
Code Equivalence and Group Isomorphism

László Babai∗, Paolo Codenotti, Joshua A. Grochow
{laci, paoloc, joshuag}@cs.uchicago.edu (University of Chicago)

and
Youming Qiao†

jimmyqiao86@gmail.com (Tsinghua University)

Abstract

The isomorphism problem for groups given by their
multiplication tables has long been known to be solv-
able in time nlogn+O(1). The decades-old quest for a
polynomial-time algorithm has focused on the very dif-
ficult case of class-2 nilpotent groups (groups whose quo-
tient by their center is abelian), with little success. In
this paper we consider the opposite end of the spec-
trum and initiate a more hopeful program to find a
polynomial-time algorithm for semisimple groups, de-
fined as groups without abelian normal subgroups. First
we prove that the isomorphism problem for this class
can be solved in time nO(log logn). We then identify cer-
tain bottlenecks to polynomial-time solvability and give
a polynomial-time solution to a rich subclass, namely
the semisimple groups where each minimal normal sub-
group has a bounded number of simple factors. We
relate the results to the filtration of groups introduced
by Babai and Beals (1999).

One of our tools is an algorithm for equivalence
of (not necessarily linear) codes in simply-exponential
time in the length of the code, obtained by modifying
Luks’s algorithm for hypergraph isomorphism in simply-
exponential time in the number of vertices (FOCS
1999).

We comment on the complexity of the closely re-
lated problem of permutational isomorphism of permu-
tation groups.

1 Introduction

1.1 Group isomorphism - bottlenecks and ap-
proach. The isomorphism problem for groups asks to
determine if two groups, given by their Cayley tables
(multiplication tables), are isomorphic. Tarjan is cred-

∗László Babai’s work was supported in part by NSF Grant

CCF-0830370.
†Youming Qiao’s work was supported in part by the Na-

tional Natural Science Foundation of China Grant No.60553001,

and the National Basic Research Program of China Grant
Nos.2007CB807900, 2007CB807901.

ited for pointing out that if one of the groups is gener-
ated by k elements then isomorphism can be decided in
time nk+O(1) where n is the order of the groups; indeed
one can list all isomorphisms within this time bound (cf.
[27]). Since k ≤ log n for all groups, this in particular
gives an nlogn+O(1)-time algorithm for all groups (log
to the base 2) and a polynomial-time algorithm for fi-
nite simple groups (because the latter are generated by
2 elements, a consequence of their classification [14]).

In spite of considerable attention to the problem
over the past quarter century, no general bound with a
sublogarithmic exponent has been obtained.

While the abelian case is easy (O(n) according to
Kavitha [19], improving Savage’s O(n2) [30] and Vikas’s
O(n log n) [34]), just one step away from the abelian
case lurk what appear to be the most notorious cases:
nilpotent groups of class 2. These groups G are defined
by the property that the quotient G/Z(G) is abelian,
where Z(G) is the center of G. No complete structure
theory of such groups is known; recent work in this
direction by James Wilson [35, 36] commands attention.

Recently, other special classes of solvable groups
have been considered; the isomorphism problem of
extensions of an abelian group by a cyclic group of
relatively prime order has been solved very efficiently
(sublinear time in the black-box model) [22]. We note
that the structure of such groups is well understood.

While class-2 nilpotent groups have long been recog-
nized as the chief bottleneck in the group isomorphism
problem, this intuition has never been formalized. The
ultimate formalization would reduce the general case to
this case. As a first step, we consider a significant class
without a chance of a complete structure theory at the
opposite end of the spectrum: groups without abelian
normal subgroups. Following [29], we call such groups
semisimple1. Our project is to show that semisimple
groups admit a polynomial-time isomorphism test.

1We note that authors use the term ‘semisimple group’ in
several different meanings (see e. g. [33]).

1395 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1.2 A general result. The solvable radical Rad(G)
of a group G is the unique maximal solvable normal
subgroup of G. A group G is semisimple if and only
if Rad(G) = 1. For every group G, the quotient
G/Rad(G) is semisimple. This fact indicates the rich-
ness of the class of semisimple groups.

Our first result, to be proved in Section 4 (see
Corollary 4.2), concerns the entire class.

Theorem 1.1. Isomorphism of two semisimple groups
of order n can be decided in time nO(1)+c log logn, where
c = 1/ log(60) ≈ 0.16929. In fact, all isomorphisms can
be listed within this time bound.

Remark. Because the algorithm above lists all the
isomorphisms, we cannot hope to get a better bound
on the running time for pairs of groups with that
many isomorphisms. Such groups do indeed exist. For
example, consider the group G = Ak5 , the direct product
of k copies of the alternating group of order 60. The
group Ak5 is semisimple and has 120kk! > nc log logn

automorphisms (n = |G| = 60k), where c = 1/ log(60).

Recall that the trivial algorithm to check isomor-
phism takes time nO(1)+k, where k is the number of
generators of our groups2. We point out that Theo-
rem 1.1 is not a special case of the nO(1)+k bound.

Fact 1.1. There exist semisimple groups which require
at least log120 n generators.

For example, Sk5 is semisimple (where S5 is the sym-
metric group of degree 5 and order 120), but every set
of generators of Sk5 has size at least k, since Sk5 has a
quotient isomorphic to Zk2 . Here k = log120(n).

1.3 The main result. We now deal with cases when
it is not possible to list all the isomorphisms within
the desired time bound. The set of isomorphisms
of two groups G and H is either empty or a coset
Aut(G)σ of Aut(G), which we will represent by a list
of generators of the automorphism group of G and a
particular isomorphism σ : G→ H.

Every minimal normal subgroup is characteristi-
cally simple, and hence it is the direct product of iso-
morphic simple groups. (See Section 2.5 for definitions.)

We parametrize our groups G by a parameter t(G)
and solve the case of bounded t(G) in polynomial time,
and the general case in time nO(log(t(G)+1)). We define
t(G) as the smallest t such that each minimal normal
subgroup of G has at most t simple factors. Our main
result is the following.

2Throughout this paper, n denotes the order of the groups to
be tested for isomorphism.

Theorem 1.2. Isomorphism of semisimple groups G
and H of order n can be decided, and the coset of
isomorphisms found, in time nO(1)+c log(t(G))), where
c = 6/ log(60) ≈ 1.0158.

We prove this result in Section 6 (see Corollary 6.2).
Note that t(G) ≤ log60 n, and hence this result sub-

sumes Theorem 1.1 (but the algorithm of Theorem 1.1
is much simpler).

Every semisimple group is an extension of a group
G with t(G) = 1 by a permutation group of logarithmic
degree (Fact 7.3). Therefore a key ingredient of the
yet unsolved part of the project will be to decide
permutational isomorphism of permutation groups of
degree k in time polynomial in 2k and the order of the
groups. That doing so is indeed necessary is shown
in Prop. 7.1. While we cannot claim that it is also
sufficient (cf. Appendix Section 7.6), we believe that a
solution of the stated complexity for the permutational
isomorphism problem, combined with the methods of
the present paper, will get us close to a polynomial-
time solution of group isomorphism for all semisimple
groups. We solve the case of bounded orbits in the
required time (see Theorem 7.2). We note that this case
includes equivalence of linear codes over prime fields of
bounded order (see Proposition 7.2)

1.4 Codes. We reduce the isomorphism problem for
semisimple groups to equivalence of group codes. We
consider the code equivalence problem as a separate
problem of interest in its own right. A code of length n
over a finite alphabet Γ is a subset of ΓA for some set
A with |A| = n. An equivalence of the codes A ⊆ ΓA

and B ⊆ ΓB is a bijection A→ B that takes A to B. If
|Γ| = 2 then the code is a Boolean function or hyper-
graph, so the code equivalence problem is a generaliza-
tion of the hypergraph isomorphism problem. Modify-
ing and extending Luks’s Cn dynamic programming al-
gorithm for hypergraph isomorphism [26] to treat code
equivalence, we obtain the following result, proved in
Section 5.2.

Theorem 1.3. The set of equivalences of two codes of
length n over an alphabet of size k can be found in time
(ck)2n, for some absolute constant c.

As before, the set of equivalences is a coset, given
by generators and a coset representative.

We remark that our algorithm, while inspired by
Luks’s, is different from his even in the special case
of hypergraph isomorphism. We obtain some simpli-
fication by eliminating a divide-and-conquer aspect of
Luks’s algorithm; the cost is somewhat lesser efficiency.

Now let Γ be a group.

1396 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Definition 1.1. A Γ-code of length n (or a group-code
of length n over Γ) is a subgroup of Γn.

We shall apply Theorem 1.3 to group codes. To be
more precise, we need to extend the concept, and
Theorem 1.3, to multiple alphabets, where the alphabet
used depends on the position (see Theorem 5.1).

One would hope for a more efficient algorithm for
group codes that does not ignore the group structure.
The first author [6] found such a faster algorithm for
linear codes (see Appendix, Section 7.1).

1.5 Strategy for the main result. The socle of a
group is defined as the product of its minimal normal
subgroups. The socle of a semisimple group is the direct
product of nonabelian simple groups.

First we observe that isomorphism of groups that
are direct products of simple groups can be tested in
polynomial time (Proposition 2.1). So we can assume
that our semisimple groups G and H have isomorphic
socles which decompose “isomorphically” into the direct
product of minimal normal subgroups.

We find a “small” canonical class of labellings of
each minimal normal subgroup. Once such a labelling is
fixed for each minimal normal subgroup, the problem is
reduced to group code isomorphism where the alphabets
are the automorphism groups of the minimal normal
subgroups.

1.6 Organization. The remainder of the paper is or-
ganized as follows. Section 2 introduces group-theoretic
terminology and constructions. In Section 3 we pre-
ove the key lemma that is the basis for our algorithms.
In Section 4 we prove Theorem 1.1. Our algorithms
for code equivalence are presented in Section 5. in
Section 6 we present our main algorithm. In the Ap-
pendix, Section 7.1 we present the algorithm for lin-
ear code equivalence. In Section 7.2 we reduce problem
of deciding the permutational isomorphism of permu-
tation groups within the stated time bounds to solv-
ing semisimple group isomorphism in polynomial time,
formally showing the necessity of the former. In Sec-
tions 7.4 and 7.3 we discuss the complexity of permu-
tational isomorphism of permutation groups. In Sec-
tions 7.5 and 7.6 we relate our results to the Babai-
Beals filtration. Finally, we collect open questions in
Section 7.7.

1.7 Conventions. We list some conventions that we
use throughout the paper. Unless indicated otherwise,

• log is to the base 2;
• groups are finite;
• n is the order of the group G;

• ‘simple groups’ are non-abelian.

2 Group Theoretic Preliminaries

2.1 Permutation groups. Sym(A) denotes the
symmetric group acting on the set A, i. e., the group
of all permutations of A. Sn denotes Sym([n]) where
[n] = {1, . . . , n}. Permutation groups acting on the
permutation domain A are subgroups G ≤ Sym(A).
If |A| = n then G is a permutation group of degree
n. For a ∈ A and π ∈ G we use aπ to denote the
image of a under π. The orbit of a ∈ A is the set
aG := {aπ : π ∈ G}. The orbits partition the permuta-
tion domain. The length of an orbit is its size.

A coset of G is Gπ = {gπ : g ∈ G} for some
π ∈ Sym(A). The intersection of cosets Gg and Hh
(G,H ≤ Sym(A), g, h ∈ Sym(A)) is either empty or
a coset of G ∩ H. A coset Gg is given by a coset
representative g′ ∈ Gg and a list of generators of the
group G.

Given two finite sets A and B, an element σ ∈
Sym(A), and a bijection π : A → B, we define σπ ∈
Sym(B) by σπ = π−1σπ. Given a set of elements
Σ ⊆ Sym(A), we define Σπ = {σπ : σ ∈ Σ}.

If K ≤ Sym(A) and L ≤ Sym(B) are permu-
tation groups, then a bijection π : A → B is a per-
mutational isomorphism K → L if Kπ = L. We
denote the set of all K → L permutational isomor-
phisms by PISO(K,L), and we say K and L are per-
mutationally isomorphic if PISO(K,L) 6= ∅. Note that
PISO(K,K) = NSym(A)(K), the normalizer of K in
Sym(A). We shall comment on the complexity of de-
termining PISO(K,L) in Sections 7.3 and 7.4.

2.2 Algorithms for permutation groups For per-
mutation groups given by a list of generators, the basic
tasks of membership testing, computing the order, find-
ing the normal closure can be done in polynomial time
[32, 15, 21], cf. [31] and in fact in NC [12]. Many more
advanced tasks, such as finding a composition series can
also be done in polynomial time [25] and even in NC [12].

A particularly important problem for permutation
groups is the Coset Intersection problem: given two
cosets of subgroups of Sym(A), find their intersec-
tion. Graph Isomorphism can be Karp-reduced to
Coset Intersection [24]. The Coset Intersection prob-
lem for permutation groups of degree n can be solved in
exp(Õ(

√
n)) time [2] (see also [7, 10]).

2.3 Abstract groups. In algorithms, a group G is
specified by its multiplication table, consisting of |G|2
group entries.

Given two groups G and H, a bijection π : G → H
is a group isomorphism if it is a homomorphism, i. e.,

1397 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(g1g2)π = gπ1 g
π
2 for all g1, g2 ∈ G. An isomorphism

G → G is an automorphism. We denote the group
of automorphisms by Aut(G) and the set of G → H
isomorphisms by ISO(G,H). We say G and H are
isomorphic if ISO(G,H) is not empty. As in the case of
code equivalence ISO(G,H) is either empty or a coset
of Sym(G ∪H).

An embedding is an injective group homomorphism.
The notation ϕ : G ↪→ H means that ϕ is an embedding
of G into H.

If N EG is a normal subgroup of G, then G acts on
N by conjugation. This action defines a homomorphism
γ = γG,N : G → Aut(N). For g ∈ G and n ∈ N , we
write ng = nγ(g) = g−1ng. G is said to act faithfully
on N if γ is injective. Note that ker(γ) = CG(N),
the centralizer of N in G. If CG(N) = 1, then
γ is an embedding. If we take N = G, then an
automorphism of the form γ(g) is called inner. The
group of inner automorphisms is denoted Inn(G); it is
a normal subgroup of Aut(G), and Inn(G) ∼= G/Z(G)
where Z(G) denotes the center of G. If Z(G) = 1 then
γG = γG,G is a canonical isomorphism G ∼= Inn(G).

Lemma 2.1. Let G be a group, and N E G a normal
subgroup with trivial centralizer. Then every isomor-
phism ϕ : N → M extends uniquely to an embedding
Φ: G ↪→ Aut(M) with Φ|N = ϕγM . In particular, there
is a bijection between ISO(N,M) and the set of embed-
dings Φ: G ↪→ Aut(M) such that Φ(N) = Inn(M).

2.4 Direct, semidirect, subdirect, and wreath
products. Given groups G1, . . . , Gr, we write

∏r
i=1Gi

for the direct (Cartesian) product G1 × · · · × Gr. We
write πj :

∏r
i=1Gi → Gj for the projection map onto

the j-th factor. A subdirect product of G1, . . . , Gr is a
subgroup H ≤

∏r
i=1Gi such that πj(H) = Gj for each

j.
Given a group K with an action on another group

H given by θ : K → Aut(H), the semidirect product
H oθ K is a group with underlying set H × K =
{(h, k) : h ∈ H, k ∈ K} and multiplication defined by:

(h1, k1)(h2, k2) = (h1h
θ(k−1

1)
2 , k1k2). When the action θ

is understood, we write simply H oK.
If θ : K → Sym(A) is a permutation action of K

on the set A, we define the wreath product H oθ K
as HA oθ K, where θ : K → Aut(HA) is the action
of K on HA by permuting the factors. That is,
(h1, . . . , hn)θ(k) = (h1θ(k) , . . . , hnθ(k)), where we have
assumed A = [n]. If K ≤ Sym(A) is a permutation
group, we write simply H oK = HA oK.

2.5 Characteristically simple groups; the socle.

Definition 2.1. Let H ≤ G be a subgroup. H is
a characteristic subgroup if H is invariant under all
automorphisms of G. A group is characteristically
simple if it has no nontrivial characteristic subgroups.

Fact 2.1. Every characteristically simple group is the
direct product of isomorphic (abelian or non-abelian)
simple groups.

Proposition 2.1. Let G be a direct product of simple
groups.
(a) The (unique) direct product decomposition of G into
its simple factors can be found in polynomial time.
(b) Isomorphism of G and any other group H can
be decided, and the set of isomorphisms found, in
polynomial time.

Proof. (a) Take the normal closure of each element; take
the minimal ones among the subgroups obtained. These
are the direct factors. (b) Do the same to H and verify
that a direct decomposition was found; if not, reject
isomorphism. Otherwise decide which pairs among the
simple factors of G and H are isomorphic and find all
their isomorphisms. If the multiplicities of isomorphism
types don’t match, reject isomorphism. Otherwise, find
an isomorphism along matched factors of G and H;
combine this with the automorphim group of G. The
automorphism group of G =

∏
T kii is

∏
Aut(Ti) o Ski .

We used the fact that all isomorphisms of two
simple groups (and therefore all automorphisms of a
simple group) can be listed in polynomial time. The
reason, as pointed out in the Introduction, is that simple
groups can be generated by 2 elements. �

While the proof above is straightforward, we men-
tion that the same result holds, nontrivially, in the con-
text of permutation groups; in fact, if a permutation
group is a product of simple groups, it can be split into
its simple factors in NC [12]. We mention that direct
decomposition of a permutation group is also known
to be computable in polynomial time even if the direct
factors are not simple; this was done in [20] for groups
given by Cayley tables and by Wilson [37] for permuta-
tion groups.

N CG is a minimal normal subgroup if |N | > 1 and
N does not contain any nonidentity normal subgroup of
G other than itself.

Fact 2.2. Every minimal normal subgroup is charac-
teristic.

Recall that the socle of a group G, denoted by
Soc(G), is the product of the minimal normal subgroups
of G.

1398 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Now let us look at the case where G is semisimple.
In this case Soc(G) is the direct product of all minimal
normal subgroups. We group this direct product by
isomorphism types of the minimal normal subgroups as

(2.1) Soc(G) =
d∏
i=1

zi∏
j=1

Ni,j ∼=
d∏
i=1

Kzi
i ,

where the Ni,j are the minimal normal subgroups and
(∀i, j)(Ni,j ∼= Ki). The Ki are pairwise non-isomorphic
characteristically simple groups.

We refine the decomposition (2.1) to simple factors,
and then lump the isomorphic simple factors together
to obtain the following decomposition:

(2.2) Soc(G) =
r∏
i=1

ki∏
j=1

Vi,j ∼=
r∏
i=1

T kii ,

where (∀i, j)(Vi,j ∼= Ti), and the Ti are pairwise non-
isomorophic simple groups.

By Proposition 2.1, we can decide isomorphism
of Soc(G) and Soc(H) in polynomial time. In fact,
we can find the two product decompositions of the
socles described above in polynomial time, and decide
isomorphism of the factors.

2.6 Diagonals and diagonal respecting isomor-
phisms.

Definition 2.2. Let V1, . . . , Vr be isomorphic groups,
(∀i)(Vi ∼= T). A diagonal of (V1, . . . , Vr) is an embed-
ding φ : T ↪→

∏r
i=1 Vi such that Im(φ) is a subdirect

product of the Vi.
More generally if we have a system of groups

(V1,1, . . . , V1,k1), . . . , (Vr,1, . . . , Vr,kr), where for every
i ≤ r, and every j ≤ ki, we have Vi,j ∼= Ti. Then a
diagonal product of the system (Vi,j) is an embedding
φi×· · ·×φr : T1×· · ·×Tr ↪→

∏k1
j=1 V1,j×· · ·×

∏kr
j=1 Vr,j ,

where each φi is a diagonal of (Vi,j)kij=1.

A diagonal establishes an identification of the fac-
tors.

The standard diagonal of T k is the map ∆ : t →
(t, . . . , t). Similarly, the standard diagonal product of∏r
i=1 T

ki
i is the map ∆ = ∆1×· · ·×∆r, where for every

i, ∆i is the standard diagonal for T kii .
We will be interested in isomorphisms that respect

diagonals. In order to even define this concept, we need
to talk about isomorphisms that respect the decompo-
sition of the groups into direct products.

Definition 2.3. (ISOp) Given two groups X,Y , along
with product decompositions X =

∏r
i=1

∏ki
j=1 Vi,j ,

Y =
∏r
i=1

∏ki
j=1 Ui,j , where (∀i, j)(Ui,j ∼= Vi,j ∼= Ti),

we say that an isomorphism χ : G → H respects
the decompositions V = (Vi,j) and U = (Ui,j) if
(∀i, j)(∃j′)(χ(Vi,j) = Ui,j′). We denote the set of
isomorphisms that respect decompositions V and U by
ISOp((X,V), (Y,U)), where the ‘p’ stands for product
decomposition. If the decompositions are understood
from context, we will write ISOp(X,Y).

Definition 2.4. (ISOd) Let X,Y be two groups with
product decompositions X =

∏r
i=1

∏ki
j=1 Vi,j , and Y =∏r

i=1

∏ki
j=1 Ui,j , where (∀i, j)(Ui,j ∼= Vi,j ∼= Ti), and

let ϕ, ψ be diagonal products of V = (Vi,j) and U =
(Ui,j) respectively. We say that an isomorphism χ ∈
ISOp((X,V), (Y,U)) respects the diagonal products ϕ
and ψ if ϕχ = ψ. We denote the set of diagonal product
respecting isomorphisms by ISOd((X,V), (Y,U);ϕ,ψ).
Again, if V and U are understood from context, we will
omit them.

Lemma 2.2. Let X,Y , be two groups with prod-
uct decompositions X =

∏r
i=1

∏ki
j=1 Vi,j, Y =∏r

i=1

∏ki
j=1 Ui,j, where (∀i, j)(Ui,j ∼= Vi,j ∼= Ti). Let

V = (Vi,j), and U = (Ui,j) be the product decomposi-
tions. Fix a diagonal product ϕ = (ϕ1, . . . , ϕr) of (Vi,j),
and let D be the set of all diagonal products of (Ui,j).
Then

ISOp((X,V), (Y,U)) =
⋃
ψ∈D

ISOd((X,V), (Y,U);ϕ,ψ).

Proof. We need to show that given a χ ∈
ISOp((X,V), (Y,U)), there is some ψ ∈ D such that χ
respects ϕ, ψ. Let ψ = ϕχ. Then ψ is a diagonal prod-
uct of Y , since χ respects the product decomposition.
Moreover, χ respects ϕ, ψ by definition. �

Lemma 2.3. The number of diagonal products of a
system of groups ((Vi,j)kij=1)ri=1, where (∀i, j)(Vi,j ∼= Ti)
is
∏r
i=1 |Aut(Ti)|ki .

Proof. For each i, let di be the number of diagonals
ϕi : Ti →

∏ki
j=1 Vi,j . The number of diagonal prod-

ucts will be
∏r
i=1 di. Now fix some i. The set of

diagonals ϕi : Ti →
∏ki
j=1 Vi,j is in bijective corre-

spondence to the set
∏ki
j=1 ISO(Ti, Vi,j), since ϕi(Ti)

is a subdirect product. But Ti ∼= Vi,j by assumption,
and hence (∀j)(ISO(Ti, Vi,j)| = |Aut(Ti)|). Therefore
di = |Aut(Ti)|ki . �

We now look at the case where the factors of the
decomposition are simple, since this will be a case we
encounter in our algorithms.

1399 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Fact 2.3. If X is the direct product of simple groups,
then X decomposes uniquely as

(2.3) X =
r∏
i=1

ki∏
j=1

Vi,j ,

where Vi,j ∼= Ti, and the Ti are pairwise non-isomorphic
simple groups.

In the above fact, the subgroups Vi,j are unique, not just
their isomorphism types. Note how this is not true for
Zp × · · · × Zp. (Recall that when we say ‘simple group’
we mean simple non-abelian.)

Definition 2.5. If T is simple, and X ∼= T k, then
a diagonal of X is a diagonal of the unique decom-
position X =

∏r
i=1 Vi into factors Vi ∼= T . More-

over, if T1, . . . , Tr are non-isomorphic simple groups,
and X ∼=

∏r
i=1 T

ki
i , then a diagonal product of X is

a diagonal product of the unique decomposition X =∏r
i=1

∏ki
j=1 Vi,j into factors Vi,j ∼= Ti.

In particular, if X and Y are groups that are
direct products of simple groups, when we write
ISOp(X,Y), and ISOd(X,Y ;ϕ,ψ) omitting the decom-
position, we mean the unique decomposition given by
Equation (2.3).

3 Restriction of isomorphisms to the socle: the
key lemma

The following lemma is central to both algorithms in
this paper (Theorems 1.1 and 1.2).

Lemma 3.1. Let G and H be groups and R C G and
S C H normal subgroups with trivial centralizers. Let
α : G → G∗ ≤ Aut(R) and β : H → H∗ ≤ Aut(S) be
the faithful permutation representations of G and H via
conjugation action on R and S, resp. Let f : R→ S be
an isomorphism. Then f extends to an isomorphism f̂ :
G→ H if and only if f is a permutational isomorphism
between G∗ and H∗; and if so, f̂ = αf∗β−1 where f∗ is
the isomorphism G∗ → H∗ induced by f .

Proof. By applying the inverse of f , we may assume
R = S, and f is the identity. We claim that if f∗ exists,
it must be the identity. Suppose f∗ exists. Let f̂ denote
the corresponding G → H isomorphism. So f̂ |R = id.
Let g ∈ G and let g∗ = G∗ be the corresponding
automorphism of R. We need to show that f∗(g∗) = g∗,
that is, for all r ∈ R, rg = rf̂(g), i. e.,

(3.4) g−1rg = f̂(g)−1rf̂(g).

But f̂(g)−1rf̂(g) = f̂(g)−1f̂(r)f̂(g) = f̂(g−1rg) =
g−1rg because g−1rg ∈ R, proving (3.4). �

Proposition 3.1. Given two permutation groups G
and H given by generators, and a bijection f of the
domains, we can decide whether f is a permutational
isomorphism of G and H in polynomial time.

Proof. We can check membership of the f -images of the
generators of G in H and vice versa [15]. �

Corollary 3.1. Let G and H be two groups given by
Cayley tables. Let RCG and SCH be normal subgroups
with trivial centralizers. Assume f : R → S is an
isomorphism. Then (a) f extends in at most one way
to an isomorphism f̂ : G→ H; and (b) given f we can
decide if f̂ exists, and find it if it does, in polynomial
time.

Proof. Part(a) follows from Lemma 3.1. Part (b) follows
from (a) and Proposition 3.1. �

4 The nO(log logn) algorithm

4.1 Semisimple groups: reduction to fixed di-
agonal products of the socles. Let G and H be two
semisimple groups, with Soc(G) ∼= Soc(H) ∼=

∏r
i=1 T

ki
i ,

where the Ti are pairwise non-isomorphic non-abelian
simple groups. Corollary 3.1 applied to G and H,
with R = Soc(G), S = Soc(H) implies that the
isomorphisms between G and H are determined by
the isomorphisms of their socles. For ϕ, ψ diagonal
products of Soc(G) and Soc(H) respectively, let the set
of isomorphisms that respect diagonal products of the
socle be:

ISOds(G,H;ϕ,ψ) =
{χ ∈ ISO(G,H) :

χ|Soc(G) ∈ ISOd(Soc(G),Soc(H);ϕ,ψ)}.

Combining Corollary 3.1 and Lemma 2.2 we get the
following corollary.

Corollary 4.1. Let G,H semisimple, ϕ a diagonal
product of Soc(G), and D the set of diagonal products
of Soc(H). Then

ISO(G,H) =
⋃
ψ∈D

ISOds(G,H;ϕ,ψ).

The next lemma shows that this reduces ISO to
polynomially many instances of ISOds.

Lemma 4.1. Let D be defined as in the previous corol-
lary. Then |D| ≤ |H|2.

Proof. Each Ti is simple, hence it is generated by 2 ele-
ments. Therefore |Aut(Ti)| = |Ti|2. Since an automor-
phism is determined by the images of the generators.

1400 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

So, by Lemma 2.3, the number of diagonal products is
bounded by

∏r
i=1

∏ki
j=1 |Aut(Ti)| =

∏r
i=1

∏ki
j=1 |Ti|2 ≤

|Soc(H)|2 ≤ |H|2. �

Notation. If a group G is a direct product G =∏k
i=1Gi, we will denote the set of factors of G by

Fac(G) = {G1, . . . , Gk}.

Definition 4.1. Given two groups G =
∏k
i=1Gi, H =∏k

i=1Hi, where the Gi, Hi are simple, a bijection f
between Fac(G) and Fac(H) is said to respect the
isomorphism types if f(Gi) ∼= Gi.

Lemma 4.2. Let G and H be semisimple groups, with
Soc(G) ∼= Soc(H) ∼=

∏r
i=1 T

ki
i . Then (a) every iso-

morphism χ ∈ ISOds(G,H;ϕ,ψ) is determined by
the isomorphism respecting bijection it induces between
Fac(Soc(G)) and Fac(Soc(H)); and (b) given a bijec-
tion f : Fac(Soc(G)) → Fac(Soc(H)) that respects iso-
morphism types, we can check whether it arises as the
action of some χ ∈ ISOds(G,H;ϕ,ψ), and if so find
that unique χ, in polynomial time.

Proof. By Corollary 3.1, it suffices to prove the state-
ment for every χ ∈ ISOd(Soc(G),Soc(H);ϕ,ψ). Ap-
plying decomposition (2.2), let us write Soc(G) =∏r
i=1

∏ki
j=1 Vi,j , and Soc(H) =

∏r
i=1

∏ki
j=1 Ui,j , where

(∀i, j)(Vi,j ∼= Ui,j ∼= Ti). Let ϕ = ϕ1 × · · · × ϕr, where
ϕi : Ti ↪→

∏ki
j=1 Vi,j is a diagonal. Similarly define

(ψi)ri=1. For all i, j, let πi,j : Soc(G) → Vi,j and ρi,j :
Soc(H)→ Ui,j be the projection maps onto the compo-
nents. Notice that for every i, j, (πi,j ◦ϕi) is an isomor-
phism between Vi,j and Ti. Now let χ(Vi,j) = Ui,`, then
we claim this determines χ|Vi,j . Indeed in order for χ
to respect the diagonal products, we must have

χ|Vi,j = (πi,j ◦ ϕi)−1 ◦ (πi,` ◦ ψi).

To prove (b), construct χf : Soc(G) → Soc(H) as
follows. For every i ≤ r, j ≤ ki, let f(Vi,j) =
Ui,`. Then χf |Vi,j = (πi,j ◦ ϕi)−1 ◦ (πi,` ◦ ψi). Now
χf ∈ ISOd(Soc(G),Soc(H);ϕ,ψ), and by Corollary 3.1,
we can check in polynomial time if it extends to an
isomorphism of G and H. �

4.2 Algorithms that list all the isomorphisms.

Theorem 4.1. Let G and H be two semisimple groups,
with Soc(G) ∼= Soc(H) ∼=

∏r
i=1 T

ki
i , where the Ti are

pairwise non-isomorphic simple groups. Then we can
decide isomorphism of G and H in time nO(1)

∏r
i=1 ki!.

In fact, all isomorphisms can be listed within this time
bound.

Proof. Let Soc(G) ∼= Soc(H) ∼=
∏r
i=1 T

ki
i .

By Corollary 4.1 and Lemma 4.1, ISO(G,H) re-
duces to n2 instances of ISOds(G,H;ϕ,ψ). To find
ISOds(G,H;ϕ,ψ), iterate over all isomorphism respect-
ing bijections f between the factors of the socles,
and apply Lemma 4.2(b) to each such f . Notice
that Lemma 4.2(a) guarantees that we will find all
of ISOds(G,H;ϕ,ψ) this way. This algorithm com-
putes ISOds(G,H;ϕ,ψ) in time nO(1)|

∏r
i=1 Ski | =

nO(1)
∏r
i=1 ki!. Hence The running time to find

ISO(G,H) will be n2nO(1)
∏r
i=1 ki! = nO(1)

∏r
i=1 ki!. �

Let k =
∑r
i=1 ki be the total number of direct

factors of the socle. We note that
∏r
i=1 ki! ≤ (max ki)k.

Moreover, each component is simple, and hence has
order at least 60, and the product of the components
is a subgroup of G. Therefore

(4.5) k ≤ log60 n.

The following corollaries are now immediate.

Corollary 4.2. Isomorphism of two semisimple
groups G and H of order n can be decided in time
nO(1)+c log logn, where c = 1/ log(60) ≈ 0.16929. In
fact, all isomorphisms can be listed within this time
bound.

The following corollary answers a question raised by
V. Arvind [1].

Corollary 4.3. Let G and H be semisimple. If the
ki are bounded (each simple groups occurs a bounded
number of times as a factor of the socle), then we
can decide isomorphism and list all isomorphisms in
polynomial time.

Recall that k, the number of simple factors of
the socle, is at most log n. If it happens to be
O(log n/ log logn), then we have a stronger conclusion.

Corollary 4.4. Let G and H be semisimple. If k =
O(log n/ log logn), then we can decide isomorphism of
G and H , and list all the isomorphisms between G and
H in polynomial time.

Note that the condition k = O(log n/ log log n) neces-
sarily holds if at least a constant fraction of the simple
factors of the socle has order (logn)Ω(1).

5 Code Equivalence

5.1 Codes. A string of length n over a finite alphabet
Γ is a map x : A → Γ, where |A| = n. For a string
x ∈ ΓA and a bijection π : A → B we define the string
xπ ∈ ΓB by setting xπ(i) = x(iπ

−1
) (i ∈ B).

1401 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Definition 5.1. A code of length n over Γ with index
set A (|A| = n) is a subset of ΓA. For a bijection
π : A→ B, we define Aπ = {xπ : x ∈ A} ⊆ ΓB.

We require a generalization of the above to multiple
alphabets: let Γ1, . . . ,Γr be disjoint finite alphabets. A
string of length (k1, . . . , kr) over (Γ1, . . . ,Γr) is a set
of maps xi : Ai → Γi, denoted collectively as x, where
|Ai| = ki. The set of all such strings is

∏r
i=1 ΓAii . For

a string x ∈
∏r
i=1 ΓAii and bijections πi : Ai → Bi,

denoted collectively by π = (π1, . . . , πr) :
⋃r
i=1Ai →⋃r

i=1Bi, we define a string xπ ∈
∏r
i=1 ΓBii by setting

xπ(i, j) = xπii (j) = xi(jπ
−1
i), where (i, j) denotes the

element j ∈ Ai.

Definition 5.2. A code of length (k1, . . . , kr) with do-
main (A1, . . . , Ar) is a subset A ⊆

∏r
i=1 ΓAii . We define

Aπ as before.

Definition 5.3. If A ⊆
∏r
i=1 ΓAii and B ⊆

∏r
i=1 ΓBii

are codes, then a set of bijections πi : Ai → Bi (i =
1, . . . , r) is a code equivalence if Aπ = B where π =
(π1, . . . , πr).

The set of all A → B code equivalences will be denoted
by EQ(A,B). Each π ∈ EQ(A,B) naturally induces a
bijection between A and B, by sending x to xπ, x ∈ A.
We denote by π̂ the induced map on strings, and let
ÊQ(A,B) = {π̂ : π ∈ EQ(A,B)}.

Note that if π ∈ EQ(A,B), then EQ(A,B) =
EQ(A,A)π, so EQ(A,B) is either empty or a coset of
the permutation group EQ(A,A).

5.2 Algorithm for general code equivalence. We
describe a modification of Luks’s hypergraph isomor-
phism test [26], to solve equivalence of explicitly given
codes. The proof is based on Luks’s dynamic program-
ming idea (table lookup), and therefore, as in Luks’s
case, requires not only simply exponential time but also
simply exponential space in terms of n, the length of
the strings (or the number of vertices of the hyper-
graph). Note, however, that in the case of dense sets
of strings (or dense hypergraphs), the length of the in-
put is also exponential, and the algorithms—Luks’s as
well as ours—are polynomial-time (quadratic).

Theorem 5.1. Given the codes A ⊆
∏r
i=1 ΓAii and

B ⊆
∏r
i=1 ΓBii (as explict lists of strings), the set of

their equivalences can be found in time
∏r
i=1(c|Γi|)2ki

for some absolute constant c, where ki = |Ai| = |Bi|.

Proof. For subsets Ui ⊆ Ai we call the functions
y :
⋃r
i=1 Ui →

⋃r
i=1 Γi mapping Ui into Γi “partial

strings over A = (A1, . . . , Ar).” We call the tuple

(|U1|, . . . , |Ur|) the length of y. For every partial string
y over A, let Ay be the set of those strings in A that are
extensions of y; we make analogous definitions for B.

Our dynamic programming table will consist of the
following sets: for every pair y, z of partial strings, y
over A and z over B, of equal length and with equal
distribution of letters on their respective ranges, we
store the set I(y, z) of equivalences of the restriction
of Ay to A\dom(y) with the restriction of Bz to
B\dom(z). Note that these sets are either empty or
cosets, so we store them by a set of generators and a
coset representative.

We start with full strings y, z and work our way
down to dom(y) = dom(z) = ∅, at which point we shall
have constructed all A → B equivalences.

When y, z are full strings, we have |Ay| ≤ 1,
|Bz| ≤ 1, and the problem is trivial.

Now let y, z be proper partial strings. To construct
I(y, z) we augment the domain of y with one element
r ∈ A, and the domain of z with one element, s ∈ B.
We fix r, say r ∈ Ai, and make all possible choices of
s ∈ Bi. To find those elements of I(y, z) that take r to
s, we consider each of the |Γi| possible values our strings
can take at r; to find the corresponding coset for each
value is a table lookup; and we take the intersection of
the |Γi| cosets. Then we take the union for all s.

Analysis. The number of partial strings over A
is
∏r
i=1(|Γi| + 1)ki , where |Ai| = ki, so the number

of sets to store is less than
∏r
i=1(|Γi| + 1)2ki . The

cost of coset intersection is exp(Õ(
√
n)) (where n =∑

i ki), negligible compared to the size of the dynamic
programming table. �

6 The main algorithm

Now we can present our main algorithm, which will use
code equivalence as a subroutine.

6.1 Reduction to fixed diagonal products of
the systems of minimal normal subgroups. Let
G and H be semisimple groups. Recall that the so-
cles are the product of the minimal normal subgroups.
Let us group the terms in this product based on their
isomorphism types as follows. Applying decomposi-
tion (2.1), let us write Soc(G) =

∏d
i=1

∏zi
j=1Ni,j , and

Soc(H) =
∏d
i=1

∏zi
j=1Mi,j , where the Ni,j and Mi,j are

the minimal normal subgroups of G and H respectively,
and (∀i, j)(Ni,j ∼= Mi,j

∼= Ki). Let ϕ be a diagonal
product of the system N = (Ni,j), and ψ a diagonal
product ofM = (Mi,j). Define the set of isomorphisms
respecting diagonal products of the system of minimal
normal subgroups:

ISOdn(Soc(G),Soc(H);ϕ,ψ) =

1402 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ISOd((Soc(G),N), (Soc(H),M);ϕ,ψ).

And let us denote the extensions of the isomor-
phisms to isomorphisms of G and H by

ISOdns(G,H;ϕ,ψ) =
{χ ∈ ISO(G,H) :

χ|Soc(G) ∈ ISOdn(Soc(G),Soc(H);ϕ,ψ)}.

Recall that every minimal normal subgroup is char-
acteristically simple, and hence the direct product of
isomorphic simple groups. Therefore for every i, we
have Ki = T tii , for some simple group Ti. Let τ =∏d
i=1(ti!)zi . We will show that we can reduce ISO to

nO(1)τ instances of ISOdns, and that we can solve each
instance of ISOdns in time nO(1)τ2, by transforming it
into an instance of code equivalence.

Lemma 6.1. Let G and H be defined as above. Fix a
diagonal product ϕ of (Ni,j), and let D be the set of all
diagonal products of (Mi,j). Then,

ISO(G,H) =
⋃
ψ∈D

ISOdns(G,H;ϕ,ψ).

Proof. Note that it is possible that a χ ∈
ISO(Soc(G),Soc(H)) does not respect the decomposi-
tion of the socles as the direct product of minimal nor-
mal subgroups, i. e., χ(Ni,j) is not one of the Mi,j′ .
However, such a χ will not extend to an isomorphism of
G and H. In particular, by Corollary 3.1, every isomor-
phism of G and H is the unique extension of an isomor-
phism of ISOp((Soc(G),N), (Soc(H),M)). Therefore
the result follows from Lemma 2.2. �

Lemma 6.2. Let G be a semisimple group of order n,
and (Ni,j) the system of minimal normal subgroups of G
defined as above. Then the number of diagonal products
of the (Ni,j) is bounded by nO(1)

∏d
i=1(ti!)zi .

Proof. By Lemma 2.3, there are
∏d
i=1 |Aut(Ki)|zi diag-

onal products of this system. But

|Aut(Ki)| = |Aut(T tii)| = |Aut(Ti) o Sti |

= |Aut(Ti)|titi! = |Ti|2ti(ti!).

Hence the number of diagonal products is bounded by:

d∏
i=1

|Ti|2tizi(ti!)zi ≤ |Soc(G)|2
d∏
i=1

ti!zi ≤ nO(1)
d∏
i=1

ti!zi .

�

6.2 Embedding into the automorphism group
of the socle. Let G and H be semisimple groups, and
consider decomposition (2.1) of Soc(G) and Soc(H) as
the product of the minimal normal subgroups. Let
ϕ, ψ be diagonal products of the systems (Ni,j) and
(Mi,j) respectively. For notational convenience, let
K =

∏d
i=1K

zi
i . Pick an αϕ ∈ ISOdn(Soc(G),K;ϕ,∆),

and a βψ ∈ ISOdn(Soc(H),K;ψ,∆), where ∆ is the
standard diagonal product of

∏d
i=1K

zi
i . By Lemma 2.1,

the conjugation action of G and H on their socles gives
us corresponding embeddings α∗ϕ : G ↪→ Aut(K), and
β∗ψ : H ↪→ Aut(K), with Soc(G∗) = Soc(H∗) = Inn(K).
Let G∗ = α∗ϕ(G), and H∗ = β∗ψ(H). Notice that in fact
G∗, H∗ ≤

∏d
i=1Aut(Ki)zi , since the conjugation action

of G and H on their minimal normal subgroup fixes
them (they are normal). Moreover,

ISO(G,H) = α∗ϕ ISO(G∗, H∗)(β∗ψ)−1,

and

(6.6) ISOdns(G,H;ϕ,ψ)

= α∗ϕ ISOdns(G∗, H∗; ∆,∆)(β∗ψ)−1.

6.3 Reduction to code equivalence. From the
previous subsection, finding ISOdns(G,H;ϕ,ψ) reduces
to the case of two groups G∗, H∗ ≤

∏d
i=1 Aut(Ki)zi ,

with Soc(G∗) = Soc(H∗) = Inn(K), and we need to
compute the isomorphisms of G∗ and H∗ that preserve
the standard diagonal product of the system of minimal
normal subgroups of the socle. We will show how to for-
mulate this problem as an instance of code equivalence.
Let us call ISO*(G∗, H∗) = ISOdns(G∗, H∗; ∆,∆) the
set of isomorphisms that respect the standard diagonal
products of the system of minimal normal subgroups of
the socles.

Since G∗, H∗ ≤
∏d
i=1 Aut(Ki)zi , we can view G∗

and H∗ as codes over the alphabets Γi = Aut(Ki). Let
G and H be these codes.

Lemma 6.3.

ISO*(G∗, H∗) = ÊQ(G,H)

Proof. The ⊆ follows by Corollary 3.1. �

6.4 The algorithm. Next we state our main result
in detail.

Theorem 6.1. Given G and H semisimple.
Let Soc(G) =

∏d
i=1

∏zi
j=1Ni,j, and Soc(H) =∏d

i=1

∏zi
j=1Mi,j, where the Ni,j and Mi,j are the

minimal normal subgroups of G and H respec-
tively, and (∀i, j)(Ni,j ∼= Mi,j

∼= T tii), where the Ti

1403 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

are simple. Then we can find ISO(G,H) in time
nO(1)(

∏d
i=1(ti!)zi)3.

We note that
∑d
i=1 tizi is the number of simple

factors of the socle, and therefore, by Equation (4.5),

d∑
i=1

tizi ≤ log60 n.

Proof. Set τ =
∏d
i=1(ti!)zi . By Lemmas 6.1

and 6.2, the problem reduces to nO(1)τ instances of
ISOdns(G,H;ϕ,ψ). To find ISOdns(G,H;ϕ,ψ), we lift
G and H to subgroups G∗ and H∗ of

∏d
i=1 Aut(Ki)zi .

Using Equation (6.6), it suffices to find ISO*(G∗, H∗),
which is a code equivalence problem by Lemma 6.3. We
can solve the code equivalence problem in time

d∏
i=1

(c |Aut(Ki)|)2zi ≤
d∏
i=1

(c|Ti|2ti(ti!))2zi

≤ (
d∏
i=1

|Ti|Cziti)τ2 ≤ |Soc(G)|Cτ ≤ nO(1)τ2.

Since our algorithm runs the code equivalence sub-
routine nO(1)τ times, our total running time will be
nO(1)τ3. �

We now state some corollaries of Theorem 6.1 that
subsume the results from Section 4 (up to constant
factors in the exponent of the running time).

Recall that t(G) is the maximum width of the
minimal normal subgroups of G. In particular, if Soc(G)
is decomposed as above, t(G) = maxi ti.

Corollary 6.1. Let G and H be semisimple groups
of order n. We can find ISO(G,H) in time
nc log(t(G))+O(1), where c = 6/ log(60) ≈ 1.0158.

Proof.
∏d
i=1(ti!)zi ≤ t

P
2ziti ≤ t2 logn ≤ n2 log t.

The second to last inequality follows because |G| ≥
|Soc(G)| ≥ 60

P
tizi , and hence log n ≥

∑
tizi. �

Corollary 6.2. Let G and H be semisimple groups of
order n, with t(G) bounded by a constant. Then we can
find ISO(G,H) in polynomial time.

7 Appendix

7.1 Algorithm for linear code equivalence. In
this section we present the material of an unpublished
note by the first author [6].

We give an algorithm that tests the equivalence of
linear codes of length n over a field F in time (2+o(1))n,
assuming field operations at unit cost. To the best

of our knowledge no simply-exponential-time algorithm
was previously known.

The set of nonsingular n × n matrices over a field
F is denoted GLn(F). A linear code of length n is a
subspace U ≤ Fn. A d×n matrix over F generates the
code U if the rows of A span U .

Note that a linear code is a group code (c.f. Defini-
tion 1.1) with alphabet Γ = F , where F is a field.

Fact 7.1. Let U,W be d-dimensional codes of length n
over F , generated by d× n matrices A,B, respectively.
Then U and W are equivalent if and only if there
is a permutation matrix P ∈ GLn(F) and a matrix
T ∈ GLd(F) such that B = TAP .

Theorem 7.1. Equivalence of d-dimensional linear
codes of length n (over any field) given by generator ma-
trices can be reduced to

(
n
d

)
instances of isomorphism of

d× (n− d) bipartite graphs with colored edges. The re-
duction is polynomial-time, assuming field operations at
unit cost.

Proof. Throughout the proof, all matrices denoted by
T , T ′, Ti belong to GLd(F) and all matrices denoted
by P , P ′, Pi are permutation matrices of appropriate
dimensions.

Let A,B ∈ F d×n be matrices of rank d. We need
to find the set of pairs (T−1, P) as in Fact 7.1 such that
B = TAP (note that this set is either empty or a coset).

We say that A is in standard form if A = [Id|A1],
i. e., the first d columns of A form the identity matrix.
We can perform row operations on A followed by
a permutation of the columns to transform A to a
standard form, i. e., we can find T ′, P ′ such that T ′AP ′

is in standard form. Without loss of generality, T ′ = Id
and P ′ = In, so A itself is in standard form.

At a multiplicative cost of
(
n
d

)
, we guess the subset

[d]σ ⊆ [n] under a hypothetical A 7→ B equivalence σ ∈
Sn. By applying a single permutation to the columns,
we reduce this case to those σ satisfying [d]σ = [d]; let
us call such σ basic equivalences. The corresponding
permutation matrix P (σ) can be written as a block-
diagonal matrix diag(P0, P1) where P0 ∈ F d×d and
P1 ∈ F (n−d)×(n−d) are permutation matrices.

We reduce the search for basic equivalences to
one instance of finding the isomorphisms of F -colored
d× (n− d) bipartite graphs.

Let B = [B0|B1], where B0 ∈ F d×d consists of the
first d columns of B. Now we have B0 = TP0, so if B0

is singular then there are no basic equivalences.
Assume now that B0 ∈ GLd(F). Then B−1

0 B is in
standard form. Again without loss of generality we may
therefore assume B0 = Id, i. e., B itself is in standard
form.

1404 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Finally, we are now looking for basic equivalences
between two codes generated by matrices in standard
form A = [Id|A1] and B = [Id|B1]. Suppose B = TAP
where P = P (σ) = diag(P0, P1) represents a basic
equivalence. Then TP0 = Id, so T = P−1

0 , and B1 =
TA1P1, i. e., we are searching for permutations σ0 ∈ Sd
and σ1 ∈ Sn−d such that B1 = P (σ0)−1A1P (σ1). This
is precisely the isomorphism problem of the F -colored
bipartite graphs whose incidence matrices are A1 and
B1. �

Corollary 7.1. The set of equivalences of two linear
codes of length n (over any field) given by generator
matrices can be found in (2 + o(1))n time, assuming
field operations at unit cost.

Proof. Theorem 7.1 and the exp(Õ(
√
n)) algorithm for

graph isomorphism [11]. �

Remark. The isomorphism test in [11] is stated for
graphs rather than edge-colored graphs. We note that
the edge-colors will only speed up the algorithm.

Remark. In the opposite direction, Petrank and
Roth [28] reduced, in polynomial time, graph isomor-
phism to equivalence of binary linear codes (of length
O(|V |+ |E|)).

7.2 Reduction of permutational isomorphism
of permutation groups to isomorphism of
semisimple groups. In this section we give a formal
reduction showing that solving permutational isomor-
phism of permutation groups is indeed necessary for
solving the isomorphism problem for semisimple groups.

Proposition 7.1. If semisimple group isomorphism
can be solved in polynomial time, then permutational
isomorphism of groups K,L ≤ Sk can be solved in time
polynomial in 2k and |K|.

Proof. We will show that G = A5 o K = Ak5 o K
and H = A5 o L are isomorphic if and only if K
and L are permutationally isomorphic. Note that
the multiplication tables of G and H can easily be
constructed in time polynomial in 2k and |K|. (Here
we assume |K| = |L|; if not, then K 6∼= L and we can
handle this case easily.)

Given an isomorphism ψ ∈ ISO(G,H), it is easily
verified that ψ̌ is in PISO(K,L). Conversely, suppose
π ∈ Sk is a permutational isomorphism K → L; define
ψπ ∈ ISO(G,H) by ψπ sends elements in the i-th copy
of A5 in G to elements in the π(i)-th copy of A5 in H,
and ψπ sends K ≤ G to L ≤ H in the same manner as
π sends K to L (i. e., by conjugation). �

7.3 Complexity of permutational isomorphism
of permutation groups with bounded orbits. We
say that a permutation group G has orbit length k
if every orbit has length k; and orbit length ≤ k if
all orbits have length ≤ k. We say that a class of
permutation groups has bounded orbits if there exists k
such that all groups in the class have orbit length ≤ k.

Theorem 7.2. Permutational isomorphism of permu-
tation groups with bounded orbits can be solved in time
simply exponential in the size of the domain.

Proof. By Proposition 7.1, this problem reduces to the
polynomial-time solvability of isomorphism of semisim-
ple groups with bounded t(G) (Theorem 1.2).

Rather than using this reduction, which involves a
blow-up of the problem size, we can apply the idea of
our main algorithm directly. We fix an ordering of the
elements of each orbit. This can be done in

∏
(ki!) ways,

where ki is the length of the i-th orbit. Now
∏

(ki!) <
max(ki)

P
ki = max(ki)n, so we split our problem into

a simply exponential number of problems where the
ordering of each orbit is fixed and the isomorphisms
preserve this ordering by definition. But this problem
is easily seen to be an instance of the code isomorphism
problem, the alphabets being the restriction of the
group to each orbit. �

Proposition 7.2. There is a Karp-reduction from
equivalence of linear codes over fields of (variable) prime
order p to permutational isomorphism of permutation
groups with orbit length ≤ pO(1). For p = 2, orbit length
3 suffices.

Proof. Let U,W be linear codes of length n over F = Fp.
We will reduce the problem of finding the set of equiv-
alences of U and W to that of finding permutational
isomorphisms of two permutation groups G and H.

G and H will be permutation groups of degree
nq, where q is a prime, q ≡ 1 (mod p). By Linnik’s
celebrated result, the smallest such q satisfies q ≤ pO(1)

[23].
Consider the group X = Zq o Zp, defined by

X = 〈a, b | ap = bq = 1, a−1ba = bs〉,

where s is an element of order p modulo q, i. e., p
is the smallest number such that sp ≡ 1 (mod q).
We represent X as a permutation group of degree q
(subgroup of the group of affine linear transformations
x → αx + β, where α, β, x ∈ Fq, α 6= 0). Let B denote
the subgroup generated by b. Note that B CX and B
is cyclic of order q. Moreover, X/B ∼= Zp. Let us view
U,W as subgroups of the group L = Znp . Now we have

1405 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

a natural surjective homomorphism ϕ : Xn → L with
kernel Bn.
Claim The codes U and W are equivalent if and only
if the permutation groups G := ϕ−1(U) ≤ Xn and
H := ϕ−1(W) ≤ Xn are permutationally isomorphic.

This follows from the following well-known fact (cf.
[16, Prop. 1.3]).

Fact 7.2. If χ ∈ AutX then χ(aB) = aB.

If p = 2, we can choose q = 3 so X = Zq o Zp ∼= S3.
�

Corollary 7.2. There is a Karp-reduction from
Graph Isomorphism to permutational isomorphism of
permutation groups with orbit length 3.

Proof. Graph isomorphism reduces to equivalence of bi-
nary linear codes [28]. Combine this with the preceding
result. �

7.4 Complexity of permutational isomorphism
of permutation groups.

Proposition 7.3. Permutational isomorphism of per-
mutation groups is in NP.

Proof. This is an immediate corollary to Proposi-
tion 3.1. �

We note that isomorphism of permutation groups
is also in NP, for analogous reasons, as pointed out by
Luks, cf. [5, Cor. 4.1].

Proposition 7.4. Permutational isomorphism of per-
mutation groups is in coAM.

Proof. We sketch a private-coin protocol; then the
stated result follows by [18] and [3].

Let G1 ≤ S − n and G2 ≤ Sn be the two
permutation groups, acting on the set {1, . . . , n}. The
Verifier flips a fair coin to select i ∈ {1, 2}; picks a
random permutation σ ∈ Sn; and selects 10n elements
of σ−1Giσ uniformly at random. The Verifier reveals
these 10n elements to the Prover. The Prover guesses i.
The Verifier accepts if either the selected 10n elements
do not generate σ−1Giσ or the Prover’s guess at i is
correct, otherwise rejects.
Claim: If G1 and G2 are permutationally isomorphic
then any Prover has 1/2 + o(1) probability of success;
if G1 and G2 are not permutationally isomorphic, then
an optimal Prove always succeeds.

The proof is based on the observation that with high
probability, the 10n elements selected generate σ−1Giσ,
a consequence of the fact that Sn has no subgroup

chain of length 2n [4]. If they do generate σ−1Giσ
and G1 and G2 are permutationally isomorphic then
the Prover receives the 10n permutations from the exact
same distribution. �

Corollary 7.3. Permutational isomorphism of per-
mutation groups is not NP-complete, unless the
polynomial-time hierarchy collapses to the second level.

Proof. This follows along the lines of the the proof
that graph isomorphism is not NP-complete unless the
polynomial-time hierarchy collapses [17] (cf. [13] for a
full proof).

7.5 Relationship to the Babai-Beals filtration.
Our main algorithm was motivated by the following
chain of characteristic subgroups, introduced by Babai
and Beals [8] and since used extensively in the algorith-
mic theory of matrix groups and black-box groups (see
[9]):

1 ≤ Rad(G) ≤ Soc*(G) ≤ Pker(G) ≤ G.

We now explain the terms of this chain. Recall that
Rad(G), the solvable radical,, is the unique maximal
solvable normal subgroup of G. Soc*(G) is the preimage
of the socle Soc(G/Rad(G)) under the natural projec-
tion G→ G/Rad(G).

Note that the group Soc*(G)/Rad(G) =
Soc(G/Rad(G)) is the direct product of simple
groups T1, . . . Tk. The group G acts by conjugation
on Soc(G/Rad(G)); this action permutes the k sim-
ple groups involved, so we obtain a homomorphism
G → Sk. We denote by Pker(G) the kernel of this
homomorphism (permutation representation).

In a sense, this normal structure provides a layering
to the group isomorphism problem; the layers are

1st layer G/Pker(G): a permutation group of loga-
rithmic degree;

2nd layer Pker(G)/Soc*(G), a solvable group satisfy-
ing strong structural constraints;

3rd layer Soc*(G)/Rad(G) = Soc(G/Rad(G)), a di-
rect product of non-abelian simple groups;

4th layer Rad(G), a solvable group,

While it is by no means the case that solving the iso-
morphism problem for the layers would automatically
solve it for the entire group, solving it for the layers is
definitely a prerequisite. (This statement was formal-
ized for the top layer in Proposition 7.1.) Then the task
remains to control the “glue” that holds these layers
together.

1406 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

The bottom layer is a solvable group and testing
isomorphism in polynomial time for solvable groups re-
mains elusive (they include the notorious class-2 nilpo-
tent groups). In this paper we considered semisimple
groups only, i. e., we assumed Rad(G) is trivial and
therefore Soc*(G) = Soc(G) is a direct product of non-
abelian simple groups.

Recall that the isomorphism problem for direct
products of simple groups (third layer) is easily solved
in polynomial time (Proposition 2.1).

The second layer (“outer automorphism layer”) is
solvable but is no cause for panic; we glue it right to the
second layer. So we are considering semisimple groups
G satisfying G = Pker(G).
Observation. G = Pker(G) if and only if every
minimal normal subgroup of G is simple.

In the terminology of Section 1.3, this is equivalent
to saying that t(G) = 1. So the isomorphism problem
for this class of groups is solved in polynomial time by
Theorem 1.2.

The following observation shows that the top layer
is a permutation group of logarithmic degree.

Fact 7.3. A semisimple group of order n is the exten-
sion of a semisimple group K with t(K) = 1 by a per-
mutation group of degree ≤ log n/ log 60.

Proof. Let G be semisimple of order n and let k denote
the number of simple factors of Soc(G). Since every
nonabelian simple group has order ≥ 60, we see that
k ≤ log |Soc(G)|/ log 60. Moreover, t(Pker(G)) = 1,
and G/Pker(G) ↪→ Sk. �

Proposition 7.1 shows that the top layer of a
semisimple group is an arbitrary permutation group of
logarithmic degree.

7.6 Caveat about the glue. While we believe that
solving permutational isomorphism of K,L ≤ Sk in
time polynomial in |K| and 2k will be a significant step
toward testing isomorphism of semisimple groups, such
a result alone will not automatically suffice, at least not
for the following straightforward strategy.

For two semisimple groups G and H, sup-
pose Soc(G) = Soc(H) = T r, for some non-
abelian simple group T . Recall that G/Pker(G)
and H/Pker(H) can be embedded in Sr, so we can
form the set of permutational isomorphisms PISO =
PISO(G/Pker(G), H/Pker(H)). On the other hand,
by embedding Pker(G) and Pker(H) in Aut(T)k

we can form the set of code isomorphisms EQ =
EQ(Pker(G),Pker(H)). Note that PISO and EQ are

both either empty or cosets of Sr. One may think that
to test isomorphism of G and H, it is enough to test
if PISO∩EQ is empty or not. If this idea worked, it
would imply that the only remaining bottleneck is to
solve permutational isomorphism in time, polynomial
in |G/Pker(G)| and 2r. (Recall that coset intersection
can be done in moderately exponential time.) Here we
show a counterexample to this idea.

Proposition 7.5. There exist groups G and H such
that PISO∩EQ 6= ∅ while G 6∼= H.

Proof. Let k ≥ 5 and let T1 = T2 = Ak, R1 = Ak × C2

where C2 is the cyclic group of order 2; and let R2 = Sk.
Form Gi = (T1 × T2) o Ri, for i = 1, 2. Note that
both R1 and R2 have a copy T3 of Ak as a normal
subgroup of index 2. We define the action of the Ri
on T1 × T2 as follows: T3 acts on T1 × T2 trivially; and
the generator of Ri/T3 switches T1 and T2. It follows
that Pker(Gi) = Soc(Gi) = T1×T2×T3 (i = 1, 2). Now
Gi/Pker(Gi) = 〈(1, 2)〉 ≤ S3, so PISO = 〈(1, 2)〉 ≤ S3,
and the isomorphisms between Pker(G1) and Pker(G2)
induce S3 on the set {1, 2, 3} of indices. Thus for G1

and G2 we have PISO∩EQ 6= ∅, while it is clear that
G1 6∼= G2. �

7.7 Open questions. Deciding isomorphism of
groups (given by Cayley tables) in polynomial time re-
mains elusive. We propose to solve this problem in poly-
nomial time for semisimple groups. The main question
along the way is permutational isomorphism of permu-
tation groups of degree k in time, polynomial in 2k and
the order of the groups. In fact, for permutation groups
given by lists of generators, a time bound polynomial in
2k should be achievable, regardless of the order of the
permutation groups.

The following goals also seem realistic.

Problem. Decide isomorphism of groups satisfying
Rad(G) = Z(G) in polynomial time.

Theorem 7.1 determines equivalence of linear codes
of length n, given by generator matrices, in time (2 +
o(1))n (assuming field operations at unit cost).

Problem. Decide equivalence of linear codes of length
n, given by generator matrices, in time exp(Õ(

√
n))

(assuming field operations at unit cost).

Problem. Decide equivalence of group codes in time
(2 + o(1))n.

We are unable to achieve this bound even if the
group is cyclic or elementary abelian.

1407 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

References

[1] V. Arvind. Personal communication, 2010.
[2] László Babai. Permutation groups, coherent configu-

rations, and graph isomorphism. April 1983. D.Sc.
Thesis, Hungarian Academy of Sci. (Hungarian).

[3] László Babai. Trading group theory for randomness.
In 17th STOC, pages 421–429. ACM Press, 1985.

[4] Lászlo Babai. On the length of subgroup chains in
the symmetric group. Communications in Algebra,
14:1729–1736, 1986.

[5] László Babai. Bounded round interactive proofs in
finite groups. SIAM J. Discr. Math., 5:88–111, 1992.

[6] László Babai. Equivalence of linear codes. 2010.
Unpublished manuscript.

[7] László Babai. Coset intersection in moderately expo-
nential time. Chicago J. Theoret. Comp. Sci., to ap-
pear.

[8] László Babai and Robert Beals. A polynomial-time
theory of black-box groups I. In C. M. Campbell,
E. F. Robertson, N. Ruskuc, and G. C. Smith, editors,
Groups St Andrews 1997 in Bath, I, volume 260 of
London Math. Soc. Lect. Notes, pages 30–64. Cambr.
U. Press, 1999.

[9] László Babai, Robert Beals, and Ákos Seress.
Polynomial-time theory of matrix groups. In 41st ACM
STOC, pages 55–64. ACM Press, 2009.

[10] László Babai, William M. Kantor, and Eugene M.
Luks. Computational complexity and the classification
of finite simple groups. In Proc. 24th IEEE FOCS,
pages 162–171. IEEE Comp. Soc., 1983.

[11] László Babai and Eugene M. Luks. Canonical labeling
of graphs. In Proc. 15th ACM STOC, pages 171–183.
ACM Press, 1983.

[12] László Babai, Eugene M. Luks, and Ákos Seress.
Permutation groups in NC. In Proc. 19th ACM STOC,
pages 409–420. ACM Press, 1987.

[13] László Babai and Shlomo Moran. Arthur-Merlin
games: a randomized proof system, and a hierarchy of
complexity classes. J. Computer and Sys. Sci., 36:254–
276, 1988.

[14] John Horton Conway, Robert Turner Curtis, Si-
mon Phillips Norton, Richard A. Parker, and
Robert Arnott Wilson. Atlas of Finite Groups: Max-
imal Subgroups and Ordinary Characters for Simple
Groups. Oxford University Press, 1985.

[15] Merrick L. Furst, John Hopcroft, and Eugene M. Luks.
Polynomial-time algorithms for permutation groups.
In Proc. 21st FOCS, pages 36–41. IEEE Comp. Soc.,
1980.

[16] Marek Golasiński and Daciberg Lima Gonçalves.
Spherical space forms - homotopy types and self-
equivalences for groups. Topology and Appl., 146-
147:451–470, 2005.

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity, or all
languages in np have zero-knowledge proof systems. J.
ACM, 38:690–728, 1991.

[18] Shafi Goldwasser and Michael Sipser. Private coins
versus public coins in interactive proof systems. In
Silvio Micali, editor, Randomness and Computation,
1989.

[19] Telikepalli Kavitha. Linear time algorithms for abelian
group isomorphism and related problems. J. Comput.
Syst. Sci., 73(6):986–996, 2007.

[20] Neeraj Kayal and Timur Nezhmetdinov. Factoring
groups efficiently. In ICALP ’09: Proceedings of
the 36th International Colloquium on Automata, Lan-
guages and Programming, pages 585–596. Springer-
Verlag, 2009. Also availabe as ECCC Tech Report
TR08-074.

[21] Donald E. Knuth. Efficient representation of perm
groups. Combinatorica, 11:57–68, 1991.

[22] François Le Gall. Efficient isomorphism testing for a
class of group extensions. In STACS, pages 625–636,
2009.

[23] U. V. Linnik. On the least prime in an arithmetic
progression. I. The basic theorem. Rec. Math. [Mat.
Sbornik] N.S., 15(57):139–178, 1944.

[24] Eugene M. Luks. Isomorphism of graphs of bounded
valence can be tested in polynomial time. J. Comp.
Sys. Sci., 25:42–65, 1982.

[25] Eugene M. Luks. Computing the composition factors
of a permutation group in polynomial time. Combina-
torica, 7:87–99, 1987.

[26] Eugene M. Luks. Hypergraph isomorphism and struc-
tural equivalence of boolean functions. In Proc. 31st
ACM STOC, pages 652–658. ACM Press, 1999.

[27] Gary L. Miller. On the n log n isomorphism technique
(a preliminary report). In Proc. 10th ACM STOC,
pages 51–58, New York, NY, USA, 1978. ACM Press.

[28] Erez Petrank and Ron M. Roth. Is code equivalence
easy to decide? IEEE Transactions on Information
Theory, 43:1602–1604, 1997.

[29] Derek J.S. Robinson. A Course in the Theory of
Groups. Springer, 2nd edition, 1996.

[30] Carla Savage. An O(n2) algorithm for abelian group
isomorphism. Technical report, North Carolina State
University, 1980.

[31] Ákos Seress. Permutation Group Algorithms. Cam-
bridge University Press, 2003.

[32] Charles C. Sims. Computation with permutation
groups. In S. R. Petrick, editor, Proc. 2nd Symp. Symb.
Algeb. Manip., pages 23–28. ACM Press, 1971.

[33] M. Suzuki. Group Theory I, II. Springer, 1982, 1986.
[34] Narayan Vikas. An O(n) algorithm for abelian p-group

isomorphism and an O(n log n) algorithm for abelian
group isomorphism. J. Comput. Syst. Sci., 53(1):1–9,
1996.

[35] James B. Wilson. Decomposing p-groups via Jordan
algebras. J. Algebra, 322:2642–2679, 2009.

[36] James B. Wilson. Finding central decompositions of
p-groups. J. Group Theory, 12:813–830, 2009.

[37] James B. Wilson. Finding direct product decomposi-
tions in polynomial time. 2010. Submitted for publi-
cation. Available as arXiv e-print 1005.0548.

1408 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

