cardinality at
most M . Note that we only need to enumerate at
most NM collections.

3. For a collection S ⊆ S, w.l.o.g., assume that
S = {S1, S2, · · · , Sm} (m ≤ M). Enumerate all
sequences

(
(1 + ε)a1 , . . . , (1 + ε)am

)
where each

0 ≤ ai ≤ L is an integer.

4. Given a collection S = {S1, S2, · · · , Sm} and a
sequence

(
(1 + ε)a1 , . . . , (1 + ε)am

)
, we construct a

weight function w′ : S → R+ as follows: for a point
set Si ∈ S, denote w′(Si) to be (1 + ε)ai ·w(Si)/M .
Recall that w(Si) is the weight of Si ∈ S.

Analysis. Recall that given an instance P of a s-
tochastic minimum k-center problem, we first reduce
to an instance S = E(P) of a generalized k-median
problem. Note that the cardinality of S is at most

nO(k/εd), and the cardinality of a generalized ε-coreset
is at most M = O(ε−(d+2)dk4) by Theorem 3.1. Thus,

we enumerate at most NM = nO(ε−(2d+2)dk5) polynomi-
ally many sub-collections Si ⊆ S. For each collection

Si, we construct at most ML+1 = O(nO(k/εd)) polyno-
mially many weight functions. In total, we enumerate

NM · ML+1 = O(nO(ε−(2d+2)dk5)) polynomially many
weighted sub-collections.

It remains to show that there exists a generalized
ε-coreset of S. We first have the following lemma.

Lemma 3.9. Given an instance S = {Si | Si ∈ Ud, 1 ≤
i ≤ N} of a generalized k-median problem in Rd with a
weight function w : S → R+, there exists a generalized
ε-coreset S ⊆ S with a weight function w′ : S → R+,
such that∑

S∈S
w′(S) ·K(S, F ) ∈ (1± ε)

∑
S∈S

w(S) ·K(S, F ).

The cardinality of S is at most M = O(( qSε )2 dim(S)).
Moreover, each weight w′(S) (S ∈ S) has the form that

w′(S) = c·qS·w(S)
q(S)·M , where 1 ≤ c ≤M is an integer.

Proof. For each S ∈ S, let gS : F → R+ be defined as
gS(F ) = w(S) ·K(S, F )/q(S). Let D = {gS | S ∈ S} be
a collection, together with a weight function w′′ : D →
R+ defined as w′′(gS) = q(S). Note that for any k-point
set F ∈ F , we have that∑
gS∈G

w′′(gS) · gS(F ) =
∑
S∈S

w(S) ·K(S, F ) = K(S, F ).

By Theorem 4.1 in [14], we can randomly sample (with
replacement) a collection S ⊆ D of cardinality at most
M = O(( qSε )2 dim(S)), together with a weight function
w′ : S → R+ defined as w′(gS) = qS/M . Then the
multi-set S satisfies that for every F ∈ F ,∑
gS∈S

w′(gS) · gS(F ) ∈ (1± ε)
∑
gS∈G

w′′(gS) · gS(F )

= (1± ε)K(S, F ).

By the definition of gS and w′, we prove the lemma.

We are ready to prove the following lemma.

Lemma 3.10. Among all sub-collections S ⊆ S of
cardinality at most M = O(( qSε )2 dim(S)), together with
a weight function w′ : S → R+ of the form w′(Si) =

(1 + ε)ai ·w(Si)/M (0 ≤ ai ≤ 10(logM+logN+log k)
ε is an

integer), there exists a generalized ε-coreset of S.

Proof. By Lemma 3.9, there exists a generalized ε-
coreset S ⊆ S of cardinality at most M together with
a weight function w′ : S → R+ defined as follows:
each weight w′(S) (S ∈ S) has the form that w′(S) =
cS ·qS·w(S)
q(S)·M for some integer 1 ≤ cS ≤ M . W.l.o.g., we

assume that S = {S1, S2, . . . , Sm | Si ∈ S} (m ≤M).
By the definition of q(S), we have that 1/N ≤

q(S) ≤ qS = GS + 1 ≤ 4k + 4. Then we conclude
that for each S ∈ S,

1 ≤ cS · qS
q(S)

≤ (4k + 4)MN.
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For 1 ≤ i ≤ m, let ai = blog1+ε(
cSi
·qS

q(Si)
)c. Note that

each ai satisfies that 0 ≤ ai ≤ 10(logM+logN+log k)
ε .

Thus, we have enumerated the following sub-collection
S = {S1, S2, ·, Sm | Si ∈ S} with a weight function
w′′ : S → R+, such that w′′(Si) = (1 + ε)ai · w(Si)/M .
Moreover, for any k-point set F , we have the following
inequality.

∑
1≤i≤m

w′′(Si) ·K(Si, F )

=
∑

1≤i≤m

(1 + ε)ai · w(Si)

M
·K(Si, F )

∈ (1± ε)
∑

1≤i≤m

cS · qS · w(S)

q(Si) ·M
·K(Si, F )

= (1± ε)
∑

1≤i≤m

w′(Si) ·K(Si, F )

∈ (1± 3ε)
∑
S∈S

w(S) ·K(S, F ).

The last inequality is due to the assumption that
the sub-collection S with a weight function w′ is a
generalized ε-coreset of S. Let ε′ = ε/3, we prove the
lemma.

3.2 Locational uncertainty model Next, we con-
sider the stochastic minimum k-center problem in the
locational uncertainty model. Given an instance of
n nodes u1, . . . , un which may locate in the point set
P = {s1, . . . , sm | si ∈ Rd, 1 ≤ i ≤ m}, our construction
of additive ε-coresets and the method for bounding the
total sensitivity is exactly the same as in the existen-
tial uncertainty model. The only difference is that for
an additive ε-coreset S, how to compute the probabili-
ty PrP∼P [E(P ) = S] =

∑
P :P∼P,E(P )=S Pr[� P ]. Here,

P ∼ P is a realized point set according to the probabil-
ity distribution of P. Run A(S), and construct a Carte-
sian grid G(S). Denote T (S) =

(
∪P :P∼P,E(P )=SP

)
\ S

to be the collection of all points s which might be con-
tained in some realization P ∼ P with E(P ) = S. Recall
that C(S) = {C ∈ G | |C ∩ S| = 1} is the collection of
d-dimensional Cartesian cells C which contains a point
sC ∈ S. By Lemma 3.3, for any realization P with
E(P ) = S, we have the following observations.

1. For any cell C /∈ C(S), C ∩ P = ∅. It means that
for any point s ∈ C ∩ P, we have s /∈ T (S).

2. For any cell C ∈ C(S) and any point s′ ∈ C∩P with
a smaller index than that of sC , we have s′ /∈ P . It
means that s′ /∈ T (S).

By the above observations, we conclude that T (S) is
the collection of those points s′ belonging to some cell
C ∈ C(S) and with a larger index than that of sC .

Then we reduce the counting problem
PrP∼P [E(P ) = S] to a family of bipartite holant
problems. We first give the definition of holant
problems.

Definition 3.4. An instance of a holant problem is a
tuple Λ =

(
G(V,E), (gv)v∈V

)
, (we)e∈E, where for every

v ∈ V , gv : {0, 1}Ev → R+ is a function, where Ev
is the set of edges incident to v. For every assignment
σ ∈ {0, 1}E, we define the weight of σ as

wΛ(σ) ,
∏
v∈V

gv (σ |Ev
)
∏
e∈σ

we.

Here σ |Ev
is the assignment of Ev with respect to

the assignment σ. We denote the value of the holant
problem Z(Λ) ,

∑
σ∈{0,1}E wΛ(σ).

For a counting problem PrP∼P [E(P ) = S], w.l.o.g.,
we assume that S = {s1, . . . , s|S|}. Then we construct
a family of holant instance ΛL as follows.

1. Enumerate all integer sequences L =
(l1, . . . , l|S|, lt) such that

∑
1≤i≤|S| li + lt = n,

li ≥ 1 (1 ≤ i ≤ |S|), and lt ≥ 0. Let L be the
collection of all these integer sequences L.

2. For a sequence L, assume that ΛL =(
G(U, V,E), (gv)v∈U∪V

)
is a holant instance

on a bipartite graph, where U = {u1, . . . , un}, and
V = S ∪ {t} (we use vertex t to represent the
collection T (S)).

3. The weight function w : E → R+ is defined as
follows:

(a) For a vertex ui ∈ U and a vertex sj ∈ S,
wij = pij .

(b) For a vertex ui ∈ U and t ∈ V , wit =∑
sj∈T (S) pij .

4. For each vertex u ∈ U , the function gu = (= 1). 10

For each vertex si ∈ S, the function gsi = (= li),
and the function gt = (= lt).

Since each S ∈ E(P) is of constant size, we only
need to enumerate at most O(n|S|+1) = poly(n) in-
teger sequences L. Given an integer sequence L =
(l1, . . . , l|S|, lt), we can see that Z(ΛL) is exactly the

10Here the function gu = (= i) means that the function value gu
is 1 if exactly i edges incident to u are of value 1 in the assignment.
Otherwise, gu = 0
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probability that li nodes are realized at point si ∈ S
(∀1 ≤ i ≤ |S|), and lt nodes are realized inside the point
set T (S). Then by Lemma 3.3, we have the following
equality:

PrP∼P [E(P ) = S] =
∑
L∈L

Z(ΛL).

It remains to show that we can compute each Z(ΛL)
efficiently. Fortunately, we have the following lemma.

Lemma 3.11. ([24],[32]) For any bipartite graph ΛL
with a specified integer sequence L, there exists an
FPRAS to compute the holant value Z(ΛL).

Thus, we have the following theorem.

Theorem 3.2. If both k and d are constants, given an
instance of n stochastic nodes in Rd in the locational un-
certainty model, there exists a PTAS for the stochastic
minimum k-center problem.

Combining Theorem 3.1 and 3.2, we obtain the
main result Theorem 1.1.

4 Stochastic Minimum j-Flat-Center

In this section, we consider a generalized shape fitting
problem, the minimum j-flat-center problem in the
stochastic models. Let F be the family of all j-flats
in Rd. Our main technique is to construct an SJFC-
Coreset of constant size, which satisfies that for any
j-flat F ∈ F , we can use the SJFC-Coreset to obtain
a (1± ε)-estimation for the expected j-flat-center value
J(P, F ). Then since the SJFC-Coreset is of constant
size, we have a polynomial system of constant size to
compute the optimum in constant time.

Let B =
∑

1≤i≤n pi be the total probability. We
discuss two different cases. If B < ε, we reduce the
problem to a weighted j-flat-median problem, which
has been studied in [34]. If B ≥ ε, the construction
of an SJFC-Coreset can be divided into two parts.
We first construct a convex hull, such that with high
probability (say 1− ε) that all points are realized inside
the convex hull. Then we construct a collection of point
sets to estimate the contribution of points insider the
convex hull. On the other hand, for the case that some
point appears outside the convex hull, we again reduce
the problem to a weighted j-flat-median problem. The
definition of the weighted j-flat-median problem is as
follows.

Definition 4.1. For some 0 ≤ j ≤ d− 1, let F be the
family of all j-flats in Rd. Given a set P of n points
in Rd together with a weight function w : P → R+,
denote cost(P, F ) =

∑
si∈P wi · d(si, F ). A weighted

j-flat-median problem is to find a shape F ∈ F which
minimizes the value cost(P, F ).

4.1 Case 1: B < ε In the first case, we show that
the minimum j-flat-center problem can be reduced to a
weighted j-flat-median problem. We need the following
lemmas.

Lemma 4.1. If B < ε, for any j-flat F ∈ F , we have∑
si∈P pi · d(si, F ) ∈ (1± ε) · J(P, F ).

Proof. For a j-flat F ∈ Rd, w.l.o.g., we assume that
d(si, F ) is non-decreasing in i. Thus, we have

J(P, F ) =
∑
i∈[n]

pi · d(si, F ) ·
∏
j>i

(1− pj)

Since B < ε, for any i ∈ [n], we have that 1 − ε ≤
1 −

∑
j∈[n] pi ≤

∏
j>i(1 − pj) ≤ 1. So we prove the

lemma.

By Lemma 4.1, we reduce the original problem to
a weighted j-flat-median problem, where each point
si ∈ P has weight pi. We then need the following lemma
to bound the total sensitivity.

Lemma 4.2. (Theorem 18 in [34]) 11 Consider the
weighted j-flat-median problem where F is the set of
all j-flats in Rd. The total sensitivity of any weighted
n-point set is O(j1.5).

On the other hand, we know that the dimension
of the weighted j-flat-median problem is O(jd) by [14].
Then by Lemma 2.1, there exists an ε-coreset S ⊆ P
of cardinality O(j4dε−2) to estimate the j-flat-median
value

∑
si∈P pi · d(si, F ) for any j-flat F ∈ F . 12

Moreover, we can compute a constant approximation
j-flat in O(ndjO(j2)) time by [15]. Then by [34], we

can construct an ε-coreseet S in O(ndjO(j2)) time.
Combining Lemma 4.1, we conclude the main lemma
in this subsection.

Lemma 4.3. Given an instance P of n stochastic points
in Rd, if the total probability

∑
i pi < ε, there exists

an SJFC-Coreset of cardinality O(j4dε−2) for the
minimum j-flat-center problem. Moreover, we have
an O(ndjO(j2)) time algorithm to compute the SJFC-
Coreset.

11Theorem 18 in [34] bounds the total sensitivity for the

unweighted version. However, the proof can be extended to the

weighted version in a straightforward manner.
12We remark that for the j-flat-median problem, Feldman

and Langberg [14] showed that there exists a coreset of size

O(jdε−2). However, it is unclear how to generalize their technique
to weighted version.
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4.2 Case 2: B ≥ ε Note that if F is a j-flat,
the function d(x, F )2 has a linearization. Here, a
linearization is to map the function d(x, F )2 to a k-
variate linear function through variate embedding. The
number k is called the dimension of the linearization,
see [8]. We have the following lemma to bound the
dimension of the linearization.

Lemma 4.4. ([16]) Suppose F is a j-flat in Rd, the
function d(x, F )2 (x ∈ Rd) has a linerization. Let D
be the dimension of the linearization. If j = 0, we have
D = d + 1. If j = 1, we have D = O(d2). Otherwise,
for 2 ≤ j ≤ d− 1, we have D = O(j2d3).

Suppose P is an instance of n stochastic points in
Rd. For each j-flat F ∈ Rd, let hF (x) = d(x, F )2

(x ∈ Rd), which admits a linearization of dimension
O(j2d3) by Lemma 4.4. Now, we map each point s ∈ P
into anO(j2d3) dimensional point s′ and map each j-flat
F ∈ Rd into an O(j2d3) dimensional direction u, such
that d(s, F ) = 〈s′, u〉1/2. For convenience, we still use P
to represent the collection of points after linearization.
Recall that Pr[� P ] is the realized probability of the
realization P ∼ P. By this mapping, we translate
our goal into finding a direction u ∈ RO(j2d3), which
minimizes the expected value EP∼P [maxx∈P 〈u, x〉1/2] =∑
P∼P Pr[� P ] ·maxx∈P 〈u, x〉1/2. We also denote P? =

{u ∈ Rd | 〈u, s〉 ≥ 0,∀s ∈ P} to be the polar set of P.
We only care about the directions in the polar set P?
for which 〈u, s〉1/2, ∀s ∈ P is well defined.

We first construct a convex hull H to partition the
realizations into two parts. Our construction uses the
method of (ε, τ)-quant-kernel construction in [23].
For any normal vector (direction) u, we move a sweep
line lu orthogonal to u, along the direction u, to sweep
through the points in P. Stop the movement of `u
at the first point such that Pr[P ∩ Hu)] ≥ ε′, where

ε′ = εO(j2d3) is a fixed constant. Denote Hu to be the
halfplane defined by the sweep line `u (orthogonal to
the normal vector u) and Hu to be its complement.
Denote P(Hu) = P ∩Hu to be the set of points swept
by the sweep line lu. We repeat the above process for
all normal vectors (directions) u, and let H = ∩uHu.
Since the total probability B ≥ ε, H is nonempty by
Helly’s theorem. We also know that H is a convex hull
by [23]. Moreover, we have the following lemma.

Lemma 4.5. (Lemma 33 and Theorem 6 in [23]) Sup-
pose the dimensionality is d. There is a convex set K,
which is an intersection of O(ε−(d−1)/2) halfspaces and
satisfies (1 − ε)K ⊆ H ⊆ K. Moreover, K can be con-

structed in O(n logO(d) n) time.

By the above lemma, we construct a convex set
K = ∩uKu, which is the intersection of O(ε−O(j2d3))

halfspaces Ku (u is the direction orthogonal to the
halfspace Ku). Let Ku be the complement of Ku, and
let P(Ku) = P ∩Ku be the set of points in Ku. Denote
P(K) to be the set of points outside the convex set K.
Then we have the following lemma, which shows that
the total probability outside K is very small.

Lemma 4.6. Let K be a convex set constructed as in
Lemma 4.5. The total probability Pr[P(K)] ≤ ε.

Proof. Assume that K = ∩uKu. Consider a halfspace
Ku. By Lemma 4.5, the convex set K satisfies that H ⊆
K. Thus, we have that Pr[P(Ku)] ≤ Pr[P(Hu)] ≤ ε′ by
the definition of Hu.

Note that Pr[P(K)] is upper bounded by the mul-
tiplication of ε′ and the number of halfspaces of K. By
Lemma 4.5, there are at most O(ε−O(j2d3)) halfspaces
Ku. Thus, we have that Pr[P(K)] ≤ ε.

Our construction of SJFC-Coreset is consist of
two parts. For points inside K, we construct a collec-
tion S1. Our construction is almost the same as (ε, r)-
fpow-kernel construction in [23], except that the car-
dinality of the collection S1 is different. For complete-
ness, we provide the details of the construction here.
Let P(K) be the collection of points in K ∩ P, then
P(K) is also an instance of a stochastic minimum j-
flat-center problem. We show that we can estimate
EP∼P(K)[maxx∈P 〈u, x〉1/2] by S1. For the rest points
outside K, we show that the contribution for the ob-
jective function EP∼P [maxx∈P 〈u, x〉1/2] is almost linear
and can be reduced to a weighted j-flat-median problem
as in Case 1.

We first show how to construct S1 for points inside
K as follows.

1. Sample N = O((ε′ε)−2ε−O(j2d3) log(1/ε)) =

O(ε−O(j2d3)) independent realizations restricted to
P(K).

2. For each realization Si, use the algorithm in [7] to

find a deterministic ε-kernel Ei of size O(ε−O(j2d3)).
Here, a deterministic ε-kernel Ei satisfies that (1−
ε)CH(Si) ⊆ CH(Ei) ⊆ CH(Si), where CH(·) is
the convex hull of the point set.

3. Let S1 = {Ei | 1 ≤ i ≤ N} be the collection of all
ε-kernels, and each ε-kernel Ei has a weight 1/N .

Hence, the total size of S1 is O(ε−O(j2d3)). For any
direction u ∈ P?, we use 1

N

∑
Ei∈S1 maxx∈Ei〈u, x〉1/2 as

an estimation of EP∼P(K)[maxx∈P 〈u, x〉1/2]. By [23], we
have the following lemma.
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Lemma 4.7. (Lemma 38-40 in [23]) For any direction
u ∈ P?, let Mu = maxx∈P(K)〈u, x〉1/2. We have that

1

N

∑
Ei∈S1

max
x∈Ei
〈u, x〉1/2

∈ (1± ε/2)EP∼P(K)[max
x∈P
〈u, x〉1/2]± ε′ε(1− ε)Mu/4

Now we are ready to prove the following lemma.

Lemma 4.8. For any direction u ∈ P?, we have the
following property.

1

N

∑
Ei∈S1

max
x∈Ei
〈u, x〉1/2 +

∑
si∈P(K)

pi · 〈u, si〉1/2

∈ (1± 4ε)EP∼P [max
x∈P
〈u, x〉1/2].

Proof. Let E be the event that no point is present in
K. By the fact Pr[K] ≤ ε, we have that Pr[E] =
Πsi∈P(K)(1 − pi) ≥ 1 −

∑
si∈P(K) pi ≥ 1 − ε. Thus,

we conclude that 1 − ε ≤ Pr[E] ≤ 1 We first rewrite
EP∼P [maxx∈P 〈u, x〉1/2] as follows:

EP∼P [max
x∈P
〈u, x〉1/2]

= Pr[E] · EP∼P [max
x∈P
〈u, x〉1/2 | E]

+Pr[E] · EP∼P [max
x∈P
〈u, x〉1/2 | E]

= Pr[E] · EP∼P(K)[max
x∈P
〈u, x〉1/2]

+Pr[E] · EP∼P [max
x∈P
〈u, x〉1/2 | E]

For event E, we bound the term Pr[E] ·
EP∼P(K)[maxx∈P 〈u, x〉1/2] via the collection S1.

Let Mu = maxx∈P(K)〈u, x〉1/2. By Lemma 4.7, for any
direction u ∈ P?, we have that

1

N

∑
Ei∈S1

max
x∈Ei
〈u, x〉1/2

∈ (1± ε/2)EP∼P(K)[max
x∈P
〈u, x〉1/2]± ε′ε(1− ε)Mu/4

By Lemma 4.5, we have that (1−ε)K ⊆ H. Then by the
construction of Hu, we have that Pr[P∩(1−ε)Ku] ≥ ε′.
Thus, we obtain that

EP∼P [max
x∈P
〈u, x〉1/2] ≥ ε′(1−ε) max

x∈P(K)
〈u, x〉1/2 = ε′(1−ε)Mu.

So we conclude that

(1− 2ε)Pr[E] · EP∼P(K)[max
x∈P
〈u, x〉1/2]− εEP∼P [max

x∈P
〈u, x〉1/2]

≤ 1

N

∑
Ei∈S1

max
x∈Ei
〈u, x〉1/2

≤(1 + 2ε)Pr[E] · EP∼P(K)[max
x∈P
〈u, x〉1/2] + εEP∼P [max

x∈P
〈u, x〉1/2],

(4.4)

since 1− ε ≤ Pr[E] ≤ 1.
For event E, without loss of generality, we assume

that the n points s1, . . . , sn in P are sorted in nonde-
creasing order according to the inner product 〈u, si〉.
Assume that si1 , . . . , sil (i1 < i2 < . . . < il) are points
in P(K). Let Ej be the event that point sij is present
and all points sik are not present for k > j. We have
that

Pr[E] · EP∼P [max
x∈P
〈u, x〉1/2 | E]

=
∑
j∈[l]

Pr[Ej ] · EP∼P [max
x∈P
〈u, x〉1/2 | Ej ]

=
∑
j∈[l]

pij
( ∏
j+1≤k≤l

(1− pik)
)
· EP∼P [max

x∈P
〈u, x〉1/2 | Ej ].

By the above equality, on one hand, we have that
(4.5)

Pr[E]·EP∼P [max
x∈P
〈u, x〉1/2 | E] ≥ (1−ε)

∑
j∈[l]

pij ·〈u, sij 〉1/2,

since maxx∈P 〈u, x〉1/2 ≥ 〈u, sij 〉1/2 if event Ej happens.
On the other hand, the following inequality also holds.

Pr[E] · EP∼P [max
x∈P
〈u, x〉1/2 | E]

=
∑
j∈[l]

Pr[Ej ] · EP∼P [max
x∈P
〈u, x〉1/2 | Ej ]

≤
∑
j∈[l]

Pr[Ej ] · EP∼P [〈u, sij 〉1/2 + max
x∈P∩P(K)

〈u, x〉1/2 | Ej ]

≤
∑
j∈[l]

pij ·
(
EP∼P [〈u, sij 〉1/2 | Ej ]

+ EP∼P [ max
x∈P∩P(K)

〈u, x〉1/2 | Ej ]
)

≤
∑
j∈[l]

pij · 〈u, sij 〉1/2 +
∑
j∈[l]

pij · EP∼P(K)[max
x∈P
〈u, x〉1/2]

≤
∑
j∈[l]

pij · 〈u, sij 〉1/2 + ε · EP∼P [max
x∈P
〈u, x〉1/2].

(4.6)

The last inequality holds since that
∑
j∈[l] pij =

Pr[P(K)] ≤ ε by Lemma 4.6. Combining Inequalities
(4.4), (4.5) and (4.6), we prove the lemma.

By Lemma 4.3, we construct a point set S2 to
estimate

∑
si∈P(K) pi · d(si, F ) with a weight function

w′ : S2 → R. We have that the size of S2 can be
bounded by O(j4dε−2). Then S = S1∪S2 is a collection
of constant size, which satisfies the following property:

1

N

∑
Ei∈S1

max
x∈Ei
〈u, x〉1/2 +

∑
si∈S2

w′i · 〈u, si〉1/2

∈(1 +O(ε))EP∼P [max
x∈P
〈u, x〉1/2].

(4.7)
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Here w′i is the weight of si in S2. We can think
S2 = {{si} | 1 ≤ si ≤ |S2|} as a collection of singleton
point sets {si}. Then by Inequality (4.7), we have that
S is a generalized ε-coreset satisfying Definition 2.2. We
conclude the following lemma.

Lemma 4.9. Given an instance P of n stochastic points
of the stochastic minimum j-flat-center problem in the
existential model, if the total probability

∑
i pi ≥ ε, there

exists an SJFC-Coreset S containing O(ε−O(j2d3) +

j4dε−2) point sets of size at most O(ε−O(j2d3)), together
with a weight function w′ : S → R+, which satisfies that
for any j-flat F ∈ F ,∑

S∈S
w′(S) · J(S, F ) ∈ (1± ε)J(P, F ).

Combining Lemma 4.3 and Lemma 4.9, we can
obtain the following theorem.

Theorem 4.1. Given an instance P of n stochastic
points in the existential model, there is an SJFC-
Coreset of size O(ε−O(j2d3) + j4dε−2) for the min-
imum j-flat-center problem. Moreover, we have an
O(n logO(d) n + ε−O(j2d3)n) time algorithm to compute
the SJFC-Coreset.

Proof. We only need to prove the running time. Recall
that the SJFC-Coreset S can be divided into two
parts S = S1∪S2. For the first part S1, we construct the
convex hull K in O(n logO(d) n) by Lemma 4.5. Then

we construct S1 by taking O(ε−O(j2d3)) independent
realizations restricted to P(K). For each sample, we
construct a deterministic ε-kernel in O(n + ε−(d−3/2))
by [11, 37]. So the total time for constructing S1 is

O(n logO(d) n+ ε−O(j2d3)n). On the other hand, we can

construct S2 in O(ndjO(j2)) time by Lemma 4.3. Thus,
we prove the theorem.

PTAS for stochastic minimum j-flat-center. Giv-
en an SJFC-Coreset S together with a weight func-
tion w′ : S → R+ by Theorem 4.1, it remains to show
how to compute the optimal j-flat for S. Our goal is to
find the optimal j-flat F ∗ such that the total general-
ized distance

∑
S∈S w

′(S) · J(S, F ∗) is minimized. The
argument is similar to the stochastic minimum k-center
problem.

We first divide the family F of j-flats into a constant
number of sub-families. In each sub-family F ′ ⊆ F , we
have the following property: for each Si ∈ S, and each j-
flat F ∈ F ′, the point si = arg maxs∈Si

d(s, F ) is fixed.
By Lemma 41, we have that hF (x) = d(x, F )2 (x ∈
Rd) admits a linearization of dimension O(j2d3). For
each sub-family F ′, we can formulate the optimization

problem as a polynomial system of constant degree, a
constant number of variables, and a constant number
of constraints. Then we can compute the optimal
j-flat in constant time for all sub-families F ′ ⊆ F .
Thus, we can compute the optimal j-flat-center for the
SJFC-Coreset S in constant time. We then have the
following corollary.

Corollary 4.1. If the dimensionality d is a constan-
t, given an instance of n stochastic points in Rd in
the existential uncertainty model, there exists a PTAS
for the stochastic minimum j-flat-center problem in
O(n logO(d) n+ ε−O(j2d3)n) time.

Locational Uncertainty Model Note that in the
locational uncertainty model, we only need to consider
Case 2. We use the same construction as in the
existential model. Let pi =

∑
j pji. Similarly, we make

a linearization for the function d(x, F )2, where x ∈ Rd
and F ∈ F is a j-flat. Using this linearization, we
also map P into O(j2d3)-dimensional points. For the
jth node and a set P of points, we denote pj(P ) =∑
si∈P pji to be the total probability that the jth node

locates inside P .
By the condition Pr[P(K)] ≤ ε, we have that

Pr[E] = 1 −
∏
j∈[m](1 − pj(K)) ≤ 1 − (1 − ε) = ε,

where event E represents that there exists a point
present in K. So we can regard those points outside
K independent. On the other hand, for any direction
u, since Pr[P ∩ (1− ε)Hu] ≥ ε′, we have that Pr[Eu] =

1−
∏
j∈[m](1−pj(P∩(1−ε)Hu)) ≥ 1−(1− ε′

m )m ≥ ε′/2,
where event Eu represents that there exists a point
present in P∩(1−ε)Hu. Moreover, we can use the same
method to construct a collection S1 as an estimation for
the point set P(K) in the locational uncertainty model.
So Lemma 4.8 still holds. Then by Lemma 4.9, we can
construct an SJFC-Coreset of constant size.

Theorem 4.2. Given an instance P of n stochastic
points in the locational uncertainty model, there is an
SJFC-Coreset of cardinality O(ε−O(j2d3) + j4dε−2)
for the minimum j-flat-center problem. Moreover, we
have a polynomial time algorithm to compute the gern-
eralized ε-coreset.

By a similar argument as in the existential model,
we can give a PTAS for the locational uncertainty
model. Then combining with Corollary 4.1, we prove
the main result Theorem 1.2.

References

125 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



[1] A. Abdullah, S. Daruki, and J.M. Phillips. Range
counting coresets for uncertain data. In Proceed-
ings 29th ACM Syposium on Computational Geometry,
pages 223–232, 2013.

[2] P. Afshani, P.K. Agarwal, L. Arge, K.G. Larsen, and
J.M. Phillips. (Approximate) uncertain skylines. In
Proceedings of the 14th International Conference on
Database Theory, pages 186–196, 2011.

[3] Pankaj Agarwal, Sariel Har-Peled, Subhash Suri,
Hakan Yildiz, and Wuzhou Zhang. Convex hulls un-
der uncertainty. In European Symposia on Algorithms,
2014.

[4] Pankaj K Agarwal and Cecilia Magdalena Procopiuc.
Exact and approximation algorithms for clustering.
Algorithmica, 33(2):201–226, 2002.

[5] P.K. Agarwal, S.-W. Cheng, and K. Yi. Range search-
ing on uncertain data. ACM Transactions on Algo-
rithms (TALG), 8(4):43, 2012.

[6] P.K. Agarwal, A. Efrat, S. Sankararaman, and
W. Zhang. Nearest-neighbor searching under uncer-
tainty. In Proceedings of the 31st Symposium on Prin-
ciples of Database Systems, pages 225–236, 2012.

[7] P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM, 51(4):606–635, 2004.

[8] P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan.
Geometric approximation via coresets. Combinatorial
and Computational Geometry, 52:1–30, 2005.

[9] M.J. Atallah, Y. Qi, and H. Yuan. Asymptotically ef-
ficient algorithms for skyline probabilities of uncertain
data. ACM Trans. Datab. Syst, 32(2):12, 2011.

[10] Mihai Badoiu and Kenneth L Clarkson. Smaller
core-sets for balls. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms,
pages 801–802. Society for Industrial and Applied
Mathematics, 2003.

[11] T.M. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. In Proceedings
of the 20th Annual Symposium on Computational Ge-
ometry, pages 152–159, 2004.

[12] G. Cormode and A. McGregor. Approximation algo-
rithms for clustering uncertain data. In Proceedings of
the 27th Symposium on Principles of Database System-
s, pages 191–200, 2008.

[13] Tomás Feder and Daniel Greene. Optimal algorithms
for approximate clustering. In Proceedings of the twen-
tieth annual ACM symposium on Theory of computing,
pages 434–444. ACM, 1988.

[14] D. Feldman and M. Langberg. A unified framework
for approximating and clustering data. In Proceedings
of the 43rd ACM Symposium on Theory of Computing,
pages 569–578, 2011.

[15] Dan Feldman, Amos Fiat, and Micha Sharir. Core-
sets forweighted facilities and their applications. In
2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 315–324. IEEE,
2006.

[16] Dan Feldman, Melanie Schmidt, and Christian Sohler.

Turning big data into tiny data: Constant-size coresets
for k-means, pca and projective clustering. In Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1434–1453. SIAM,
2013.

[17] Teofilo F Gonzalez. Clustering to minimize the maxi-
mum intercluster distance. Theoretical Computer Sci-
ence, 38:293–306, 1985.

[18] S. Guha and K. Munagala. Exceeding expectations
and clustering uncertain data. In Proceedings of the
28th Symposium on Principles of Database Systems,
pages 269–278, 2009.

[19] Sariel Har-Peled. Geometric approximation algorithm-
s, volume 173. American mathematical society Provi-
dence, 2011.

[20] Sariel Har-Peled and Kasturi Varadarajan. Projective
clustering in high dimensions using core-sets. In
Proceedings of the eighteenth annual symposium on
Computational geometry, pages 312–318. ACM, 2002.

[21] Dorit S Hochbaum and David B Shmoys. A unified
approach to approximation algorithms for bottleneck
problems. Journal of the ACM (JACM), 33(3):533–
550, 1986.

[22] Lingxiao Huang and Jian Li. Approximating the ex-
pected values for combinatorial optimization problems
over stochastic points. In Automata, Languages, and
Programming, pages 910–921. Springer, 2015.

[23] Lingxiao Huang, Jian Li, Jeff M Phillips, and Haitao
Wang. ε-kernel coresets for stochastic points. In
European Symposium on Algorithms. Springer, 2016.

[24] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A
polynomial-time approximation algorithm for the per-
manent of a matrix with nonnegative entries. Journal
of the ACM (JACM), 51(4):671–697, 2004.

[25] P. Kamousi, T.M. Chan, and S. Suri. The stochastic
closest pair problem and nearest neighbor search. In
Proceedings of the 12th Algorithms and Data Structure
Symposium, pages 548–559, 2011.

[26] P. Kamousi, T.M. Chan, and S. Suri. Stochastic mini-
mum spanning trees in euclidean spaces. In Proceedings
of the 27th annual ACM symposium on Computational
Geometry, pages 65–74. ACM, 2011.

[27] M. Langberg and L.J. Schulman. Universal ε-
approximators for integrals. In Proceedings of the
21st Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2010.

[28] Michael Langberg and Leonard J Schulman. Univer-
sal ε-approximators for integrals. In Proceedings of
the twenty-first annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 598–607. Society for Industrial
and Applied Mathematics, 2010.

[29] J. Li and H. Wang. Range queries on uncertain data.
In Proceedings of the 25th International Symposium on
Algorithms and Computation, pages 326–337. Springer,
2014.

[30] A. Munteanu, C. Sohler, and D. Feldman. Smallest en-
closing ball for probabilistic data. In Proceedings of the
30th Annual Symposium on Computational Geometry,

126 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2014.
[31] Rina Panigrahy. Minimum enclosing polytope in high

dimensions. arXiv preprint cs/0407020, 2004.
[32] William Thomas Tutte. A short proof of the factor the-

orem for finite graphs. Canad. J. Math, 6(1954):347–
352, 1954.

[33] Kasturi Varadarajan and Xin Xiao. A near-linear
algorithm for projective clustering integer points. In
Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 1329–1342.
SIAM, 2012.

[34] Kasturi Varadarajan and Xin Xiao. On the sensitiv-
ity of shape fitting problems. In 32nd International
Conference on Foundations of Software Technology and
Theoretical Computer Science, page 486, 2012.

[35] Haitao Wang and Jingru Zhang. One-dimensional
k-center on uncertain data. Theoretical Computer
Science, 602:114–124, 2015.

[36] H. Yıldız, L. Foschini, J. Hershberger, and S. Suri.
The union of probabilistic boxes: Maintaining the
volume. European Symposia on Algorithms, pages 591–
602, 2011.

[37] Hai Yu, Pankaj K Agarwal, Raghunath Poreddy, and
Kasturi R Varadarajan. Practical methods for shape
fitting and kinetic data structures using coresets. Al-
gorithmica, 52(3):378–402, 2008.

A Proof of Lemma 2.1

The following theorem is a restatement of Theorem 4.1
and its proof in [14]. Lemma 2.1 is a direct corollary
from the following theorem.

Theorem A.1. Let D = {gi | 1 ≤ i ≤ n} be a set of n
functions. For each g ∈ D, g : X → R≥0 is a function
from a ground set X to [0,+∞). Let 0 < ε < 1/4 be
a constant. Let m : D → R+ be a function on D such
that

(A.1) q(g) ≥ max
x∈X

g(x)∑
g∈D g(x)

.

Then there exists a collection S ⊆ D of functions,
together with a weight function w′ : S → R+, such that
for every x ∈ X

|
∑
g∈D

g(x)−
∑
g∈S

w′(g) · g(x)| ≤ ε
∑
g∈Y

g(x),

Moreover, the size of S is

O

((∑
g∈D q(g)

ε

)2

dim(D)

)
,

where dim(D) is the generalized shattering dimension of
D (see Definition 7.2 in [14]).

D Now we are ready to prove Lemma 2.1.

Proof. Suppose that we are given a (weighted) instance
S = {Si | Si ⊂ Rd, 1 ≤ i ≤ n} of a generalized shape
fitting problem (Rd,F , dist), with a weight function
w : S → R+. A generalized ε-coreset is a collection
S ⊆ S of point sets, together with a weight function
w′ : S → R+ such that, for any shape F ∈ F , we have

(A.2)
∑
Si∈S

w′i · dist(Si, F ) ∈ (1± ε)
∑
Si∈S

wi · dist(Si, F ).

For every Si ∈ S and F ∈ F , let gi(F ) = wi · dist(Si, F )
and D = {gi | Si ∈ S}. Define

q(gi) = σS(Si) +
1

n
= inf{β ≥ 0 | wi · dist(Si, F )

≤ β ·
∑
Si∈S

wi · dist(Si, F ),∀F ∈ F}+
1

n
.

It is not hard to verify that this definition satisfies
Inequality (A.1). The additional 1/n term will be useful
in Appendix ??, where we need a lower bound of q(gi).
Thus, we have GS + 1 =

∑
Si∈S(σS(Si) + 1/n) =∑

gi∈D q(gi). Recall that dim(S) is the generalized
shattering dimension of S. By Theorem A.1, we
conclude that there exists a collection S of cardinality
O
(
(GS

ε )2 dim(S)
)

with a weight function w′ : S → R+

satisfying Inequality (A.2).

B Constructing additive ε-coresets

In this section, we first give the algorithm for construct-
ing an additive ε-coreset. We construct Cartesian grids
and maintain one point from each nonempty grid cell,
which is similar to [4]. However, our algorithm is more
complicated. See Algorithm 2 for details.

Now we analyze the algorithm.

Lemma B.1. rP is a 2-approximation for the minimum
k-center problem w.r.t. P .

Proof. By Gonzalez’s greedy algorithm [17], there exists
a subset F ⊆ P ⊆ P of size k such that the k-center
value K(P, F ) is a 2-approximation for the minimum
k-center problem w.r.t. P . Thus, we prove the lemma.

By the above lemma, we have the following lemma.

Lemma 3.1. The running time of A on any n point
set P is O(knk+1). Moreover, the output E(P ) is an
additive ε-coreset of P of size at most O(k/εd).

Proof. Since rP is a 2-approximation, E(P ) is an addi-
tive ε-coreset of P of size O(k/εd) by Theorem 2.4 in [4].
For the running time, consider computing rP in Step 2
(also rE1(P ) in Step 6). There are at most nk point sets
F ⊆ P such that |F | = k. Note that computing K(P, F )
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Algorithm 2 Constructing additive ε-coresets (A)

1 Input: a realization P ∼ P. W.l.o.g., assume that
P = {s1, . . . , sm}.
2 Let rP = minF :F⊆P,|F |=k K(P, F ). If rP = 0, output
E(P ) = P . Otherwise assume that 2a ≤ rP < 2a+1

(a ∈ Z).
3 Draw a d-dimensional Cartesian grid G1(P ) of side
length ε2a/4d centered at point 0d.
4 Let C1(P ) = {C | C ∈ G,C ∩P 6= ∅} be the collection
of those cells which intersects P .
5 For each cell C ∈ C1(P ), let sC ∈ C ∩ P be the point
in C of smallest index. Let E1(P ) = {sC | C ∈ C1(P )}.
6 Compute rE1(P ) = minF :F⊆P,|F |=k K(E1(P ), F ). If
rE1(P ) ≥ 2a, let E(P ) = E1(P ), G(P ) = G1(P ), and
C(P ) = C1(P ).
7 If rE1(P ) < 2a, draw a d-dimensional Cartesian

grid G2(P ) of side length ε2a/8d centered at point 0d.
Repeat Step 4 and 5, construct C2(P ) and E2(P ) based
on the new Cartesian grid G2(P ). Let E(P ) = E2(P ),
G(P ) = G2(P ), and C(P ) = C2(P ).
8 Output E(P ), G(P ), and C(P ).

costs at most nk time. Thus, it costs O(knk+1) time to
compute rP (also rE1(P )) for all k-point sets F ⊆ P. On
the other hand, it only costs linear time to construct the
Cartesian grid G(P ), the cell collection C(P ) and E(P )
after computing rP and rE1(P ), which finishes the proof.

We then give the following lemmas, which is useful
for proving Lemma 3.3.

Lemma B.2. For two point sets P, P ′, if P ′ ⊆ P , then
rP ′ ≤ rP . Moreover, if P ′ is an additive ε-coreset of P ,
then (1− ε)rP ≤ rP ′ ≤ rP .

Proof. Suppose F ⊆ P is the k-point set such that the
k-center value K(P, F ) = rP . Since P ′ ⊆ P , we have
K(P ′, F ) ≤ rP . Thus, we have rP ′ ≤ K(P ′, F ) ≤ rP .

Moreover, assume that P ′ is an additive ε-coreset
of P . Suppose F ′ ⊆ P is the k-point set such that the
k-center value K(P ′, F ′) = rP ′ . Then by Definition 3.1,
we have K(P, F ′) ≤ (1 + ε)rP ′ . Thus, we have (1 −
ε)rP ≤ (1− ε)K(P, F ′) < rP ′ ≤ rP .

Lemma B.3. Assume that a point set P ′ = E(P ) for
another point set P ∼ P ′. Running A(P ′) and A(P ),
assume that we obtain two Cartesian grids G(P ′) and
G(P ) respectively. Then we have G(P ′) = G(P ).

Proof. If rP = 0, we have that rP ′ ≤ rP = 0 by
Lemma B.2. Thus we do not construct the Cartesian
grid for both P and P ′. Otherwise assume that 2a ≤
rP < 2a+1 (a ∈ Z). Run A(P ). In Step 5, we

construct a Cartesian grid G1(P ) of side length ε2a/4d,
a cell collection C1(P ), and a point set E1(P ). Since
E1(P ) is an additive ε-coreset of P by [4], we have
2a−1 < (1 − ε)rP ≤ rE1(P ) ≤ rS < 2a+1. Then we
consider the following two cases.

Case 1: rE1(P ) ≥ 2a. Then P ′ = E(P ) = E1(P ), and
G(P ) = G1(P ) in this case. Running A(P ′), we have
that 2a ≤ rE1(P ) = rP ′ ≤ rP < 2a+1 by Lemma B.2.
Thus, we construct a Cartesian grid G1(P ′) = G1(P )
of side length ε2a/4d, and a point set E1(P ′) in Step
5. Since G1(P ′) = G1(P ) and P ′ = E1(P ), we have
that E1(P ′) = P ′ by the construction of E1(P ′). Thus,
rE1(P ′) = rE1(P ) ≥ 2a, and we obtain that G(P ′) =
G1(P ′) in Step 6, which proves the lemma.

Case 2: 2a−1 ≤ rE1(P ) < 2a. Then in Step 7, we
construct a Cartesian grid G2(P ) of side length ε2a/8d
for P , a cell collection C2(P ), and a point set E2(P ). In
this case, we have that E(P ) = E2(P ), G(P ) = G2(P ),
and C(P ) = C2(P ). Now run A(P ′), and obtain E(P ′),
G(P ′), and C(P ′). By Lemma B.2, we have

2a+1 > rP ≥ rP ′ = rE(P ) ≥ (1− ε)rP > 2a−1.

We need to consider two cases. If 2a−1 ≤ rP ′ < 2a, we
construct a Cartesian grid G1(P ′) of side length ε2a/8d,
and a point set E1(P ′) in Step 5. Since G1(P ′) = G2(P )
and P ′ = E2(P ), we have that E1(P ′) = P ′ by the
construction of E1(P ′). Then we let G(P ′) = G1(P ′)
in Step 6. In this case, both G(P ) and G(P ′) are of side
length ε2a/8d, which proves the lemma.

Otherwise if 2a ≤ rP ′ < 2a+1, we construct the
Cartesian grid G1(P ′) = G1(P ) of side length ε2a/4d, a
cell collection C1(P ′), and a point set E1(P ′) in Step 5.
We then prove that E1(P ′) = E1(P ). Since all Cartesian
grids are centered at point 0d, a cell in G1(P ) can
be partitioned into 2d equal cells in G2(P ). Rewrite
a cell C∗ ∈ G1(P ) as C∗ = ∪1≤i≤2dCi where each
Ci ∈ G2(P ). Assume that point s∗ ∈ C∗ ∩ P =
∪1≤i≤2d(Ci ∩ P ) has the smallest index, then point s∗

is also the point in C∗ ∩ E2(P ) of smallest index. Since
E(P ) = E2(P ), we have that s∗ is the point in C∗∩E(P )
of smallest index. Considering E1(P ′), note that for
each cell C∗ ∈ C1(P ′), E1(P ′) only contains the point
in C∗ ∩ P ′ of smallest index. Since P ′ = E(P ), we
have that E1(P ′) = E1(P ). Thus, we conclude that
rE1(P ′) = rE1(P ) < 2a. Then in Step 7, we construct
a Cartesian grid G2(P ′) = G2(P ) of side length ε2a/8d
for P ′. Finally, we output G(P ′) = G2(P ′) = G(P ),
which proves the lemma.

Recall that we denote E(P) = {E(P ) | P ∼ P} to
be the collection of all possible additive ε-coresets. For
any S, we denote E−1(S) = {P ∼ P | E(P ) = S} to be
the collection of all realizations mapped to S. Now we
are ready to prove Lemma 3.3.
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Lemma 3.3. (restated) Consider a subset S of at most
O(k/εd) points. Run algorithm A(S), which outputs
an additive ε-coreset E(S), a Cartesian grid G(S), and
a collection C(S) of nonempty cells. If E(S) 6= S,
then S /∈ E(P) (i.e., S is not the output of A for any
realization P ∼ P). If |S| ≤ k, then E−1(S) = {S}.
Otherwise if E(S) = S and |S| ≥ k+ 1, then a point set
P ∼ P satisfies E(P ) = S if and only if

P1. For any cell C /∈ C(S), C ∩ P = ∅.

P2. For any cell C ∈ C(S), assume that point sC =
C∩S. Then sC ∈ P , and any point s′ ∈ C∩P with
a smaller index than that of sC does not appear in
the realization P .

Proof. If E(S) 6= S, we have that rS > 0. Assume that
S ∈ E(P). There must exist some point set P ∼ P such
that E(P ) = S. By Lemma B.3, running A(P ) and
A(S), we obtain the same Cartesian grid G(P ) = G(S).
Since E(S) 6= S, there must exist a cell C ∈ C(S) such
that |C ∩ S| ≥ 2 (by the construction of E(S)). Note
that C ∈ G(P ). We have |C ∩ E(P )| = 1, which is a
contradiction with E(P ) = S. Thus, we conclude that
S /∈ E(P).

If |S| ≤ k, assume that there exists another point
set P 6= S, such that E(P ) = S. By Lemma 3.1,
we know that S is an additive ε-coreset of P . By
Definition 3.1, we have S ⊆ P and K(P, S) ≤ (1 +
ε)K(S, S) = 0. Thus we conclude that P = S. On the
other hand, we have E(S) = S since rS = 0. So we
conclude that E−1(S) = {S}.

If |S| ≥ k + 1 and E(S) = S, we have that
rS > 0. Running A(P ) and A(S), assume that we obtain
two Cartesian grids G(P ) and G(S) respectively. By
Lemma B.3, if E(P ) = S, then we have G(P ) = G(S).
Moreover, by the construction of E(P ), P1 and P2 must
be satisfied.

We then prove the ’only if’ direction. If P1 and
P2 are satisfied, we have that S is an additive ε-
coreset of P satisfying Definition 3.1 by [4]. Then
by Lemma B.2, we have that (1 − ε)rP ≤ rS ≤ rP .
Assume that 2a ≤ rS < 2a+1 (a ∈ Z), we conclude
2a ≤ rP < 2a+2. Now run A(S). In Step 5, assume
that we construct a Cartesian grid G1(S) of side length
ε2a/4d, a cell collection C1(S), and a point set E1(S).
Since E1(S) is an additive ε-coreset of S by [4], we have
2a−1 < (1 − ε)rS ≤ rE1(S) ≤ rS < 2a+1. Then we
consider the following two cases.

Case 1: 2a ≤ rE1(S) < 2a+1. In this case, we
have that G(S) = G1(S), C(S) = C1(S), and S =
E(S) = E1(S). Running A(P ), assume that we obtain
G(P ), C(P ), and E(P ). Consider the following two
cases. If 2a ≤ rP < 2a+1, we construct a Cartesian

grid G1(P ) = G(S) of side length ε2a/4d, and a point
set E1(P ) in Step 5. Since P1 and P2 are satisfied,
we know that E1(P ) = S. Then since 2a ≤ rE1(P ) =
rS < 2a+1, we obtain that E(P ) = E1(P ) = S in this
case. Otherwise if 2a+1 ≤ rS < 2a+2, run A(P ). We
construct a Cartesian grid G1(P ) of side length ε2a/2d,
and a point set E1(P ) in Step 5. Since P1 and P2 are
satisfied, we have that E1(P ) ⊆ S. Thus, we have
rE1(P ) ≤ rS < 2a+1 by Lemma B.2. Then in Step 7,
we construct a Cartesian grid G2(P ) = G1(S) of side
length ε2a/4d, and a point set E2(P ). In this case, we
have that G(P ) = G2(P ) = G1(S), and E(P ) = E2(P ).
By P1 and P2, we have that E(P ) = E2(P ) = S.

Case 2: 2a−1 ≤ rE1(S) < 2a. Running A(S), we
construct a Cartesian grid G2(S) of side length ε2a/8d,
and a point set E2(S) in Step 7. In this case, we
have that G(S) = G2(S), and S = E(S) = E2(S).
Since E1(S) is an additive ε-coreset of S, we conclude
that E1(S) is also an additive 3ε-coreset of P satisfying
Definition 3.1. Then we have that 2a ≤ rP ≤ (1 +
3ε)rE1(S) < 2a+1 by Lemma B.2. Running A(P ), we
construct a Cartesian gridG1(P ) = G1(S) of side length
ε2a/4d, and a point set E1(P ) in Step 5. Since P1 and
P2 are satisfied, we know that E1(P ) = E1(S). Thus,
we have 2a−1 ≤ rE1(P ) = rE1(S) < 2a. Then in Step 7,
we construct a Cartesian grid G2(P ) = G2(S) of side
length ε2a/8d, and a point set E2(P ). Again by P1
and P2, we have that E2(P ) = E2(S). Thus, we output
E(P ) = E2(P ) = S, which finishes the proof.
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