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Abstract—A coding approach based on the superposition struc-
ture is proposed for linear operator channels. Under a subspace
decoding rule, a lower bound on the maximum achievable rate
of this coding approach is characterized. Under the subspace
decoding rule, this coding approach is capacity achieving for a
class of linear operator channels, and it can potentially achieve
higher rates than the subspace coding approach.

I. INTRODUCTION

Fix a finite field F with q elements. A linear operator
channel (LOC) with input random variable X ∈ FT×M and
output random variable Y ∈ FT×N is given by

Y = XH, (1)

where H , called the transfer matrix, is a random variable over
FM×N . We assume that X and H are independent, and the
transfer matrices in different channel uses are independent and
follow the same distribution. The distribution of H is given a
priori to both the transmitter and the receiver, but the instances
of H are not known by either the transmitter or the receiver. An
LOC models the communication through a network employing
linear network coding [1]. In this paper, we focus on the coding
problem of the noncoherent transmission of LOCs with an
arbitrary distribution of H .

Existing works on coding for LOCs are mostly in two
frameworks. When T ≥M , part of X can be used to transmit
an identity matrix so that the receiver can recover the instances
of H . This approach, called channel training, was proposed
for random linear network coding [2]. Channel training can
achieve at least (1 − M/T ) fraction of the capacity of the
LOC [3], so it becomes efficient when T is much larger than
M . A channel training scheme with low encoding/decoding
complexity has been proposed in [4], [5] by generalizing
fountain codes.

When T is not much larger than M , the overhead used
to explicitly recover the instances of H is dominating. In this
scenario, subspace coding has advantage over channel training.
We call the vector space spanned by the row (column) vectors
of a matrix the row (column) space of the matrix. Koetter
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and Kschischang observe that in an LOC, the column space
of Y is always a subspace of the column space of X [6].
They propose a coding approach using the column subspaces
for encoding and decoding and discuss coding schemes for
one use of an LOC [6]. We refer to the coding schemes
using the column subspaces for encoding and decoding as
(KK) subspace coding. Thereafter, subspace coding generated
a lot of research interests (see [7]–[9], et al.) and the study
of subspace coding is also extended from one use to multiple
uses of an LOC [3], [10], [11]. For general LOCs, however,
good subspace codes are still unknown.

In this paper, instead of studying efficient subspace coding
schemes, we propose a coding approach for LOCs that can
potentially achieve higher rates than subspace coding does.
The motivation is that since the maximum achievable rate of
subspace coding is in general less than the capacity of the
LOC, theoretically, there exist codes that can achieve rates
higher than subspace coding. The discussion hereafter is for
general values of T , M , N and q unless otherwise specified.

Our coding approach for LOCs is based on the observation
that the row spaces of X and Y can also be used to transmit
information. A code using this approach includes a set of
cloud centers and a set of satellite codes each of which
corresponds to a cloud center. A cloud center is a sequence
of subspaces, and the corresponding satellite code is a set
of sequences of matrices whose row spaces form a sequence
identical to the cloud center. During the encoding, part of the
message is first encoded to a cloud center. The remaining of
the message is encoded to a codeword of the corresponding
satellite code. Due to the similarity to the superposition coding
for broadcast channels [12], this approach is called Subspace-
matrix superposition (Sumas) coding.

We characterize the achievable rates of Sumas codes under
a subspace decoding rule. The cloud center is first recovered
using the row spaces of the received matrices, which tells
which satellite code is used in encoding. Then, the correspond-
ing satellite code is decoded using the column spaces of the
received matrices by only checking the inclusion relationship
between subspaces. Under the above subspace coding rule,
we obtain a lower bound on the maximum achievable rate of
the Sumas codes. We demonstrate a class of LOCs for which
Sumas codes are capacity achieving, and we show by example
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that Sumas codes can achieve rates strictly higher than the
maximum achievable rate of subspace codes.

II. PRELIMINARIES

For a matrix X, let rk(X) be its rank, let X> be its
transpose, and let 〈X〉 be the subspace spanned by the column
vectors of X. We call 〈X〉 and 〈X>〉 the column space and
the row space of X, respectively.

The vectors in Ft are regarded as column vectors. The
projective space Pj(Ft) is the collection of all subspaces of
Ft. Let Pj(m,Ft) be the subset of Pj(Ft) that contains all
the subspaces with dimension less than or equal to m. Let
Fr(Fm×r) be the set of full rank matrices in Fm×r. Define

χmr =

{
(qm − 1)(qm − q) · · · (qm − qr−1) 0 < r ≤ m
1 r = 0

(2)
For r ≤ m, we can count that |Fr(Fm×r)| = χmr . The Grass-
mannian Gr(r,Fm) is the set of all r-dimensional subspaces
of Fm. The Gaussian binomial[

m
r

]
,
χmr
χrr

is the number of r-dimensional subspaces of Fm [13], i.e.,
|Gr(r,Fm)| = [mr ].

III. LOCS FROM TWO POINTS OF VIEW

To understand the coding for LOCs, we discuss the proper-
ties of LOCs from two different angles.

A. Linear Combination View

For an LOC given in (1), the column space of Y is always
a subspace of the column spaces of X , i.e., 〈Y 〉 ⊂ 〈X〉. This
point of view was first employed by Koetter and Kschischang
in their approach for random linear network coding [6], in
which they define a channel with subspaces as input and output
and discuss the coding problem for this subspace channel.

We refer to the coding schemes of LOCs using the col-
umn subspaces for encoding and decoding as (KK) sub-
space coding. An n-block subspace code is a subset of
(Pj(min{T,M},FT ))n. To apply a subspace code in an LOC,
the subspaces in a codeword need to be converted to matrices.
For U ∈ Pj(min{T,M},FT ), this conversion can be done by
a transition probability PX|〈X〉(·|U). Given a transition matrix
PX|〈X〉, we can define a new channel with input 〈X〉 and
output 〈Y 〉 that the subspace code actually applied to.

When using column subspaces for encoding and decoding,
the maximum achievable rate of a memoryless LOC is

CSS , max
PX|〈X〉

max
p〈X〉

I(〈X〉; 〈Y 〉).

But an optimal input distribution for subspace coding is diffi-
cult to find in general since the above maximization problem
is not concave.

In general CSS is less than the capacity C of a memeoryless
LOC, but CSS = C for some special cases. For example,
when H contains uniformly i.i.d. components, and when H

is conditionally uniform given rk(H) (also called u.g.r.), sub-
space coding is optimal [14]–[16]. A more general sufficient
condition such that CSS = C given in [17] is summarized as
follows.

An LOC is called rank symmetric if there exists a function
µ : Z+ × Z+ → [0 1] such that

PY |X(Y|X) =

{
µ(rk(X), rk(Y)) 〈Y〉 ⊆ 〈X〉
0 o.w.

We have that for rank-symmetric LOCs,

C = CSS = max
prk(X)

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))], (3)

where

J(rk(X); rk(Y )) ,
∑
s≤r

prk(X) rk(Y )(r, s) log
χTs
χrs
≥ 0. (4)

(Note that an LOC with a u.g.r. transfer matrix is always rank
symmetric, but when T < M , a rank-symmetric LOC may
not have a u.g.r. transfer matrix [18].)

B. Linear Operation View

For an LOC given in (1), the transpose of the transfer matrix
H> is a (random) linear operator that maps a vector in FM
to a vector in FN . We see that H> induces a linear operator
on subspaces of FM given by

H>U , {H>x : x ∈ U}.

This operation gives a new channel with input 〈X>〉 and
output 〈Y >〉.

Definition 1: An LOC in (1) induces a new channel with
input 〈X>〉, output 〈Y >〉, and the channel law

P〈Y >〉|〈X>〉(V |U) = Pr{H>U = V }.

We call this channel the subspace core of the LOC.
The subspace core of an LOC is unique. We can show that

C ≥ max
p〈X>〉

[J(rk(X); rk(Y )) + I(〈X>〉; 〈Y >〉)] (5)

with equality when the LOC satisfies that for any 〈Y〉 ⊂ 〈X〉,

PY |X(Y|X) =
1

χ
rk(X)
rk(Y)

P〈Y >〉|〈X>〉(〈Y>〉|〈X>〉).

We call an LOC with the above property a row-space-
symmetric LOC. Note that a rank-symmetric LOC is row-
space-symmetric.

In the next section, we show a coding approach that
combines these two views of an LOC.

IV. SUBSPACE-MATRIX SUPERPOSITION CODES

Let xn be a vector of n components, where the ith compo-
nent is xi. For U ∈ Pj(min{T,M},FM ), let

φT (U) , {X ∈ FT×M : 〈X>〉 = U},

i.e., φT (U) is the set of all input matrices with row space U .
Definition 2: An n-block subspace-matrix superposition

(Sumas) code contains a set of cloud centers and a set of
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satellite codes each of which corresponds to a cloud center.
The set of cloud centers U , which is also called a cloud
code, is a subset of (Pj(min{T,M},FM ))n. The satellite code
corresponding to Un ∈ U is a subset of φT (U1)×· · ·×φT (Un),
and is denoted by S(Un).

The encoding of a Sumas code has two steps: i) Map the
first part of the message to a cloud center; ii) Pick the satellite
code corresponding to the cloud center in the first step, and
map the remaining part of the message to a codeword of the
satellite code.

Generally, the decoding of a Sumas code has two inverse
steps. We first decode the cloud code using the received
matrices and recover the transmitted cloud center, which tells
us which satellite code is used in encoding. Then we decode
the corresponding satellite code. The achievable rates of the
cloud code and the satellite codes can be characterized from
a broadcast channel perspective.

The Sumas codes can be regarded as codes for a broadcast
channel with input X and output Y1 = Y and Y2 = Y , where
X and Y are related by (1). Let R1 be the rate for output Y1
and R2 be the rate for output Y2. This is a degraded broadcast
channel [19] and any rate pair (R1, R2) such that for some
pX

R1 ≤ I(X;Y |〈X>〉)
R2 ≤ I(〈X>〉;Y )

is achievable by the Sumas codes (where R1 is achieved by the
satellite codes and R2 is achieved by the cloud code). Since

I(X;Y |〈X>〉) + I(〈X>〉;Y ) = I(X;Y ),

the Sumas codes achieve the capacity of the LOC.
The above discussion about the achievable rates is just

for the sake of introducing the coding structure. When the
discussion is not limited to any decoding rules, jointly typical
decoding is usually assumed. However, we are interested in
the property of Sumas codes under special decoding rules that
have simple decoding algorithms. This may give insights in
the coding design.

A. Subspace Decoding Rule

We study the performance of the Sumas codes under the
following subspace decoding rule.

Definition 3 (Subspace Decoding Rule): Let Y1, . . . ,Yn

be the received matrices. We first use (〈Y>1 〉, . . . , 〈Y>n 〉) to
decode the cloud code. After the cloud code is decoded, we
know the cloud center in the first step of encoding and hence
the satellite code used in encoding. Let Ûn be the cloud
center recovered. To decode the satellite code, we try to find
a codeword (B1, . . . ,Bn) in S(Ûn) satisfying 〈Yi〉 ⊂ 〈Bi〉
for i = 1, . . . , n. If there exist more than one such codewords,
an error occurs.

In the subspace decoding rule, only the row spaces and the
column spaces of the received matrices are used. The decoding
of satellite codes is more specific since only the inclusion
relationship between subspaces is checked.

Theorem 1: The maximum achievable rate of Sumas codes
under the subspace decoding rule is at least

max
p〈X>〉

[
J(rk(X), rk(Y )) + I(〈X>〉; 〈Y >〉)

]
,

where J is defined in (4). As a function of p〈X>〉,
J(rk(X); rk(Y )) + I(〈X>〉; 〈Y >〉) is concave.

The proof of the above theorem is postponed to the next sub-
section. Here we demonstrate that Sumas codes can potentially
achieve rate higher than KK subspace codes. We consider, as
an example, the row-space-symmetric LOCs defined in the end
of Section III-B. By Theorem 1 and (5), we see that Sumas
codes achieve the capacity of row-space-symmetric LOCs. We
claim that for row-space-symmetric LOCs,

CSS ≤ max
p〈X>〉

[
J(rk(X), rk(Y )) + I(〈X>〉; rk(Y ))

]
(6)

(the proof is omitted). Since

I(〈X>〉; 〈Y >〉 ≥ I(〈X>〉; rk(Y )), (7)

subspace coding may not achieve the capacity of row-space-
symmetric LOCs. If the inequality in either (6) or (7) is strict,
Sumas codes can potentially achieve rate strictly higher than
subspace codes. We demonstrate that I(〈X>〉; 〈Y >〉) can be
strictly larger than I(〈X>〉; rk(Y )). We can check that all
LOCs with T = 1, M = N = 2 over the binary field F2 are
row-space symmetric. Fix such an LOC with the transfer ma-
trix being the identity matrix. On one hand, I(〈X>〉; rk(Y )) ≤
H(rk(Y )) ≤ log2(min{T,M} + 1) = 1. On the other hand,
I(〈X>〉; 〈Y >〉) = log2 |Pj(min{T,M},FM2 )| = 2.

B. Achievable Rates

We evaluate the achievable rates of Sumas codes under the
subspace decoding rule.

Lemma 2: Let X be the uniform random variable with
support φT (U), U ∈ Pj(min{M,T},FM ). For V ∈
Pj(dim(U),FT ),

Pr{〈X〉 ⊃ V } =
χ
dim(U)
dim(V )

χTdim(V )

.

Proof: Let r = dim(U) and s = dim(V ). We first show
that |φT (U)| = χTr , where the RHS is defined in (2). Fix
D ∈ Fr(Fr×M ) with 〈D>〉 = U . Rewrite

φT (U) = {BD : B ∈ Fr(FT×r)}. (8)

So |φT (U)| = |Fr(FT×r)| = χTr .
Let us check the distribution of 〈X〉. For V ′ ∈ Gr(r,FT ),

φT (U |V ′) , {X ∈ FT×M : 〈X〉 = V ′, 〈X>〉 = U}
= {BD : B ∈ Fr(FT×r), 〈B〉 = V ′} (9)
= {BD : B> ∈ φr(V ′)},

where (9) is obtained similar to (8). The sets φT (U |V ′),
V ′ ∈ Gr(r,FT ), give a partition of φT (U), and all have the
same cardinality χrr. Thus, 〈X〉 has a uniform distribution over
Gr(r,FT ).
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We claim that

|{V ′ ∈ Gr(r,FT ) : V ⊂ V ′}| =
[
T − s
r − s

]
. (10)

Then

Pr{〈X〉 ⊃ V } =

[
T − s
r − s

]
|Gr(r,FT )|

=

[
T
r

]
χr
s

χT
s[

T
r

] =
χrs
χTs

.

We can verify (10) as follows. Fix a complementary sub-
space V̄ of V such that V ⊕ V̄ = FT and V ∩ V̄ = {0}. For
any V ′ ∈ Gr(r,FT ) with V ⊂ V ′, we have a unique direct
sum decomposition V ′ = V ⊕ Ṽ such that Ṽ ⊂ V̄ . Since such
V ′ and Ṽ are one-to-one correspondent, the problem becomes
to count the number of (r − s)-dimensional subspaces of the
(T − s)-dimensional subspace V̄ . By Gaussian binomials, the
number is

[
T−s
r−s

]
.

We define the following sets of typical sequences according
to [20, Chapter 2]. Denote by N(a|xn) the number of occur-
rences of a in xn. For a random variable A with support A, let
Tn[A]δ be the set of all pA-typical sequence xn with constant
δ, i.e., ∣∣∣∣N(a|xn)

n
− pA(a)

∣∣∣∣ ≤ δ ∀a ∈ A.
Further, for a random variable B with support B and a
transition matrix PB|A, let Tn[B|A]δ(x

n) be the set of PB|A-
typical sequences yn under the condition of xn ∈ (A)n with
constant δ, i.e.,∣∣∣∣N(a, b|xn, yn)

n
− N(a|xn)

n
PB|A(b|a)

∣∣∣∣ ≤ δ ∀a ∈ A, b ∈ B.
The delta-convention in [20] is applied so that the constant δ
will be omitted from the notation.

Lemma 3: Consider a satellite code S(Un) with Un ∈
Tn[〈X>〉]. When using only column spaces of the received
matrices for decoding, the maximum achievable rate of the
satellite code is at least J(rk(X); rk(Y )).

Proof: We study the achievable rates of satellite codes
using a random coding scheme. Assume that the code book
size is 2nR. For codeword (X1, . . . , Xn), Xi is independently,
uniformly at random picked in φT (Ui). Construct the satellite
code S(Un) randomly by generating 2nR codewords indepen-
dently.

Let Xn ∈ S(Un) be the codeword transmitted and Y n be
the received sequence of matrices. By [20, Lemma 2.12], there
exists a sequence εn → 0 such that

Pr{rk(Y n) ∈ Tn[rk(Y )|〈X>〉](U
n)} ≥ 1− εn (11)

Here rk(Y n) , (rk(Y1), . . . , rk(Yn)). Similarly, we use
dim(Un) = (dim(U1), . . . ,dim(Un)).

For Yn with rk(Yn) ∈ Tn[rk(Y )|〈X>〉](U
n),

N(r, s|dim(Un), rk(Yn))

=
∑

V :dim(V )=r

N(V, s|Un, rk(Yn))

≥
∑

V :dim(V )=r

n

(
Prk(Y )|〈X>〉(s|V )

N(V |Un)

n
− δn

)
(12)

≥
∑

V :dim(V )=r

n
(
Prk(Y )|〈X>〉(s|V )p〈X>〉(V )− δ′n

)
(13)

= n(prk(X) rk(Y )(r, s)− δ′′n)

where (12) and (13) follow from rk(Yn) ∈ Tn[rk(Y )|〈X>〉](U
n)

and Un ∈ Tn[〈X>〉], respectively; and δ′′n → 0.
Let X̃n be a codeword not the same as Xn. For Yn with

rk(Yn) ∈ Tn[rk(Y )|〈X>〉](U
n),

Pr{〈X̃i〉 ⊃ 〈Yi〉,∀i} =

n∏
i=1

Pr{〈X̃i〉 ⊃ 〈Yi〉}

=

n∏
i=1

χ
dim(Ui)
rk(Yi)

χTrk(Yi)

(14)

=
∏
r,s

(
χrs
χTs

)N(r,s| dim(Un),rk(Yn))

≤
∏
r,s

(
χrs
χTs

)n(prk X rk(Y )(r,s)−δ′′n)

,(15)

where (14) follows from Lemma 2.
The probability of decoding error using the decoding

method described for satellite codes is

Pr{∃X̃n 6= Xn s.t 〈X̃i〉 ⊃ 〈Yi〉,∀i}
=
∑
Yn

Pr{∃X̃n 6= Xn s.t 〈X̃i〉 ⊃ 〈Yi〉,∀i}pY n(Yn) (16)

<
∑

X̃n 6=Xn

∑
Yn∈Tn

[rk(Y )|〈X>〉]
(Un)

Pr{〈X̃i〉 ⊃ 〈Yi〉,∀i}pY n(Yn)

+
∑

Yn /∈Tn

[rk(Y )|〈X>〉]
(Un)

pY n(Yn) (17)

≤ 2nR
∏
r,s

(
χrs
χTs

)n(prk(X) rk(Y )(r,s)−δ′′)

+ εn (18)

≤ 2n(R−J(rk(X),rk(Y ))+δ′′′n )

where (16) follows that Y n and X̃n are independent when
X̃n 6= Xn; (17) follows from the union bound; and (18)
follows from (11) and (15). Then following the typical random
coding argument, we know that J(rk(X), rk(Y )) is achievable
by the satellite code.

Proof of Theorem 1: The cloud code of a Sumas code
is used for the subspace core of an LOC. By the achievability
of the Channel Coding Theorem (see [20, Corollary 6.3]), for
every distribution of 〈X>〉, there exists a sequence of cloud
codes U ⊂ Tn[〈X>〉] achieving the rate I(〈X>〉; 〈Y >〉). By
Lemma 3, the maximum achievable rate of the satellite codes
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is at least J(rk(X), rk(Y )). So the first part of the theorem is
proved.

By writing

prk(X) rk(Y )(r, s) =
∑
U

Prk(Y )|〈X>〉(s|U)p〈X>〉(U),

we see that J(rk(X), rk(Y )) is a linear function of p〈X>〉.
Together with the fact that I(〈X>〉; 〈Y >〉) is a concave
function of p〈X>〉, the proof is completed.

V. RANK-MATRIX SUPERPOSITION CODES

Sumas codes may not always achieve rate higher than KK
subspace coding. For example, subspace coding is optimal for
rank-symmetric LOCs (see Section III-A). The optimality of
subspace coding is based on the argument that I(X;Y ) =
I(〈X〉; 〈Y 〉) [14]–[17], and as far as we know, no particular
coding schemes have been proposed to achieve the capacity
of rank-symmetric LOCs (cf. (3)).

We introduce a special class of Sumas codes, which can
achieve the capacity of rank-symmetric LOCs. The super-
position coding approach can potentially design codes with
efficient encoding/decoding algorithms.

For r = 0, 1, . . . ,min{M,T}, let U(r) be an r-dimensional
subspace of FM . An n-block rank-matrix superposition (Ra-
mas) code with respect to {U(r)} is an n-block Sumas code
with the cloud code being a subset of {U(r)}n. Denote by
[m] the set {0, 1, . . . ,m}. We can alternatively define a Ramas
code code as follows.

Definition 4: An n-block rank-matrix superposition (Ra-
mas) code with respect to {U(r)} contains a cloud code
R ⊂ [min{T,M}]n and a set of satellite codes, each of which
corresponds to a codeword in the cloud code. The satellite code
corresponding to rn ∈ R, denoted by S(rn), is a subset of
φT (U(r1))× · · · × φT (U(rn)).

Note that {U(r)} in the above definition is a subset of
Pj(min{T,M},FM ) with all the elements having different
ranks. The encoding of the cloud code is equivalent to mapping
the message to the ranks of the input matrices. The constraints
on the satellite codes given by {U(r)} makes Ramas codes
different from the existing designs of KK subspace codes.
We are interested in the performance of Ramas codes under
a modified subspace decoding rule where the cloud code is
decoded using the ranks of the received matrices. The proof
of the following theorem is omitted.

Theorem 4: The maximum achievable rates of Ramas codes
under the modified subspace decoding rule is at least

max
p〈X>〉

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))].

VI. CONCLUDING REMARKS

We propose codes with refined coding structures that have
not been unveiled under the subspace coding framework. The
design of a Sumas (Ramas) code depends on the distribution of
the transfer matrix. Further works include how to characterize
such dependence and how to design coding schemes based on
the superposition structure.
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