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We propose and experimentally demonstrate a new method to generate arbitrary Fock state superpositions
in a superconducting quantum circuit, where a qubit is dispersively coupled to a microwave cavity mode.
Here, the qubit is used to conditionally modulate the probability amplitudes of the Fock state components of a
coherent state to those of the desired superposition state, instead of pumping photons one by one into the
cavity as in previous schemes. Our method does not require the adjustment of the qubit frequency during the
cavity state preparation and is more robust to noise and accumulation of experimental errors compared to
previous ones. Using the method, we experimentally generate phase eigenstates under various Hilbert-space
dimensions and squeezed states, which are useful for the quantum walk and high-precision measurement.
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The creation and manipulation of nonclassical states of a
harmonic oscillator (e.g., a light field) are important subjects
in quantum optics [1]. Among these states, Fock states and
their controlled superpositions are particularly appealing.
Fock states are eigenstates of the oscillator Hamiltonian with
definite numbers of energy quanta. When the quantum
number is nonzero, such states show a negative quasiprob-
ability distribution in certain regimes of the phase space,
which represents an inherent nonclassical feature [2].
Because of the energy dissipation, Fock states decay at a
rate linearly scaling with the quantum number, and as a
result, these states play a central role for the exploration of
environment-induced decoherence [3,4] and serve as a good
example for the demonstration of quantum feedback oper-
ations [5,6]. Superposing different Fock states will give rise
to new nonclassical features due to their quantum interfer-
ence, e.g., the reduction of the fluctuation in one quadrature
below the vacuum level (squeezing) [7], which would enable
high-precision measurement [8]. Recently, it has been shown
that superpositions of Fock states with binomial coefficients
are useful for quantum error correction [9]. As such,
controlled generation of Fock states and their superpositions
is interesting both for foundational tests of quantum theory
and for practical applications.
Previous methods employed a step-by-step algorithm

[10,11], where in each step, the quantum state of a two-
level system is manipulated in a controllable manner and
then transferred to the harmonic oscillator, increasing the
quantum number of the largest Fock state component in the
superposition by one. After N steps, the oscillator evolves
from the ground state to any superposition of the firstN þ 1

number states. Such a technique was first demonstrated on
the harmonic motion of a trapped ion [12] and then
implemented in a superconducting resonator [13,14], using
a qubit with fast frequency tunability to coherently pump
photons from external microwave drive pulses into the
resonator. More recently, it was shown that 2N selective
number-dependent arbitrary phase gates, together with
2N þ 1 displacement operations, can be used to construct
such superposition states [15]. Following this proposal,
a one-photon Fock state was created in a circuit QED
system [16]. With a similar setup, the gradient ascent pulse
engineering method [17,18] was recently used for creating
the six-photon state and four-component cat states [19]. In
the context of cavity QED, Fock states and cat states of a
cavity were conditionally generated with Rydberg atoms
dispersively coupled to the cavity mode [2].
Here, we propose and experimentally demonstrate a

distinct method to synthesize any superposition of Fock
states for the field stored in a cavity that is dispersively
coupled to a qubit. Our method relies on photon-number-
dependent qubit rotations, which allow for individually
manipulating the probability amplitudes of the Fock state
components of a coherent state. Coherent states are quasi-
classical states characterized by a complex amplitude [2] and
can be generated by using a classical drive. The photon-
number-dependent shift in the qubit frequency, arising from
the dispersive qubit-cavity coupling, enables one to use
carefully tailored microwave drive signals to individually
control the qubit transition amplitude associated with each
Fock state. The subsequent measurement of the qubit
transition conditionally projects the cavity to a superposition
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of Fock states, with the probability amplitude of each state
component being proportional to the associated qubit
transition amplitude, controllable by the amplitude and
phase of the corresponding drive signal. Furthermore, during
the preparation process, the qubit-cavity detuning needs
not to be adjusted, which is important for quantum state
engineering in circuit QED systems with three-dimensional
cavities [16,20–22], where it is difficult to adjust the qubit
frequency. We implement the experiment in a superconduct-
ing circuit, where a cavity is coupled to a transmon qubit.
We analyze the produced states by measuring the Wigner
functions, showing good agreement with the desired ones.
The system under investigation consists of a qubit

dispersively coupled to a cavity and driven by a classical
microwave containing N þ 1 frequency components. In the
interaction picture, the Hamiltonian for the total system is

HI ¼ −χqca†ajeihej þ
�XN

n¼0

ΩneiðδntþϕnÞjeihgj þ H:c:

�
;

ð1Þ
where jei and jgi denote the excited and ground states of
the qubit, a† and a are the creation and annihilation
operators of the photonic field in the cavity, χqc is the
qubit’s frequency shift induced by per photon in the cavity
due to the dispersive qubit-cavity coupling, δn is the
detuning between the qubit and the nth driving component
with a Rabi frequency Ωn and a phase ϕn, and H.c. denotes
the Hermitian conjugate. The qubit is initially in the ground
state jgi and the cavity in a coherent state

jαi ¼
X∞
n¼0

cnjni; ð2Þ

where cn ¼ expð−jαj2=2Þαn= ffiffiffiffiffi
n!

p
is the probability ampli-

tude for having n photons. The photon-number-dependent
shift of the qubit transition frequency enables one to
individually modulate the probability amplitudes of the
superposed Fock states in jαi with a carefully tailored
microwave drive addressing the qubit. Our aim is to convert
such a quasiclassical state to a target quantum state

jψdi ¼
XN
n¼0

dnjni; ð3Þ

with the desired complex amplitudes dn for the correspond-
ing Fock state components.
Under the condition δn ¼ nχqc and Ωn ≪ χqc, the nth

component resonantly drives the qubit transition when
the cavity is in the Fock state jni but does not affect the
qubit state if the cavity is in any other Fock state due to
large detunings. The dynamics governed byHI enables one
to individually control the transition in each subspace
fjg; ni; je; nig (the notation denotes jqubit; cavityi); there
is no interaction between different subspaces. After an
interaction time τ, the qubit-cavity system evolves to

jψqcðτÞi ¼
X∞
n¼0

cn½cos βnjg; ni − ieiðϕnþnχqcτÞ sin βnje; ni�;

ð4Þ
where βn ¼

R
τ
0 Ωndt is the pulse area associated with the

nth frequency component. We take βn ¼ 0 for n > N,
where N is the maximum photon number in the desired
target state. The detection of the qubit in the state jei
projects the cavity to the superposition state

jψci ¼ N
XN
n¼0

cneiðϕnþnχqcτÞ sin βnjni; ð5Þ

where N ¼ ½PN
n¼0 jcnj2sin2βn�−1=2 is a normalization fac-

tor. The final cavity state jψci is equivalent to the desired
state jψdi when the parameters βn and ϕn are appropriately
chosen so that dn ¼ N cn sin βneiðnχqcτþϕnÞ. To maximize
the success probability P ¼ 1=N 2, we numerically opti-
mize the parameters jαj and βn, with the optimal values
depending upon the desired state.
Compared with the previous method [11], our protocol

has the advantage of having no need to tune the qubit
frequency but has the disadvantage that the desired states
are created conditionally, with the success probability
scaling in different ways for different types of states. To
illustrate the state-dependent efficiency scaling, in Fig. 1,
we display the optimal success probability as functions of
N for the Fock state jNi (black), two-component super-
position ðj0i þ jNiÞ= ffiffiffi

2
p

(blue), and truncated phase state
(red), which is defined as [23]

jθN;ki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p

XN
n¼0

einθN;k jni; ð6Þ

where θN;k ¼ 2kπ=ðN þ 1Þ, with 0 ≤ k ≤ N. These prob-
abilities are calculated according to the ideal state evolution
described by Eq. (5). The results show that the optimal
success probability for the two-component superposition
scales as 2e−ðN!Þ1=N ; when N is large, this probability is
approximately 2e−N=e and becomes impractically low since
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FIG. 1. State-dependent scaling of efficiency. The optimal
success probabilities are plotted as functions of N for the Fock
state jNi (black), two-component superposition ðj0i þ jNiÞ= ffiffiffi

2
p

(blue), and truncated phase state (red) defined in Eq. (6).
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the two superposed Fock state components are unlikely to
occur simultaneously in any coherent state. Compared to
the case of two-component superpositions, the optimal
success probability for truncated phase states is larger by a
factor of ðN þ 1Þ=2 and scales more favorably because the
decrease of the success probability, due to the enlarged
spacing between j0i and jNi, is partly compensated for by
the increase of the number of superposed Fock states. The
optimal success probability for producing the Fock state
jNi is equal to the population of this Fock state in the
coherent state, with an average photon number N, which
drops slowly with the increase of N.
Our experiment is implemented with a superconducting

circuit, where one transmon qubit is dispersively coupled to
two three-dimensional cavities [20–22,24,25]. The qubit,
with a transition frequency ωq=2π ¼ 5.345 GHz, has an
energy relaxation time T1 ¼ 13.0 μs and a pure dephasing
time Tϕ ¼ 13.8 μs. Cavity 1, with a frequency ωs=2π ¼
8.230 GHz and a photon lifetime τs ¼ 80 μs, is used for
storage of the photonic state. Cavity 2, with a frequency
ωr=2π ¼ 7.290 GHz and a photon lifetime τr ¼ 44 ns, is
connected to a Josephson parametric amplifier [26–29],
allowing for a high-fidelity (nearly unity) and quantum
nondemolition single-shot readout of the qubit state.
For simplicity, the term “cavity” refers to cavity 1. The
dispersive frequency shift is χqc=2π ¼ 1.44 MHz. The
experimental apparatus and readout properties can be found
in the Supplemental Material [30] and Ref. [25].
The experimental sequence is outlined in Fig. 2. The

initialization of the system to jg; 0i is realized by the
postselection on the qubit’s ground state and the subsequent
cavity parity measurement. The initial coherent state of
the cavity is achieved by the application of a microwave
pulse, which produces a displacement operation DðαÞ.
This is followed by driving the qubit, initially in the ground
state jgi, with a pulse with N þ 1 frequency components
resonant with the corresponding qubit-cavity transition
frequencies, and simultaneously implementing N þ 1 con-
ditional qubit rotations:

Q
N
n¼0 RenjnðβnÞ, where RenjnðβnÞ

represents the qubit rotation on the Bloch sphere by an
angle βn around the en direction conditional on the cavity
containing n photons, with en being on the equatorial plane,
with the azimuth angle ϕn þ nχqcτ. In order to have enough
selectivity, each frequency component in the qubit pulse
simply has a broad Gaussian envelope, truncated to 4σ ¼
1.44 μs (σf ¼ 0.44 MHz). Postselecting on the excited
qubit state, we obtain the desired cavity state. After
preparation of the desired cavity state, the qubit is disen-
tangled with the cavity and can be used to measure the
Wigner function of the cavity. Following a technique
devised by Lutterbach and Davidovich [31] and demon-
strated in cavity QED [32] and circuit QED [21,22,25], the
Wigner quasiprobability distribution WðβÞ is measured by
a combination of the cavity’s displacement operation
Dð−βÞ and qubit Ramsey-type measurement, where a

conditional cavity π phase shift CðπÞ is sandwiched in
between two unconditional qubit rotations Ryðπ=2Þ.
As an example, we prepared the truncated phase states,

defined by Eq. (6), with N ¼ 5 to 7. Apart from the
fundamental interest, such states are useful for the imple-
mentation of the quantum walk [33]. Figure 3(a) shows the
ideal (left) and experimental (right) Wigner functions of the
truncated phase state, with θN;k ¼ 0 and N ¼ 5, while those
with N ¼ 6 and 7 are presented in the Supplemental
Material [30]. We note that, mainly due to the decoherence
of the system (see Supplemental Material [30]), the mea-
sured Wigner function WmeasðβÞ does not satisfy the
normalization condition; i.e, f ¼ R

WmeasðβÞd2β < 1. To
make the results physically meaningful, we take the reduc-
tion factor f into account and use the experimental Wigner
function WexpðβÞ, defined as WexpðβÞ ¼ WmeasðβÞ=f, to
describe the quasiprobability distribution for the cavity state
in phase space. The shapes of the experimental and ideal
Wigner functions agree very well, implying that the quasi-
classical states have been converted into the desired quantum
states with high accuracy. The amplitudes α of the initial
coherent states, Wigner function reduction factors f, success
probabilities P, and fidelities F between the produced states
and desired ones are detailed in Table I. Here, the fidelity is
defined as F ¼ hθN;kjρpjθN;ki, where ρp is the density
operator of the produced state reconstructed by least-square
regression, using a maximum likelihood estimation [34,35].
The infidelity is mainly due to the decoherence of the

system and the phase deviations caused by higher-order
terms that are not included in Hamiltonian of Eq. (1).

FIG. 2. Experimental sequence. The experiment starts with the
application of a microwave pulse to the cavity, corresponding to a
phase-space displacement operation DðαÞ, which transforms the
cavity from the ground state j0i to the coherent state jαi. Then the
qubit, initially in the ground state jgi, is driven by a classical
microwave pulse comprising N þ 1 frequency components, with
the nth component resonant with the qubit transition conditional
on the cavity’s photonic field being in the Fock state with n
photons. This corresponds to simultaneous implementation of
N þ 1 conditional qubit rotations on the Bloch sphere:Q

N
n¼0 Ren jnðβnÞ. Subsequent measurement of the qubit in the

excited state jei collapses the cavity to a superposition of N þ 1
Fock states, whose amplitudes are controllable by the parameters
of the corresponding microwave components. A final Wigner
tomography is performed to examine the produced states.
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However, since the desired cavity state is obtained by
postselection on the qubit’s excited state jei, its fidelity is
actually very insensitive to the decoherence of the qubit.
This can be explained as follows. The system evolution
trajectories, involving the qubit decaying from jei to jgi,
are largely excluded by projecting the qubit to jei, and the
qubit dephasing, corresponding to a qubit frequency
fluctuation, mainly produces a random phase difference
between jei and jgi but only slightly affects the cavity state
correlated to jei (see Supplemental Material [30] for
detailed discussions). Numerical simulations show that
the qubit decoherence and cavity photon decay together
contribute an error of about 2% for the truncated phase state
displayed in Fig. 3. To show how good the protocol can
work in a system with infinite coherence, we calculate the
fidelities for the truncated phase states withN ¼ 5 to 7 under
this ideal condition and present the results in the last row of
Table I. Further numerical simulations show that in this case,
the infidelity is mainly due to the photon-number-dependent
phase shifts, resulting from the higher-order terms domi-
nated by the Kerr term −Ka†2a2=2 and the correction to the
dispersive qubit-cavity coupling χ0qca†2a2jeihej=2. Note that
these additional phase shifts are determined by the system
parameters and can be compensated for by properly setting
the phases of the driving signals. The error due to the cross
Kerr term between the two cavities has already been
corrected in our experiment by properly setting the phase
of jαi. With the wide multicomponent pulse used in our
experiment, the imperfections of the conditional qubit
rotations, limited by their frequency selectivity, contribute
an infidelity smaller than 0.1%.

In Fig. 3(b), we display the real (left) and imaginary
(right) parts of the density matrix in Fock state representa-
tion reconstructed from the experimental Wigner function
Wexp. The values of thus obtained matrix elements are in
good agreement with the ideal results. The nonvanishing
imaginary parts of the off-diagonal elements are mainly due
to the imperfect setting of the relative phases of different
driving microwave components. The value of the matrix
element ρm;n (0 ≤ m, n ≤ N) slightly decreases asm and/or
n increase since the decay rate is proportional to (mþ n).
As another example to demonstrate the ability to gen-

erate any superposition state, we produce the squeezed state

jξi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
cosh r

p
X∞
n¼0

ð−eiθ tanh rÞn ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
n!2n

j2ni; ð7Þ

with the squeezing parameter ξ ¼ reiθ. For such a state,
the fluctuation of the quadrature Xðθ=2Þ ¼ ða†eiθ=2 þ
ae−iθ=2Þ=2 is reduced by a factor e−2r compared to the
vacuum level so that it can be used for high-precision
measurement [8]. The squeezed state can be well approxi-
mated by truncating the expansion into a superposition
of the first N þ 1 Fock states, with N depending on r.
We approximately produce the squeezed states for ξ ¼ 0.8,
0.8i, and−0.8, with a cutoff ofN ¼ 8. Figure 4 displays the
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FIG. 3. Wigner tomography and density matrix reconstruction
of the truncated phase state, with θN;k ¼ 0 and N ¼ 5. (a) The
ideal Wigner function Wideal (left) and experimental Wigner
function Wexp (right). The experimental Wigner function is
defined as WexpðβÞ ¼ WmeasðβÞ=f, where f ¼ R

WmeasðβÞd2β
is the reduction factor of the measured Wigner function
WmeasðβÞ due to the readout errors. (b) The real (left) and
imaginary (right) parts of the density matrix, obtained from
the experimental Wigner function Wexp.

TABLE I. Amplitudes α of the initial coherent states, Wigner
function reduction factors f, success probabilities P, and fidel-
ities F of the produced truncated phase states, with θN;k ¼ 0. FI

denotes the simulated fidelities without consideration of
decoherence. The uncertainties are determined by bootstrapping
on the measured Wigner functions [35]. Bootstrapping allows for
random sampling with replacement at each pixel point of the
measured Wigner function to obtain a pool of new Wigner
functions that are used to extract f and F for a statistical analysis.

N, k 5, 0 6, 0 7, 0

jαj 1.63 1.74 1.85
f 0.84� 0.01 0.82� 0.01 0.80� 0.01
P 0.37 0.31 0.23
F 0.97� 0.01 0.96� 0.01 0.96� 0.01
FI 0.99 0.99 0.99
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FIG. 4. Wigner tomography of the squeezed state, defined by
Eq. (7), for ξ ¼ 0.8. We take the cutoff in the Fock state expansion
to be N ¼ 8. The ideal and experimental Wigner functions Wideal
and Wexp are displayed in the left and right panels, respectively.
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ideal (left) and experimental (right) Wigner functions for
the squeezed state, with ξ ¼ 0.8, and those with ξ ¼ 0.8i
and −0.8 are shown in Supplemental Material [30]. Table II
shows the corresponding f, P, F, and h½ΔXðθ=2Þ�2i
[obtained from the Gaussian fit of the probability distri-
bution of Xðθ=2Þ, calculated by integrating the measured
Wigner function over Xðθ=2þ π=2Þ] in the produced
states. The measured h½ΔXðθ=2Þ�2i ≪ 1=4, showing that
the initial quasiclassical states have been converted into
quantum states with strong squeezing.
In summary, we have proposed and experimentally

demonstrated a new scheme to produce arbitrary super-
position of Fock states for a cavity. We show that a coherent
state can be conditionally converted to any desired super-
position state by tailoring the probability amplitudes asso-
ciated with the superposed Fock state components. This is
achieved based on the experimentally convenient dispersive
coupling between the cavity and the qubit. Our results open
up interesting applications of nonclassical states of harmonic
oscillators for the implementation of quantum information
and precision measurement. Of particular interest are the
demonstrated truncated phase states that are directly appli-
cable in the quantum walk, which allows exponential
speedup over classical computation for certain problems
[36] and more importantly, can be used as a primitive for
universal quantum computation [37].
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