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EFFICIENT ALGORITHMS FOR RECONSTRUCTING
ZERO-RECOMBINANT HAPLOTYPES ON A PEDIGREE BASED
ON FAST ELIMINATION OF REDUNDANT LINEAR EQUATIONS∗

JING XIAO† , LAN LIU‡ , LIRONG XIA§ , AND TAO JIANG¶

Abstract. Computational inference of haplotypes from genotypes has attracted a great deal
of attention in the computational biology community recently, partially driven by the international
HapMap project. In this paper, we study the question of how to efficiently infer haplotypes from
genotypes of individuals related by a pedigree, assuming that the hereditary process was free of
mutations (i.e., the Mendelian law of inheritance) and recombinants. The problem has recently been
formulated as a system of linear equations over the finite field of F (2) and solved in O(m3n3) time
by using standard Gaussian elimination, where m is the number of loci (or markers) in a genotype
and n the number of individuals in the pedigree. We give a much faster algorithm with running
time O(mn2 + n3 log2 n log log n). The key ingredients of our construction are (i) a new system of
linear equations based on some spanning tree of the pedigree graph and (ii) an efficient method for
eliminating redundant equations in a system of O(mn) linear equations over O(n) variables. Although
such a fast elimination method is not known for general systems of linear equations, we take advantage
of the underlying pedigree graph structure and recent progress on low-stretch spanning trees.
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1. Introduction. For centuries, human beings have fought the battle against
deadly diseases, such as diabetes, cancer, stroke, heart disease, depression, and asthma.
Genetic factors are believed to play a significant role for preventing, diagnosing, and
treating these diseases. In recent years, gene mapping [2, 20, 31], whose goal is to
establish connections between diseases and some specific genetic variations, has be-
come one of the most active areas of research in human genetics. In October 2002, a
multicountry collaboration, namely, the international HapMap project was launched
[18]. One of the main objectives of the HapMap project is to identify the haplotype
(i.e., the states of genetic markers from a single chromosome) structure of humans and
common haplotypes among various populations. This information will greatly facili-
tate the mapping of many important disease-susceptible genes. However, the human
genome is a diploid (i.e., its chromosomes come in pairs, with one being paternal and
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the other maternal), and, in practice, haplotype data are not collected directly, espe-
cially in large-scale sequencing projects, mainly due to cost considerations. Instead,
genotype data (i.e., the states of genetic markers from all chromosomes, without spec-
ifying which chromosome gives rise to each particular marker state) are collected
routinely. Hence, combinatorial algorithms and statistical methods for the inference
of haplotypes from genotypes, which is also commonly referred to as phasing, are
urgently needed and have been intensively studied.

This paper is concerned with the inference of haplotypes from genotypes of indi-
viduals related by a pedigree, which describes the parent-offspring relationship among
the individuals. Figure 1 gives an illustrative example of pedigree, genotype, and hap-
lotype, as well as recombination, where the haplotypes of a parent recombine to pro-
duce a haplotype of her child. (See the appendix for more detailed definitions of these
concepts.) Pedigree data is often collected in family-based gene association/mapping
studies in addition to genotype data. It is generally believed that haplotypes inferred
from pedigrees are more accurate than those from population data. Moreover, some
family-based statistical gene association tests such as TDT (i.e., transmission disequi-
librium test) and its variants (e.g., [32, 39], among others) require access to haplotype
information for each member in a pedigree.

By utilizing some biological assumptions, such as the Mendelian law of inheri-
tance, i.e., one haplotype of each child is inherited from the father while the other is
inherited from the mother free of mutations, and the minimum-recombination prin-
ciple, which says that genetic recombination is rare for closely linked markers and
thus haplotypes with fewer recombinants should be preferred in haplotype infer-
ence [29, 30], several combinatorial approaches for inferring haplotypes from geno-
types on a pedigree have been proposed recently and shown to be powerful and
practical [5, 8, 23, 24, 25, 29, 30, 33, 36, 38]. These methods essentially propose
polynomial-time heuristics or exponential-time exact algorithms for the so-called the
minimum-recombinant haplotype configuration (MRHC) problem, which requires a
haplotype solution for the input pedigree with the minimum number of recombinants
(i.e., recombination events) and is known to be NP-hard [23]. (See the appendix for
a more formal definition of the MRHC problem.)

A closely related problem, called the zero-recombinant haplotype configuration
(ZRHC) problem, where we would like to enumerate all haplotype solutions requir-
ing no recombinant (if such solutions exist), was studied in [23]. The ZRHC prob-
lem was proposed under a more stringent biological assumption that the pedigree is
also recombination-free. (See the appendix for a more formal definition of the ZRHC
problem.) ZRHC is interesting because recent genetic research has shown that human
genomic DNAs can be partitioned into long blocks (called haplotype blocks) such that
recombination within each block is rare or even nonexistent [7, 11, 19], especially when
restricted to a single pedigree [24, 25]. An efficient algorithm for ZRHC could also be
useful for solving the general MRHC problem as a subroutine, when the number of
recombinants is expected to be small. We note in passing that recent work on hap-
lotype inference for population data based on perfect phylogenies also assumes the
data is recombination-free [10, 15, 16, 17]. Observe that, when the solution for ZRHC
is not unique, it would really be useful to be able to enumerate all of the solutions
instead of finding only one feasible solution, so that the solutions can be examined
in subsequent analysis (e.g., likelihood distribution of haplotypes [24, 25, 28], linkage
between different haplotype blocks [1, 14, 21], etc.) by geneticists.

The algorithmic problem and our result. The ZRHC problem can also be
stated abstractly as a simple inheritance reconstruction problem as follows. We have
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Fig. 1. A. The structure of a pair of chromosomes from a mathematical point of view. In the
figure, each numeric value (1 or 2) represents a marker state or an allele. The haplotype inher-
ited from the father (or the mother) is called paternal haplotype (or maternal haplotype, respec-
tively). The paternal and maternal haplotypes are thus strings 22112 and 11212, and they form the
genotype {1, 2}{1, 2}{1, 2}{1, 1}{2, 2}, which is a string of unordered pairs of alleles at each locus.
B. An illustration of a pedigree with 9 members with a mating loop, where circles represent females
and boxes represent males. Children are shown under their parents with line connections. For ex-
ample, individuals 7 and 8 are children of individuals 2 and 3. Individuals without parents, such
as individuals 1 and 2, are called founders. A pedigree with no mating loops is called tree pedigree
conventionally. C. An example of recombination event where the haplotypes of individual 1 recom-
bine to produce the paternal haplotype of individual 3. The numbers inside the circles/boxes are
individual IDs. Here, a “ |” is used to indicate the phase of the two alleles at a marker locus, with
the left allele being paternal and the right maternal. Both loci of individual 2 and the second locus
of individual 4 are homozygous, while all of the other loci in the pedigree are heterozygous.

a pedigree connecting n individuals where each individual j has two haplotypes (i.e.,
strings) defined on m marker loci aj,1 · · · aj,m and bj,1 · · · bj,m inherited from j’s father
and mother, respectively. That is, if individuals j1 and j2 are the parents of j, then
aj,1 · · · aj,m ∈ {aj1,1 · · · aj1,m, bj1,1 · · · bj1,m} and bj,1 · · · bj,m ∈ {aj2,1 · · ·aj2,m, bj2,1 · · ·
bj2,m}. The haplotypes are unknown, but the genotype of each individual j is given
to us in the form of string {aj,1, bj,1} · · · {aj,m, bj,m}. We would like to reconstruct all
of the haplotype solutions that could have resulted in the genotypes.

Li and Jiang presented an O(m3n3) time algorithm for ZRHC by formulating it
as a system of O(mn) linear equations with mn variables over the finite field of F (2)
and applying Gaussian elimination [23]. Although this algorithm is polynomial, it is
inadequate for large-scale pedigree analysis where both m and n can be in the order
of tens or even hundreds, and we may have to examine many pedigrees and haplotype
blocks. There are, for example, over five million SNP markers in the public database
dbSNP [18]. This challenge motivates us to find more efficient algorithms for ZRHC.
Several attempts have been made recently in [4, 26], but the authors failed to prove
the correctness of their algorithms in all cases, especially when the input pedigree has
mating loops. Chan et al. proposed a linear-time algorithm in [3], but the algorithm
works only for pedigrees without mating loops (i.e., the tree pedigrees).

In this paper, we present a much faster algorithm for ZRHC with running time
O(mn2+n3 log2 n log log n). Our construction begins with a new system of linear equa-
tions over F (2) for ZRHC. Although the system still has O(mn) variables and O(mn)
equations, it can be effectively reduced to an equivalent system with O(mn) equations
and at most 2n variables, by exploring the underlying pedigree graph structure. By
using standard Gaussian elimination, this already gives an improved algorithm with
running time O(mn3). We then show how to reduce the number of equations further
to O(n log2 n log log n) (assuming that m ≥ log2 n log log n, which usually holds in
practice), by giving an O(mn) time method for eliminating redundant equations in
the system. Although such a fast elimination method is not known for general sys-
tems of linear equations, we again take advantage of the underlying pedigree graph
structure and recent progress on low-stretch spanning trees in [9]. In particular, the
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low-stretch spanning tree result helps upper bound the number of equations that need
to be kept in the elimination process. We also show that our algorithm actually runs
in O(mn2 +n3) time when the input pedigree is a tree pedigree with no mating loops
(which is often true for human pedigrees) or when there is a locus that is heterozygous
across the entire pedigree. Moreover, our algorithm produces a general solution1 to
the original system of linear equations at the end that represents all feasible solutions
to the ZRHC problem.

Related work on solving systems of (sparse) linear equations. The search
for efficient algorithms for solving systems of linear equations is a classical problem
in linear algebra. Besides Gaussian elimination, methods based on fast matrix mul-
tiplication algorithms have been proposed and could achieve an asymptotic speed of
O(n2.376) on n equations with n unknowns [6, 35]. However, these methods are only of
theoretical interest since they are hard to implement and do not outperform Gaussian
elimination unless n is very large. Moreover, they assume that the coefficient matrix
is of full rank, which is an unreasonable assumption in ZRHC (considering the linear
systems derived for ZRHC so far).

Observe that the linear system given in [23] for ZRHC is actually very sparse
since each of its equations has at most four variables. Thus, a plausible way to speed
up is to utilize fast algorithms for solving sparse linear systems. The Lanczos and
conjugate gradient algorithms [13] and the Wiedemann algorithm [37] are some of the
best known algorithms for solving sparse linear system over finite fields. The Wiede-
mann algorithm runs in (expected) quadratic time (which is in fact slower than our
algorithm when applied to linear systems for ZRHC), while the Lanczos and conjugate
gradient algorithms are only heuristics [22]. However, they use randomization and do
not find all solutions. Furthermore, the algorithms cannot check if the system has
no solution [12]. A randomized algorithm with quadratic expected time for certifying
inconsistency of linear systems is given in [12].

The rest of our paper is organized as follows. We will describe a new system
of linear equations for ZRHC and some useful graphs derived from a pedigree in
section 2. The O(mn3) time algorithm is presented in section 3, and the O(mn2 +
n3 log2 n log log n) time algorithm is given in section 4. Some concluding remarks are
given in section 5. The appendix contains some related biological definitions concern-
ing MRHC and an example execution of the main algorithm.

2. A system of linear equations for ZRHC and the pedigree graph. In
this section, we first present a new formulation of ZRHC in terms of linear equations
and then define some graph structures which will be used in our algorithm.

2.1. The linear system. Throughout this paper, n denotes the number of the
individuals (or members) in the input pedigree and m the number of marker loci.
Without loss of generality, suppose that each allele in the given genotypes is numbered
numerically as 1 or 2 (i.e., the markers are assumed to be biallelic, which makes the
hardest case for MRHC/ZRHC [23]), and the pedigree is free of genotype errors (i.e.,
the two alleles at each locus of a child can always be obtained from her respective
parents). Hence, we can represent the genotype of member j as a ternary vector gj

as follows: gj[i] = 0 if locus i of member j is homozygous with both alleles being 1’s,
gj [i] = 1 if the locus is homozygous with both alleles being 2’s, and gj [i] = 2 otherwise

1A general solution of any linear system is denoted by the span of a basis in the solution space
to its associated homogeneous system, offset from the origin by a vector, namely by any particular
solution.
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(i.e., the locus is heterozygous). For any heterozygous locus i of member j, we use a
binary variable pj [i] to denote the phase at the locus as follows: pj[i] = 1 if allele 2 is
paternal, and pj [i] = 0 otherwise. When the locus is homozygous, the variable is set to
gj [i] for some technical reasons (so that the equations below involving pj[i] will hold).
Hence, the vector pj describes the paternal and maternal haplotypes of member j.
Observe that the vectors p1, . . . ,pn represent a complete haplotype configuration of
the pedigree. In fact, the sparse linear system in [23] was based on these vectors. Also
for technical reasons, define a vector wj for member j such that wj [i] = 0 if its ith
locus is homozygous and wj [i] = 1 otherwise.

Suppose that member jr is a parent of member j. We introduce an auxiliary
binary variable hjr ,j to indicate which haplotype of jr is passed to j. If jr gives its
paternal haplotype to j, then hjr ,j = 0; otherwise, hjr ,j = 1. Suppose that j is a
nonfounder member with her father and mother being j1 and j2, respectively. We
can define two linear (constraint) equations over F (2) to describe the inheritance of
paternal and maternal haplotypes at j, respectively, following the Mendelian law of
inheritance and zero-recombinant assumption:

(2.1) pj1 + hj1,j · wj1 = pj and pj2 + hj2,j ·wj2 = pj + wj .

If we let dj1,j denote the vector 0 and dj2,j denote wj , then the above equations
can be unified into a single equation as

(2.2) pjr
+ hjr,j ·wjr = pj + djr ,j (r = 1, 2).

Formally, we can express the ZRHC problem as a system of linear equations:
(2.3)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pk[i] + hk,j · wk[i] = pj[i] + dk,j [i], 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is a parent of j,
pj [i] = gj [i], 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] �= 2,
wj [i] = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] = 2,
wj [i] = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] �= 2,
dk,j [i] = wj [i], 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the mother of j,
dk,j [i] = 0, 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the father of j,

where gj [i], wj [i], dk,j [i] are all constants depending on the input genotypes, and
pj [i], hk,j are the unknowns. Note that the number of p-variables is exactly mn and
the number of h-variables is at most 2n since every child has two parents and there
are at most n children in the pedigree.

Remark. Observe that, for any member j, if the member itself or one of its parents
is homozygous at locus i, then pj[i] is fixed based on (2.3). In the rest of this paper, we
will assume that all such variables pj [i] are predetermined (without any conflict) and
use them as “anchor points” to define some new constraints about the h-variables.

2.2. The pedigree graph and locus graphs. To apply combinatorial tech-
niques, we transform the input pedigree into a graph, called the pedigree graph, by
connecting each parent directly to her children. See Figure 2(B) for an example. Al-
though the edges in the pedigree represent the inheritance relationship between a
parent and a child and are directed, we will think of the pedigree graph, and, more
importantly, the subsequent locus graphs, as undirected in future definitions and con-
structions. This is because each edge (j, k) of the pedigree graph (and locus graphs)
will be used to represent the constraint between the vectors pj and pk (i.e., the phases
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Fig. 2. A. An example pedigree with genotype data. Here, the alleles at a locus are ordered
according to their ID numbers instead of phase (which is unknown). B. The pedigree graph with a
spanning tree. The tree edges are highlighted. Observe that there lies a cycle of length 4 in the given
tree pedigree graph. C. The locus graphs. The left graph is for the first locus, which has a cycle,
while the right graph is for the second locus. The locus forests are highlighted.

at j and k) via the variable hj,k, which is symmetric, as can be seen from Lemma 1
and Corollaries 2 and 3 below.2

Clearly, such a pedigree graph G = (V, E) may be cyclic due to mating loops or
multiple children shared by a pair of parents. Let T (G) be any spanning tree of G.
T (G) partitions the edge set E into two subsets: tree edges and nontree edges. For
simplicity, the nontree edges will be called cross edges. Let EX denote the set of cross
edges. Since |E| ≤ 2n and the number of edges in T (G) is n−1, we have |EX| ≤ n+1.
Figure 2(B) gives an example of tree edges and cross edges.

For any fixed locus i, the value wk[i] can be viewed as the weight of each edge
(k, j) ∈ E, where k is a parent of j. We construct the ith locus graph Gi as the
subgraph of G induced by the edges with weight 1. Formally, Gi = (V, Ei), where
Ei = {(k, j)| k is a parent of j, wk[i] = 1}. The ith locus graph Gi induces a subgraph
of the spanning tree T (G). Since the subgraph is a forest, it will be referred to as the
ith locus forest and denoted by T (Gi). Figure 2(C) shows the locus graphs and the
locus forests of the given pedigree.

The locus graphs can be used to identify some implicit constraints on the h-
variables as follows. First, we need to “symmetrize” of the h-variables and d-constants:
for any edge (k, j) ∈ E, define hk,j = hj,k and dk,j = dj,k.

Lemma 1. For any path P = j0, . . . , jk in locus graph Gi connecting vertices j0
and jk, we have

pj0 [i] + pjk
[i] +

k−1∑
r=0

(hjr ,jr+1 + djr ,jr+1 [i]) = 0.

Proof. The equation follows easily from (2.3) and an induction on the length k of
the path.

Note that the above constraint remains the same no matter in which direction
path P is read, since the addition is over field F (2) and the h-variables and d-constants
are symmetric. From the lemma, we can see that for a cycle in Gi the summation of all
of the h-variables corresponding to the edges on the cycle is a constant. The constant
is said to be associated with the cycle.

Corollary 2. For any cycle C = j0, . . . , jk, j0 in Gi, there exists a binary con-
stant b defined as b =

∑k
r=0 djr ,jr+1 mod k+1 [i] such that

∑k
r=0 hjr,jr+1 mod k+1 = b.

2The reader can also verify that the direction of an edge will not affect the graph traversal and
the ensuing treatment of constraint equations to be discussed in the next two sections.
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Proof. This follows from Lemma 1 and the fact that pj0 [i] + pj0 [i] = 0.
From Lemma 1, we can easily see that if the p-variables at the endpoints of a path

are predetermined, then the summation of all of the h-variables corresponding to the
edges on the path is a constant. The constant is said to be associated with the path.
We construct constraints on h-variables as follows. Again, notice that the following
constant b does not depend on the direction that path P is read.

Corollary 3. Suppose that P = j0, . . . , jk is a path in Gi connecting vertices j0
and jk, and the variables pj0 [i] and pjk

[i] are predetermined. Then there exists a binary
constant b defined as b = pj0 [i]+pjk

[i]+
∑k−1

r=0 djr ,jr+1 [i] such that
∑k−1

r=0 hjr ,jr+1 = b.

3. An O(mn3) time algorithm for ZRHC. Since the number of h-variables
is at most 2n, our key idea is to first derive a system of O(mn) linear equations on
the h-variables. We use paths and cycles in Gi and the predetermined p-variables as
mentioned in the last section to build the linear system, and then we find a general
solution to the system by using Gaussian elimination so that all inherent freedom in
(2.3) is kept. This new system of equations about the h-variables is clearly necessary
for (2.3). The crux of the construction is to show that it is also sufficient, and thus the
p-variables can be determined from the values of the h-variables by a simple traversal
of the locus graphs.

3.1. Linear constraints on the h-variables. We will introduce constraint
equations to “cover” all of the edges in each locus graph. As mentioned above, these
equations connect the p-variables and will suffice to help determine their values. Note
that, since the edges broken in each locus graph involve predetermined p-variables, we
do not have to introduce constraints to cover them. The constraints can be classified
into two categories with respect to the spanning tree T (G): constraints for cross edges
and constraints for tree edges.

Cross edge constraints. Adding a cross edge e to the spanning tree T (G) yields
a cycle C in the pedigree graph G. Let length(C) denote the length of cycle C. Suppose
that the edge e exists in the ith locus graph Gi, and consider two cases of the cycle
C with respect to graph Gi.

Case 1. The cycle exists in Gi. We introduce a constraint along the cycle as
in Corollary 2. This constraint is called a cycle constraint. The set of such cycle
constraints for edge e in all locus graphs is denoted by CC(e), i.e.,

CC(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}.

The set of cycle constraints for all cross edges is denoted by CC =
⊎

e∈EX CC(e).
Case 2. Some of the edges of the cycle do not exist in Gi. This means that the

cycle C is broken into several disjoint paths in Gi by the predetermined vertices. Since
e exists in Gi, exactly one of these paths, denoted as P , contains e. Observe that both
endpoints of P are predetermined, and thus Corollary 3 could give us a constraint
concerning the h-variables along the path. Such a constraint will be called a path
constraint. The set of such path constraints for e in all locus graphs Gi is denoted by
CP(e), i.e.,

CP(e) =
{

(k, j, b, e)
∣∣∣∣ in T (Gi) ∪ {e}, b is associated with the path containing e

connecting two predetermined vertices k and j, 1 ≤ i ≤ m

}
.

The set of path constraints for all cross edges is denoted by CP =
⊎

e∈EX CP(e).
Please refer to Procedure Cross Edge Constraints in Figure 3 to see the

generation of CC and CP.
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Tree edge constraints. By Corollary 3, there is an implicit constraint concern-
ing the h-variables along each path between two predetermined vertices in the same
connected component of T (Gi). Therefore, for each connected component T of T (Gi),
we arbitrarily pick a predetermined vertex in the component as the seed vertex, and
generate a constraint for the unique path in T (Gi) between the seed and each of the
other predetermined vertices in the component, as in Corollary 3. Such a constraint
will be called a tree constraint. Notice that if there exists any component having no
predetermined vertices, then locus i must be heterozygous across the entire pedigree
and T (Gi) is actually a spanning tree. Such a locus will be referred to as an all-
heterozygous locus. For such a locus i, we arbitrarily pick a vertex in T (Gi) as the
seed, but we will not generate at tree constraints.

To conform with the notation of path constraints and for the convenience of
presentation, we arbitrarily pick a tree edge denoted as e0 and write the set of tree
constraints at all loci as

CT =

⎧⎨⎩(k, j, b, e0)

∣∣∣∣∣∣
in a connected component of T (Gi) with seed k, b is
associated with the path connecting vertices k and
a predetermined vertex j, 1 ≤ i ≤ m

⎫⎬⎭ .

Note that e0 is the same for all of the tree constraints and will be used as an indicator
to distinguish tree constraints from path constraints defined by cross edges. The formal
construction of CT is described in Procedure Tree Edge Constraints in Figure 3.

Again, we need to symmetrize path constraints and tree constraints: given any
constraint (k, j, b, e) generated for a path connecting two predetermined vertices k
and j in a locus graph, define (k, j, b, e) = (j, k, b, e). The above constructions of CC,
CP, and CT are more formally described as pseudocode in Figure 3. We can easily see
that the following holds.

Lemma 4. |CC| + |CP| + |CT| = O(mn).

3.2. Solving the linear system for ZRHC using the new constraints.
We now describe how to solve the system in (2.3) in O(mn3) time. The pseudocode
for solving the system is formally given as Algorithm ZRHC Phase in Figure 4. Here,
we first construct the cycle, path, and tree constraints on the h-variables, and pick
a vertex as the seed for every connected component in the locus forests T (Gi), as
described in the last subsection. Then we solve these constraints by using Gaussian
elimination to obtain a general solution of the h-variables, which may contain some
free h-variables. Next, for each connected component with no predetermined vertices,
we set the p-variable of the seed as a free variable and treat it as a determined value.
Finally, we perform a breadth-first search (BFS) on the spanning forest T (Gi) of each
locus graph Gi. For each connected component of T (Gi), we start from the seed and
propagate its p-variable value to the undetermined vertices in the component by using
the solution for the h-variables, which will result in functions of the free h-variables
and at most one free p-variable. Note that, in the last step of the algorithm, pk[i] is
expressed as a linear combination of the free variables in pj [i] and the free h-variables
with an appropriate constant term.

To show the correctness of the algorithm, we need only show that the solution
found by the algorithm is a feasible solution for (2.3) and vice versa. Since we de-
termine the p-variables based on the linear system for the h-variables derived from
(2.3), any feasible solution to (2.3) will be included in the (general) solution found by
our algorithm. In other words, we do not lose any degrees of freedom in the solution
process. Hence, it suffices to show that our solution satisfies (2.3).
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Procedure Cross Edge Constraints

input: locus graphs G[1..m] and the spanning tree T (G)

output: cross edge constraint sets CC, CP

begin

CC = CP = ∅;
for each cross edge e

Suppose that C is the cycle in T (G) ∪ {e};
CP(e) = CC(e) = ∅;
for each locus i
if C is connected in Gi

Let b =
∑

(k,j)∈ C dk,j [i];

CC(e) = CC(e)
⊎

{(e, b)};
else

Suppose P is the path containing e in T (Gi) ∪ {e};
Let vertices j1 and j2 be the endpoints of P ;

Define b = pj1 [i] + pj2 [i] +
∑

(k,j)∈P dk,j [i];

CP(e) = CP(e)
⊎

{(j1, j2, b, e)};
CC = CC

⊎
CC(e);

CP = CP
⊎

CP(e);

end.

Procedure Tree Edge Constraints

input: locus forests T (G[1..m]) and a fixed tree edge e0

output: tree edge constraint set CT

begin

CT = ∅;
for each locus i
for each connected component T in T (Gi)

if T has no predetermined vertices
Arbitrarily pick a vertex j0 in T as the seed of T ;

else
Arbitrarily pick a predetermined vertex j0 in T as
the seed of T ;

for each predetermined vertex j1 �= j0 in T
Let P be the path between j0 and j1;

Define b = pj0 [i] + pj1 [i] +
∑

(k,j)∈P dk,j [i];

CT = CT
⊎

{(j0, j1, b, e0)};
end.

Fig. 3. The procedure for generating constraints.

Lemma 5. The p-variables and h-variables determined by Algorithm ZRHC Phase

satisfy the linear system in (2.3).

Proof. Denote the solution found by our algorithm as p and h. We need only
care about the first equations in (2.3). If the wk[i] in such an equation is 0, then the
equation involves only two predetermined p-values, which holds trivially since Step 1
of our algorithm explicitly takes care of predetermined p-values. Otherwise, each such
equation corresponds to an edge in some locus graph. Let e = (j1, j2) be an edge in
locus graph Gi. It represents an equation pj1 [i]+hj1,j2 = pj2 [i]+dj1,j2 [i], i.e., the first
equation on edge e in (2.3).
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Algorithm ZRHC Phase

[Improved ZRHC Phase]

input: pedigree G = (V, E) and genotype {gj}
output: a general solution of {pj}
begin

Step 1. Preprocessing

Construct a [low-stretch] spanning tree T (G) on G;

Let e0 be an arbitrary tree edge;

for each locus i
Generate the locus graph Gi;

Generate the locus forest T (Gi);

Identify the predetermined nodes;

Step 2. Constraint generation

Cross Edge Constraints(G[1..m] ,T (G), CC, CP);

Tree Edge Constraints(T (G[1..m]), CT, e0);[
Step 2′. Redundant constraint elimination

Compact Constraints( CC, CP, CT, e0 );

]

Step 3. Solve the h-variables

Apply Gaussian elimination on CC
⊎

CP
⊎

CT

to get a general solution of the h-variables;

Step 4. Solve the p-variables by propagation

for each locus i

for each connected component T in T (Gi)

if T has no predetermined vertices
Set the p-variable of the seed as a free variable and
treat it as a determined value;

Traverse T by BFS starting from the seed;

for each edge (j, k) in T
if pj [i] is determined but pk[i] is undetermined

pk[i] = pj [i] + hj,k + dj,k[i];

return {pj};
end.

Fig. 4. The O(mn3) time algorithm ZRHC Phase and the O(mn2 +n3 log2 n log log n) time al-
gorithm Improved ZRHC Phase. The additional instructions in Improved ZRHC Phase are high-
lighted by bold font in square brackets. In order to save running time, we use disjoint union (i.e.,⊎

) in Algorithms ZRHC Phase and Improved ZRHC Phase.

Given any two vertices js and jt in a same connected component of T (Gi), we
denote by P(js, jt) the unique path in the component connecting js and jt. Suppose
that vertex j0 is the seed of the component. The key observation here is that for any
vertex jt, regardless of whether vertex jt is predetermined or not, our solution satisfies
the equation

(3.1) pjt [i] = pj0 [i] +
∑

(k, j) ∈ P(j0, jt)

(hk,j + dk,j [i]).
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More precisely, if vertex jt is predetermined, then (3.1) holds because of the tree
constraint for path P(j0, jt) defined in Step 2 of the algorithm. Otherwise, pjt [i] is
assigned the value as given in (3.1) during the traversal from the seed j0 to jt in Step
4. More generally, we can build a relationship between the p-values of two vertices js

and jt from (3.1) as follows:

(3.2) pjt [i] = pjs [i] +
∑

(k, j) ∈ P(jt, js)

(hk,j + dk,j [i]).

Notice that, as long as js and jt are in the same connected component of T (Gi), the
above equation is satisfied by our solution. With the help of (3.2), we now show that
our solution satisfies the equation represented by edge e.

Case 1. e is a tree edge. Clearly, vertices j1 and j2 belong to the same connected
component of T (Gi). We replace js and jt by j1 and j2, respectively, in (3.2) and
obtain pj1 [i] = pj2 [i] +

∑
(k, j) ∈ P(j1, j2)(hk,j + dk,j [i]) = pj2 [i] + hj1,j2 + dj1,j2 [i],

which means that our solution satisfies the equation represented by the tree edge e,
since the constant wj1 [i] is assumed to be 1.

Case 2. e is a cross edge. Denote by C the cycle in T (Gi) ∪ {e}. There are two
subcases.

Case 2.1. C exists in Gi. In this case, we have a cycle constraint for C in Gi.
Suppose that the cycle constraint is 0 =

∑
(k,j)∈C(hk,j +dk,j [i]). Observe that vertices

j1 and j2 are in the same connected component of T (Gi); thus we have pj1 [i] =
pj2 [i] +

∑
(k, j) ∈ P(j1, j2)(hk,j +dk,j [i]) as shown in (3.2). Observe that cycle C can be

decomposed into path P(j1, j2) and cross edge e = (j1, j2). Therefore, summing up
the above two equations, we can get pj1 [i] = pj2 [i] + hj1,j2 + dj1,j2 [i], which means
that our solution satisfies the equation represented by the cross edge e.

Case 2.2. C is broken into several disjoint paths in Gi by predetermined ver-
tices. Suppose that the unique path containing e is P . Without loss of general-
ity, suppose that vertices k1 and k2 are the endpoints of P , and P has the form
P(k1, j1); e;P(j2, k2). Since vertices k1 and k2 are predetermined, our algorithm de-
fines a path constraint for P in Gi, i.e., pk1 [i] = pk2 [i] +

∑
(k, j) ∈ P(hk,j + dk,j [i]).

Observe that vertices k1 and j1 are in the same connected component of T (Gi).
Therefore, pk1 [i] = pj1 [i] +

∑
(k, j) ∈ P(k1, j1)(hk,j + dk,j [i]) based on (3.2). Similarly,

vertices j2 and k2 are in the same connected component of T (Gi), and pj2 [i] =
pk2 [i] +

∑
(k, j) ∈ P(j2, k2)(hk,j + dk,j [i]). Since path P = P(k1, j1); e;P(j2, k2), sum-

ming up the above three equations yields equality pj2 [i] = pj1 [i] + hj1,j2 + dj1,j2 [i],
which means that our solution satisfies the equation represented by the cross edge e.

In conclusion, the solution produced by Algorithm ZRHC Phase satisfies the equa-
tions on all edges, and thus the lemma holds.

Theorem 6. The running time of Algorithm ZRHC Phase is O(mn3).
Proof. Step 1 needs O(n) time for each locus, which takes O(mn) time in total.

In Step 2, we need at most O(n) time for generating a constraint. Since there are at
most O(mn) constraints, it takes at most O(mn2) time. In Step 3, the system has
O(n) h-variables and O(mn) constraints. So, Gaussian elimination requires O(mn3)
time. In Step 4, every edge is visited just once in the traversal. Since each h-variable
is expressed as a linear combination of at most n free h-variables at the end of Step
3,every p-variable is expressed as at most n free h-variables and at most one free p-
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variable on the same locus. Thus, this steps takes O(mn2) time altogether. Therefore,
the entire process takes O(mn3) time.

4. Speeding up the algorithm by fast elimination of redundant equa-
tions. The bottleneck in the above algorithm is Step 3, where we have to spend
O(mn3) time to solve a system of O(mn) equations over O(n) variables. Clearly,
most of the equations are redundant and can be expressed as linear combinations of
other equations. The question is how to detect and eliminate these redundant equa-
tions (without using Gaussian elimination, of course). To the best of our knowledge,
there are no methods that would eliminate redundant equations for any system of
linear equations over any field faster than Gaussian elimination asymptotically in the
worst case. Here, we give such a method taking advantage of the underlying pedigree
structure. We first give a general method to compact path and tree constraints that
correspond to paths on a cycle in the pedigree graph.

Let C be a cycle in the pedigree graph G induced by cross edge e1. For convenience,
we say that a path/tree constraint is on the cycle C if it corresponds to a path/edge
on C. The following lemma shows that the path/tree constraints on a cycle can be
greatly compacted and is the key to our algorithm to eliminate redundant constraints.

Lemma 7. Given a set C of path/tree constraints on cycle C, we can reduce C to
an equivalent constraint set of size at most 2 · length(C) in time O(|C|).

Proof. Recall that e0 represents the fixed tree edge introduced in subsection 3.1
for defining the tree constraints. We use Ĉ to denote the equivalent constraint set (to
be constructed). Initially, we set Ĉ = ∅.

For convenience, we say that a path/tree constraint connects vertices j and k if the
constraint has the form (k, j, b, e). To depict a more clear picture of the relationship
between the constraints in C, we define a constraint graph G∗3 as follows. For each
vertex k of the cycle C, we create a vertex in G∗. For each path/tree constraint in
C connecting k and j, we build an edge connecting k and j in G∗. Observe that the
connected components in G∗ naturally partition the constraints in C into disjoint
subsets. We will compact the constraints in each of these disjoint subsets separately
and put the resultant equivalent constraint sets into Ĉ. More precisely, for each con-
nected component of G∗, we pick an arbitrary vertex as the root of the component
and construct new constraints connecting the root and the other vertices in the com-
ponent. The details of the construction will be given in the next paragraph. Here,
the term root is meant to be synonymous to the term seed defined in subsection 3.1,
although each seed is defined for a single locus, whereas a root may be used to deal
with constraints concerning multiple loci.

Now, we give the details of how to construct Ĉ. Consider each connected compo-
nent S of G∗. Suppose that its root is k0. We process the constraints of C induced by
S in the order of increasing distance between the root and the vertices connected by
the constraints. In other words, we traverse S by BFS starting from the root. Suppose
that we are now visiting vertex j. For each edge (k0, j), we directly put into Ĉ the
constraints that created the edge (k0, j) in G∗. For each edge (k, j) where k (k �= k0)
is visited before j, our construction guarantees that Ĉ will have constraints connect-
ing the root k0 and k. Suppose that one of such constraints is c′ = (k0, k, b′, e′). Let
c = (k, j, b, e) ∈ C denote the constraint that created the edge (k, j) in G∗. We gen-
erate a new constraint c′′ = (k0, j, b

′′, e′′), where b′′ = b + b′ and e′′ is defined as

3Note that a constraint graph might actually be a multigraph, but this will not affect the cor-
rectness of Lemma 7.
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follows:

e′′ =

{
e1 if {e} ∪ {e′} = {e0, e1},
e0 otherwise.

Because c can be represented as the summation of c′′ and c′ ∈ Ĉ, c is equivalent to
c′′ given Ĉ. Then we add c′′ to Ĉ. Here, again the fixed tree e0 and cross edge e1

are used to indicate tree and path constraints, respectively. Observe that the above
constraint c′′ resulted from the combination of constraints c′ and that c involves only
tree edges if and only if both or none of c′ and c corresponds to paths containing e.
Otherwise, c′′ corresponds to some path across e1.

The BFS creates an equivalent constraint in Ĉ for every constraint in C, and
thus Ĉ ≡ C. Recall that each constraint in Ĉ has the form (k0, j, b, e), where j is a
vertex in C, e is either e0 or e1, and k0 is the root of the connected component of G∗

containing j. It is easy to see that two constraints (k0, j, b
′, e) and (k0, j, b

′′, e) that
differ only in the associated b-constants are consistent with each other if and only if
b′ = b′′. Hence, Ĉ has at most 2 · length(C) different constraints, or otherwise the
input linear system has no feasible solutions. The construction can be done in O(|C|)
time, as more formally described by Procedure Compact PT Const in Figure 5. Hence,
the lemma holds.

The reader may refer to the example in Appendix B (Step 2′) for a simple illus-
tration of how the construction in the above proof works. An immediate application
of Lemma 7 is to remove redundancy from each path constraint set CP(e), since the
path constraints in CP(e) are all on the cycle induced by e.

Corollary 8. Given the path constraint set CP(e), we can reduce it to an equiv-
alent constraint set of size at most 2 · length(C) in time O(|CP(e)|), where C is the
cycle induced by cross edge e.

We can also use Lemma 7 to remove redundant tree constraints. Note that the
construction in the proof of Lemma 7 still works if the constraints in C are all tree
constraints involving no cross edge e1. Moreover, the resultant set Ĉ contains only
constraints of the form (k0, j, b, e0). This implies that |Ĉ| ≤ n. Therefore, the following
corollary holds.

Corollary 9. Given the tree constraint set CT, we can reduce it to an equivalent
constraint set of size at most n in O(|CT|) time.

4.1. Elimination of redundant cycle constraints. Each cross edge e induces
a unique cycle C. Since every constraint in CC(e) concerns the same set of h-variables
corresponding to the edges on C, each CC(e) contains only one independent constraint.
Moreover, these constraints are consistent with each other if and only if their associ-
ated constants are identical, which can be checked in O(m) time. Because the total
number of cross edges are at most n + 1 we have the following lemma.

Lemma 10. Given the cycle constraint set CC, we can reduce it to an equivalent
constraint set of size at most n + 1 in O(mn) time.

4.2. Elimination of redundant path constraints. We will show how to re-
duce the path constraints CP on a general pedigree to an equivalent set of path con-
straints with size O(n log2 n log log n) in O(mn) time (assuming log2 n log log n < m).
Furthermore, for tree pedigrees (i.e., pedigrees with no mating loops) we can make
the equivalent constraint set as small as O(n). For pedigrees with an all-heterozygous
locus across the entire pedigree, we can first transform CP into an equivalent tree con-
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Procedure Compact PT Const

input: a set C of path/tree constraints

on cycle C induced by cross edge e1,
and a fixed tree edge e0

output: a compact constraint set Ĉ ≡ C

begin

Construct the constraint graph G∗ for C;

Ĉ = ∅;
for each connected component S of G∗

Pick an arbitrary vertex k0 ∈ S as the root of S;
Traverse S by BFS starting from k0;

while there exists unvisited vertices in G∗

Visit an unvisited vertex, say k, in the BFS order;

for each constraint c = (k0, j, b, e) in C

Ĉ = Ĉ
⊎

{c};

for each constraint c = (k, j, b, e) in C

s.t. vertex k �= k0 is visited before j

for each constraint c′ = (k0, k, b′, e′) in Ĉ

b′′ = b + b′;
if {e} ∪ {e′} = {e0, e1}

e′′ = e1;
else

e′′ = e0;

Construct a new constraint c′′ = (k0, j, b
′′, e′′);

if there exists a constraint (k0, j, b
′′ + 1, e′′) ∈ Ĉ

exit “The input genotypes are inconsistent.”;

if c′′ /∈ Ĉ

Ĉ = Ĉ
⊎

{c′′};

return Ĉ;

end.

Fig. 5. The procedure for compacting path and tree constraints on a cycle.

straint set with size O(mn), and then we will remove its redundancy via Corollary 9.
We first start with the special cases.

Elimination of redundant path constraints on tree pedigrees. Observing
that the length of each (simple) cycle in the pedigree graph of a tree pedigree is a
constant (i.e., 4, of which an example is given in Figure 2(B)), we can upper bound
the total number of path constraints as follows.

Lemma 11. Given the path constraint set CP on a tree pedigree, we can reduce it
to an equivalent path constraint set of size O(n) in O(mn) time.

Proof. By Corollary 8, we can reduce CP(e) for each cross edge e to an equivalent
set of at most eight path constraints in O(m) time. Since there are at most n+1 cross
edges, the set CP can be reduced to an equivalent set of size O(n) in O(mn) time, and
thus the lemma holds.
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Transformation of path constraints on pedigrees with an all-heterozygous
locus. Observe that for a pedigree with an all-heterozygous locus i each cross edge
induces a cycle that exists in the locus graph Gi and has a cycle constraint in the
(reduced) set CC. This allows us to transform all of the path constraints into tree
constraints given the cycle constraints as follows.

Corollary 12. Given the path constraint set CP on a pedigree with an all-
heterozygous locus, we can construct an equivalent tree constraint set of size O(mn)
in O(mn) time.

Proof. Let us first focus on a cross edge e. Suppose that the cycle C is induced by
e in T (G) ∪ {e}, the compact CC(e) is {(b′, e)}, and e0 is the fixed tree edge defined
in subsection 3.1. Notice that the cycle C has two disjoint paths connecting each pair
of two vertices on the cycle. One of them consists of only tree edges and may be used
to define a tree constraint, while the other contains the cross edge and may be used
to represent a path constraint. Therefore, with the help of the cycle constraint (b′, e),
we can transform the path constraint set CP(e) into a tree constraint set C(e) of the
same size as follows:

C(e) = {(k, j, b − b′, e0) | (k, j, b, e) ∈ CP(e)}.

It is not hard to see that C(e) ∪CC(e) ≡ CP(e) ∪ CC(e), and C(e) can be constructed
in |CP(e)| time.

Let C = ∪e∈EX C(e). Obviously, C ≡ CP and |C| = O(mn) since |CP| = O(mn).
Hence, the lemma holds.

Elimination of redundant path constraints on a general pedigree. Now,
we consider how to compact path constraints in the general case. As shown in Corol-
lary 8, given a cross edge e inducing cycle C, we can compact the constraints in CP(e)
so that at most 2 · length(C) constraints are kept. Clearly, the compact CP has size
at most O(n2) since the number of cross edges is at most n + 1 and the length of a
cycle containing a cross edge is at most n. This bound can be improved by observing
that the total length of all cycles in G is related to the average stretch [9] of G with
respect to the spanning tree T (G). Hence, we can obtain a sharper upper bound on
|CP| by using a low-stretch spanning tree T (G) as constructed in [9].

We first give a formal definition of the stretch of an unweighted connected graph
with respect to a spanning tree. Given a spanning tree T on an unweighted connected
graph G = (V, E) (e.g., the pedigree graph), we define the stretch of an edge (k, j) ∈ E,
denoted as strethT (k, j), to be the length of the unique path (i.e., the number of edges
on the path) in T between k and j. The average stretch of G with respect to T is
then defined as avg-stretchT (E) = 1

|E|
∑

(k,j)∈E stretchT (k, j).

Lemma 13. Given a pedigree G, we can build a low-stretch spanning tree T (G)
in O(n log n) time such that |CP| = O(n log2 n · log log n) after compacting.

Proof. In [9], Elkin et al. showed that every unweighted connected graph G =
(V, E) contains a spanning tree, into which each edge of the graph can be embedded
with an average stretch of O(log2 n log log n). Moreover, this tree can constructed in
O(|E| log |V |) time. In our situation, such a low-stretch spanning tree T (G) can be
built in O(n log n) time because |E| ≤ 2n and |V | = n. The following inequality
establishes the relationship between |CP| and the average stretch of E with respect to
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T (G). From Corollary 8, we have

|CP| =
∑

e∈EX

|CP(e)|

≤
∑

C induced by e∈EX

2 · length(C)

=
∑

e = (k,j)∈EX

2 ·
(
stretchT (k, j) + 1

)
≤ 2

∑
(k,j)∈E

stretchT (k, j) + 2n

≤ 2 · |E| · avg-stretchT (E) + 2n

≤ 2 · (2n) · O(log2 n log log n) + 2n

= O(n · log2 n log log n)

4.3. Elimination of redundant tree constraints and the final algorithm.
After we process (i.e., compact or transform) the path constraints, we eliminate re-
dundant tree constraints and obtain a compact tree constraint set containing at
most n constraints as shown in Corollary 9. The complete algorithm for eliminat-
ing redundant cycle, path, and tree constraints is given in Figure 6 as Procedure
Compact Constraints. The next theorem summarizes the above discussion.

Theorem 14. Given the constraint sets CC, CP, and CT on a pedigree, we can
reduce them to an equivalent constraint set of size O(n · log2 n log log n) in O(mn)
time. In particular, for tree pedigrees and pedigrees with an all-heterozygous locus, the
equivalent constraint set has size O(n).

We can incorporate the above redundant constraint elimination procedure
Compact Constraints into the O(mn3) time algorithm for ZRHC in order to obtain an
improved algorithm Improved ZRHC Phase as shown in Figure 4. (An example of how
Improved ZRHC Phase works is given in the appendix.) The following theorem is obvious
given Theorem 14.

Theorem 15. Algorithm Improved ZRHC Phase solves the ZRHC problem correctly
on any pedigree in O(mn2 + n3 log2 n log log n) time. Moreover, it solves ZRHC on
tree pedigrees or pedigrees with an all-heterozygous locus in O(mn2 + n3) time.

5. Concluding remarks. It remains interesting if the time complexity for ZRHC
on general pedigrees can be improved to O(mn2+n3) or lower. Another open question
is how to use the algorithm to solve MRHC on pedigrees that require only a small
(constant) number of recombinants.

Appendix.

A. Some related biological definitions. The genome of an organism consists
of chromosomes that are double strand DNAs. Locations on a chromosome can be
labelled using markers, which are small segments of DNA with some specific features.
A physical position of a marker on a chromosome is called a marker locus and a
marker state is called an allele. In diploid organisms, chromosomes come in pairs. The
status of two alleles at a particular marker locus of a pair of chromosomes is called
a marker genotype. The genotype information at a locus will be denoted using a set,
e.g., {a, b}. If the two alleles a and b are the same, then the genotype is homozygous.
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Procedure Compact Constraints

input: CC, CP, CT, and a fixed tree edge e0

output: compact CC, CP, and CT

begin

Step 1. Removing redundant cycle constraints

for each cross edge e

Pick an arbitrary constraint, say c = (e, b), from CC(e);

if there exists a constraint (e, b + 1) ∈ CC(e)

exit “The input genotypes are inconsistent.”;

CC = CC − CC(e)
⊎

{c};

Step 2. Processing path constraints

if G is a tree pedigree
for each cross edge e

ĈP(e) = ∅;
for each constraint c = (k, j, b, e) ∈ CP(e)

if there exists a constraint (k, j, b + 1, e) ∈ CP(e)

exit “The input genotypes are inconsistent.”;

ĈP(e) = ĈP(e)
⊎
{c};

CP = CP − CP(e)
⊎

ĈP(e);

else if G has an all-heterozygous locus
for each cross edge e

Let (b′, e) be the cycle constraint for e in CC;

for each constraint c = (k, j, b, e) in CP(e)

Construct a new constraint c′ = (k, j, b − b′, e0);

CT = CT
⊎

{c′} ;

else (i.e., G is a general pedigree)

for each cross edge e

ĈP(e) = Compact PT Const(CP(e), e0);

CP = CP − CP(e)
⊎

ĈP(e);

Step 3. Removing redundant tree constraints

CT = Compact PT Const(CT, e0);

end.

Fig. 6. The procedure for removing redundant constraints.

Otherwise, it is heterozygous. A haplotype consists of all alleles, one from each locus,
that are on the same chromosome. Figure 1(A) illustrates the above concepts, where
alleles are represented by their numerical IDs.

A pedigree can be defined formally as follows.
Definition 16. A pedigree graph is a weakly connected directed acyclic graph

(DAG) G = (V, E), where V = M ∪ F , M stands for the male nodes, and F stands
for the female nodes. The in-degree of each node is 0 (founders) or 2 (nonfounders).
If the in-degree of a node is 2, then one edge must start from a male node (called
father) and the other edge from a female node (called mother), and the node itself is
a child of its parents (father and mother).
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A mating loop consists of two distinct paths from a node x to a node y. Figure 1(B)
illustrates an example pedigree with a mating loop. The Mendelian law of inheritance
states that the alleles of a child must come from the alleles of its parents at each
marker locus (i.e., assuming no mutations within a pedigree). In other words, the two
alleles at each locus of the child have different origins: one is from its father (which is
called the paternal allele) and the other from its mother (which is called the maternal
allele). Usually, a child inherits a complete haplotype from each parent. However,
recombination may occur, where the two haplotypes of a parent get shuffled due to a
crossover of chromosomes and one of the shuffled copies is passed on to the child. Such
an event is called a recombination event, and its result is called a recombinant. Since
markers are usually short DNA sequences, we assume that recombination occurs only
between markers. Figure 1(C) illustrates an example where the paternal haplotype of
member 3 is the result of a recombinant. The paternal allele and maternal allele at
each locus is separated by a “|” in this figure.

We use the term haplotype configuration to describes not only the paternal and
maternal haplotypes of an individual but also the grandpaternal or grandmaternal
origin of each allele on the haplotypes. Observe that the number of recombinants
required in a pedigree can be easily computed once the haplotype configuration of
each member of the pedigree is given. The MRHC problem is defined as follows.

Definition 17 (MRHC). Given a pedigree and genotype information for each
member of the pedigree, find a haplotype configuration for the pedigree that requires
the minimum number of recombinants.

Namely, the ZRHC problem is a special case of MRHC with the following defini-
tion.

Definition 18 (ZRHC). Given a pedigree and genotype information for each
member of the pedigree, find a haplotype configuration for the pedigree that requires
no recombinant (if such solution exists).

B. An example execution of Algorithm Improved ZRHC phase. The
example in Figure 7 aims to demonstrate how Algorithm Improved ZRHC phase works
(see Figure 6 for the pseudocode of the algorithm). The input pedigree with genotype
data is shown in Figure 7(A), and the corresponding pedigree graph is in Figure 7(B).

In Step 1, we generate the locus graphs (or forests) as illustrated in Figure 7(C)
and identify the predetermined vertices in Figure 7(D). Moreover, we arbitrarily pick
a tree edge, say e1,4, as the indicator to distinguish tree constraints from path con-
straints, which is defined in subsection 3.1.

In Step 2, we generate cycle, path, and tree constraints as follows. For example,
given the cycle C = v2v5v3v6v2 in the second locus graph of Figure 7(D), we denote
the cycle constraint h2,5 + h3,5 + h3,6 + h2,6 = 0 by the form (0, e2,6). Afterwards,
we have CC = {(0, e2,6), (0, e2,6)}, CP = {(v4, v9, 0, e4,9), (v9, v8, 1, e4,9)} and CT =
{(v6, v8, 0, e1,4), (v6, v9, 1, e1,4), (v4, v8, 1, e1,4)}.

In Step 2′, we first remove redundant cycle constraints and obtain CC = {(0, e2,6)}.
Next, we need to take care of path constraints. For instance, given the path con-
straints (v4, v9, 0, e4,9) and (v9, v8, 1, e4,9) induced by the cross edge e4,9, we draw the
constraint graph as illustrated in Figure 7(E) to help remove redundant path con-
straints and obtain CP = {(v4, v9, 0, e4,9), (v9, v8, 1, e4,9)} based on Lemma 7. Then
we construct the constraint graph as shown in Figure 7(E) for tree constraints and
obtain CT = {(v4, v8, 1, e1,4), (v4, v6, 1, e1,4), (v4, v9, 0, e1,4)}, according to Lemma 7.

In Step 3, we apply Gaussian elimination to the following linear system, which is
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Fig. 7. A. An example input pedigree with genotype data. Here, the alleles at a locus are ordered
according to their ID numbers instead of phase (which is unknown). B. The pedigree graph with a
spanning tree. The tree edges are highlighted. C. Locus graphs for the three loci, respectively. The
locus forests are highlighted. D. The predetermined nodes. In the locus graphs, the predetermined
nodes are indicated by their corresponding p-value (i.e., the number 0 or 1 near the nodes), while
the undetermined nodes are accompanied by the question mark (i.e., “?”). The seeds in the graphs
are highlighted by thick borders. E. The constraint graphs. The left graph is for removing redundant
path constraints generated by the cross edge e4,9, while the right graph is for tree constraints. The
roots (see Lemma 7 for the definition) in the graphs are highlighted by thick borders. F. The locus
graphs with propagated p-values. The notations are the same as those in Figure 7(D), except that
the question marks on the undermined nodes are replaced by their resolved p-values. The resolved
p-values are expressed as a linear combination of the free variables in pj [i] and the free h-variables
with an appropriate constant term.
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equivalent to CC
⊎

CP
⊎

CT:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h2,5 + h3,5 + h3,6 + h2,6 = 0, i.e., the cycle constraint (0, e2,6),
h4,9 = 0, i.e., the path constraint (v4, v9, 0, e4,9),
h4,9 + h2,4 + h2,5 + h3,5 + h3,6 + h6,8 = 1, i.e., the path constraint (v9, v8, 1, e4,9),
h2,4 + h2,5 + h5,3 + h3,6 + h6,8 = 1, i.e., the tree constraint (v4, v8, 1, e1,4),
h2,4 + h2,5 + h5,3 + h3,6 = 1, i.e., the tree constraint (v4, v6, 1, e1,4),
h2,4 + h2,5 + h5,3 + h3,6 + h6,8 + h8,9 = 0, i.e., the tree constraint (v4, v9, 0, e1,4).

Then we obtain the following general solution:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h4,9 = 0,
h6,8 = 0,
h8,9 = 1,
h2,6 = h2,5 + h3,5 + h3,6,
h2,4 = h2,5 + h3,5 + h3,6 + 1,

where h2,5, h3,5, h3,6, h1,4, and h7,8 are free variables.
In Step 4, we solve the unknown p-values by propagation from the seeds and

obtain all p-values as shown in Figure 7(F).
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