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Abstract

In this paper, we analyze an emerging economic form, called
fans economy, in which a fan donates money to the host and
gets allocated proportional to the amount of his donation (nor-
malized by the overall amount of donation). Fans economy is
the major way live streaming apps monetize and includes a
number of popular economic forms ranging from crowdfund-
ing to mutual fund.
We propose an auction game, coined all-pay auctions with
proportional allocation (APAPA), to model the fans econ-
omy and analyze the auction from the perspective of revenue.
Comparing to the standard all-pay auction, which normally
has no pure Nash-Equilibrium in the complete information
setting, we solve the pure Nash-Equilibrium of the APAPA in
closed form and prove its uniqueness. Motivated by practical
concerns, we then analyze the case where APAPA is equipped
with a reserve and show that there might be multiple equilib-
ria in this case. We give an efficient algorithm to compute
all equilibria in this case. For either case, with or without re-
serve, we show that APAPA always extracts revenue that 2-
approximates the second-highest valuation. Furthermore, we
conduct experiments to show how revenue changes with re-
spect to different reserves.

Introduction

Lately, there has been a surge of mobile apps focusing on
the so-called peer-to-peer live streaming. Prominent exam-
ples are Momo (Nasdaq: MOMO), Periscope, Twitch, and
Douyu. In essence, such apps can be seen as a social net-
work in which each peer (fan) in the network can watch the
live videos shared by another peer (host) he/she follows. A
popular host (either commentator or player) on Twitch and
Douyu, both of which focus on video games, can gather over
a million of fans in a typical game night.

What is interesting about this type of apps is the way they
monetize. While all such apps can make money via tradi-
tional advertisements, a few such apps take the initiative to
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design monetization mechanisms as follows: the app allows
fans to buy and send gifts to the host and then charges a com-
mission proportional to the price of the gift. In return, the
app rewards the fan (either by displaying his or her name to
the community (i.e., all fans) or designing a virtual badge,
similar to charity auction (Conitzer and Sandholm 2004;
Ghosh and Mahdian 2008) for each gift he or she sends. The
fan then derives positive utility for the fraction of commu-
nity attention he or she gets1. This new monetization method
has turned out to be very successful and has been witnessed
by the recent surge in stock price of MOMO (from 8 dollars
per share to 24 dollars per share in the past two months since
it switched to this monetization mechanism).

The situation above can be modeled as an all-pay auc-
tion with proportional allocation in which each bidder (fan)
submits a bid (the number of gifts he or she buys) to the
auctioneer (the app), who allocates one divisible item (com-
munity attention) among the bidders proportional to his or
her bid.

The simple auction game above turns out to be general
enough to cover a number of interesting economic scenar-
ios. For example, a major form of crowdfunding (Alaei,
Malekian, and Mostagir 2016) aims to collect money from
crowd in order to achieve a revenue target and if succeed,
pay back to each agent an amount proportional to overall
profit, to which each agent has a private estimation (type).
Clearly, such form of crowdfunding can be conveniently
modeled by the APAPA game. Similar examples abound,
ranging from buying raffle tickets to mutual funds (Piliavin
and Charng 1990; Carhart 1997).

In fact, we are not the first to consider the all-pay auction
with proportional allocation2. A number of papers (Johari
and Tsitsiklis 2004; 2009; Nisan et al. 2007, Chapter 21.2)
study APAPA from the point of social welfare. They show
that, when each bidder is risk-averse in the sense that he or
she has a concave utility function towards proportional allo-

1Strictly speaking, the fan also derives positive utility for how
happier the host becomes because of his or her gifts. Note that this
part of utility he or she gets is also proportional to the number of
gifts sent. Therefore, it is also compatible with our APAPA model.

2More work on all-pay auctions (Baye, Kovenock, and de Vries
1996; Bertoletti 2006; DiPalantino and Vojnovic 2009; Dechenaux,
Kovenock, and Sheremeta 2015). We omit the discussions due to
space limit.
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cations, the APAPA has a unique pure Nash equilibrium.

Our contribution

In this paper, we investigate APAPA from the revenue per-
spective of the apps. We make the following contribution:
• We first prove that APAPA has a unique pure Nash equi-

librium in closed form, thus generalizes Johari’s result
(which does not give a closed-form solution) in the lin-
ear case. Our proof is notably simple for this special case
and may be of independent interest.

• We then show that for either case, with or without re-
serves, the revenue that the APAPA extracts always 2-
approximates the second highest valuation3.

• We notice that, in the case where APAPA has a reserve,
there might be multiple equilibria of the auction game.
We provide several partial characterizations of the sets
of equilibria which then enable an efficient algorithm to
find all equilibria of the auction game.

Settings
In an APAPA, there is a single seller, who has a divisible
item for sale, and n bidders, who have linear valuations for
receiving a fraction xi ∈ [0, 1] of the item, i.e., vixi, i ∈ [n],
where vi ∈ R+. The item is allocated to a bidder with a
fraction equal to its bid over the sum of bids from all bidders,
i.e.,

xi(b1, . . . , bn) =
bi∑

i′∈[n] bi′
, (AL)

where bi ∈ R+ is the bid of bidder i. Note that the alloca-
tion rule (AL) is defined only when

∑
i∈[n]bi > 0. If all the

bidders bid 0, we define the allocation to be xi ≡ 0 for all
i ∈ [n]. Throughout this paper, we only consider the case
where at least one bidder has non-zero bid.

Bidder i’s payment is always bi. The utility of bidder i is
ui(bi, b−i) = vi · xi(bi, b−i)− bi

= bi∑
i′∈[n] bi′

vi − bi, (UT)

where b−i denotes the bids of all bidders other than i. The
seller’s revenue is simply the sum of the bids, denoted by
S =

∑
i∈[n] bi.

Without loss of generality, we assume that v1 ≥ · · · ≥
vn ≥ 0. A bidding profile (b1, . . . , bn) is a pure Nash equi-
librium (PNE), if

∀i ∈ [n], b′i ∈ R+, ui(bi, b−i) ≥ ui(b
′
i, b−i).

Therefore in any pure Nash equilibrium, bidder i’s utility
ui(bi, b−i) ≥ ui(0, b−i) = 0. In other words, any bidder’s
utility is guaranteed to be non-negative as long as he/she best
responds to other bidders’ strategies.

Note that for bidders with 0 valuation, their bids must be 0
in any equilibrium, otherwise their utilities will be negative.
So in the remainder of this paper, we remove all bidders with
0 valuation and assume that v1 ≥ · · · ≥ vn > 0.

3It is worth pointing out that the second highest valuation is a
standard benchmark in competitive analysis of complete informa-
tion settings, cf. (Feige et al. 2005; Alaei, Malekian, and Srinivasan
2009).

Closed form pure Nash equilibrium

Our first step is to characterize the pure Nash equilibrium
of APAPA by the following lemma, where we prove the
uniqueness of the pure Nash equilibrium and provide a
closed form solution. We remark that Johari (Nisan et al.
2007, Ch 21) has an alternative proof of the existence and
uniqueness of the pure Nash equilibrium in a more general
model (known as proportional allocation mechanism) but
without closed form solution.

Lemma 1. Any APAPA has a unique pure Nash equilibrium.
Moreover, it can be expressed in closed form as follows,

S∗ = maxi∈[n] i−1∑
i′≤i

1
v
i′
, (1)

b∗i = max
{
0, S∗ − S∗2

vi

}
, ∀i ∈ [n]. (2)

To characterize the pure Nash equilibrium of APAPA, we
first figure out what the bidder’s best response is. The fol-
lowing two observations state that in an APAPA, the best
response of bidder i against any other bidders’ bids b−i is
bi = max{S − S2/vi, 0}.

Observation 1. Given b−i, bidder i that bids bi > 0 has
positive (negative) utility if and only if vi > S (vi < S).

Observation 2. Given b−i, if it is feasible for bidder i to bid
bi = S−S2/vi, then it is the unique best response of bidder
i.

Here a bid is feasible if it is non-negative (or no less than
the reserve in the next section). Observation 2 follows from
the first-order and second-order conditions:

dui

dbi
= (S−bi)vi

S2 − 1 = 0, d2ui

db2i
= − 2(S−bi)vi

S3 < 0.

Definition 1. For each i ∈ [n], define

Si =
i−1∑

i′≤i
1

v
i′
.

Lemma 2. For any k ∈ [n], the following three statements
are equivalent.

1) vk+1 ≥ Sk

2) vk+1 ≥ Sk+1

3) Sk+1 ≥ Sk

The result also holds if we simultaneously change the ≥
signs above to ≤.

Proof. 1) ⇐⇒ 2):

vk+1 ≥ Sk+1 ⇐⇒ vk+1 ≥ k∑k+1
i=1

1
vi

⇐⇒ 1 + vk+1

∑k
i=1

1
vi

≥ k ⇐⇒ vk+1 ≥ Sk

3) ⇐⇒ 1):

Sk+1 ≥ Sk ⇐⇒ (k − 1)
∑k+1

i=1
1
vi

≤ k
∑k

i=1
1
vi

⇐⇒ ∑k
i=1

1
vi

≥ k−1
vk+1

⇐⇒ vk+1 ≥ Sk

For the case of ≤, the proof is similar.
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As we know the best responses of the bidders, we are
ready to prove Lemma 1 — to demonstrate the close form
of the pure Nash equilibrium and prove its uniqueness.

Throughout this and the next section, we define k as the
smallest number in [n] such that Sk = maxi∈[n] Si.

Proof of Lemma 1. Note that S∗ = Sk.
Closed form First, for all i > k, since Sk ≥ Sk+1, by
Lemma 2 we have vi ≤ vk+1 ≤ Sk. So bi = max{0, S∗ −
S∗2/vi} = 0. Similarly, for all i ≤ k, since Sk > Sk−1,
from Lemma 2 we get vk > Sk, so vi > Sk and thus
bi = S∗ − S∗2/vi > 0.

We conclude that bi > 0 ⇐⇒ vi > Sk ⇐⇒ i ≤ k. By
definition, the revenue

S =
∑k

i=1 bi = kSk − S2
k

(∑k
i=1 v

−1
i

)
= Sk.

Now we remain to show that bi is the unique best response
for each bidder i when all other bidders bid b−i.

• For all i > k, bi = 0 is the best response for bidder i:
when bidder i bids any b′i > 0, then vi < Sk + b′i, by
Observation 1 bidder i has negative utility.

• For all i ≤ k, then bi > 0. By Observation 2 bi = S −
S2/vi is the unique best response of bidder i.

So bidding profile (b1, . . . , bn) is a pure Nash equilibrium.

Uniqueness To prove the uniqueness, we assume by contra-
diction that there exists another equilibrium with m partici-
pants T ⊆ [n], where each of them bids more than 0 in the
equilibrium. Note that for any bidder i bids 0 (hence i /∈ T )
vi ≤ S must hold. Otherwise he/she can bid b′i > 0 such
that b′i + S < vi and receives a positive utility, contradic-
tion. Also note that for any bidder i ∈ T , vi > S must hold
by Observation 1. Thus T = [m].

Then we show that m must equal to k to reach the desired
contradiction.

For each i ∈ T = [m], by Observation 2, we have bi =
S−S2/vi. By solving these equations we get S = Sm. Since
vm > Sm, by Lemma 2, we have Sm−1 < Sm, and hence
vm−1 ≥ Sm > Sm−1. Similarly, we have S1 < · · · < Sm.

On the other hand, for each i /∈ T , since vi′ ≤ S = Sm

for all m+ 1 ≤ i′ ≤ i, we have

Si =
i−1

v−1
1 +···+v−1

i

= i−1
(m−1)/Sm+v−1

m+1+···+v−1
i

≤ i−1
(m−1)/Sm+(i−m)S−1

m
= Sm.

Hence S1 < · · · < Sm ≤ Sm+1, . . . , Sn, therefore m = k,
contradiction.

The result shows that, from bidder 1 to bidder n, the bid-
der participates the game if and only if his participation in-
creases revenue.

Revenue Guarantee for APAPA

From the auctioneer’s perspective, a natural question is:
How much revenue can an APAPA guarantee at the (unique)
pure Nash equilibrium? In this paper, we study this ques-
tion based on the analysis of pure Nash equilibria in the
complete information setting (cf. (Milchtaich 1996; Fang,

Tang, and Zuo 2016)), in contrast with the rich litera-
tures on Bayesian settings (Wang and Tang 2014; 2015;
Tang, Wang, and Zhang 2016; Mirrokni et al. 2016a; 2016b;
Tang and Zeng 2016).

To quantify such revenue guarantee (if exists), we need a
reasonable definition of benchmark for APAPA to compare
with. For the complete information setting, it is standard
from the digital good literature that v2, the second highest
value, is used as the benchmark for revenue.

In this section, we prove our first main result that the rev-
enue of any APAPA 2-approximates the benchmark v2.

Theorem 1. When n ≥ 2, the equilibrium revenue of any
APAPA is at least v2/2.

Moreover, the bound is tight, namely, there exists an in-
stance for n ≥ 2, such that the revenue of the APAPA equals
to v2/2 at the unique pure Nash equilibrium.

Proof of Theorem 1. Note that S1 = 0, so k is at least 2.
Hence the revenue S is at least v2/2:

S = Sk ≥ S2 = v1v2

v1+v2
≥ v2/2.

For instances where v1 = v2 and v3, v4, . . . , vn < v2/2,
the revenue is,

S = v1v2
v1+v2

= v2/2.

In fact, the lower bound is reached only on these instances.

APAPA with Reserves

A common way to boost revenue is to set a reserve price in
an auction (Hartline and Roughgarden 2009; Ostrovsky and
Schwarz 2011; Tang and Sandholm 2012). In the APAPA
model, the reserves can be easily implemented by deleting
any bid less than the reserve. In the fans economy scenario,
the reserve corresponds the price of the cheapest gift.

In this section, we show that an appropriately set reserve
can increase the revenue, but may lead to multiple equilibria
or no equilibrium at all. We also give an algorithmic charac-
terization of the set of all equilibria.

Theorem 2. For APAPA with reserve, given vi, i ∈ [n], all
equilibria, if any, can be computed in polynomial time.

Throughout this section, we refer r as the reserve.
The key reason for multiplicity of PNEs is that now bid-

ders are not allowed to place a bid 0 < bi < r. Changing
one’s bid from 0 to r may significantly affect the strategies
of others, and then in turns changes her own best response
constraints.

Consider an example where n = 2, v1 = v2, and reserve
r = v1 − ε. Once bidder one bids r, bidder two has no in-
centive to participate. Similarly if bidder two bids r first,
bidder one will not participate. So both (r, 0) and (0, r) are
equilibria.

To compute the PNEs, one naive algorithm would be to
enumerate the sets of bidders bidding 0 and r, and then
check if it is a PNE when the rest bidders play their best re-
sponses. This naive algorithm is inefficient because one may
need to enumerate exponential many possibilities. However,
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we prove the following set of lemmas that find a monotonic-
ity property of the bidders’ strategies, thus enabling an effi-
cient enumeration algorithm.

Formally, for any equilibrium B, define TB as the set of
bidders whose bids are larger than r, and define RB as the
set of bidders whose bids are equal to r. We call them par-
ticipants of the equilibrium. Bidders that do not belong to
TB or RB are not participants. Define SB as the revenue of
equilibrium B, from Observation 2, we have

• For all i ∈ TB , vi >
S2
B

SB−r ;

• For all i ∈ RB , SB < vi ≤ S2
B

SB−r ;

• For all i /∈ TB , i /∈ RB , vi ≤ SB + r.
Lemma 3. For any equilibrium B, there exist kB ∈ [n] such
that TB = {1, 2, . . . , kB} or TB = ∅.

Proof. We assume by contradiction that there exists i, j such
that i < j, i /∈ TB , j ∈ TB . So vj > S2

B/(SB − r), vi ≤
SB+r. But S2

B/(SB−r) > SB+r, it is a contradiction.

So i ∈ TB if and only if i ∈ {1, 2, . . . , kB}.
Note that if n = 1 and v1 > r the only equilibrium is

b1 = r.
Lemma 4. For n > 1 and any equilibrium B, if TB = ∅,
then SB = |RB |r. Otherwise

SB =
kB−1+

√
(kB−1)2+4|RB |r

∑kB
i=1

1
vi

2
∑kB

i=1
1
vi

.

Proof. In equilibrium B, For any i ∈ TB , by Observation
2, bi = SB − S2

B/vi. Add the equations together for i =
1, 2, . . . , kB , we get

SB − |RB |r =
∑kB

i=1 bi = kBSB − S2
B

∑kB

i=1
1
vi
.

By solving the equation above, we prove the lemma.

The following lemma characterizes an important property
for the set of all equilibria. It states that
Lemma 5. In the APAPA, for any two equilibria B1, B2,
if the number of participants are the same, i.e., |TB1

| +
|RB1

| = |TB2
| + |RB2

|, then TB1
= TB2

and |RB1
| =

|RB2
|.

As a corollary, if two equilibria B1, B2 share the same set
of participants, i.e., TB1 ∪RB1 = TB2 ∪RB2 , then B1 and
B2 are identical.

Proof. We assume by contradiction that |RB1
| > |RB2

|
(Note that by Lemma 3 |TB1

| = |TB2
| indicates TB1

=
TB2

). By Lemma 3 it is without loss of generality to assume
that

B1 = (b1, b2, . . . , bk, r, r, . . . , r︸ ︷︷ ︸
m

),

B2 = (b′1, b
′
2, . . . , b

′
k+l, r, r, . . . , r︸ ︷︷ ︸

m−l

),

where l,m, k ∈ Z+, bi, b
′
i > r.

On the one hand, we first prove that SB1
> SB2

.

Define f(S) = S2

S−r . For equilibrium B2, since b′k+l > r,
we have vk+l > f(SB2

). For equilibrium B1, we know that
vk+l ≤ f(SB1

) (bidder k + l bids r or does not participate.
The latter case implies that vk+l ≤ SB1

+ r < f(SB1
)).

So f(SB1
) > f(SB2

). Note that f(S) is increasing when
S > 2r, so we get SB1

> SB2
.

Then we prove that for any i > 1, vi ≤ 2SB1 .
If vi > 2SB1

, from observation 2,

bi = SB1
− S2

B1

vi
> SB1

− S2
B1

2SB1
= 1

2SB1

which implies that b1+b2 > SB1
, contradiction. So we have

vi ≤ 2SB1
. Similarly vi ≤ 2SB2

.
Then we prove that for any i > 1, bi < b′i.
For any i > 1, define g(S) = S − S2

vi
. g(S) is a quadratic

function which gets its maximum at S = 1
2vi. Since we

already have SB1 > SB2 > 1
2vi, we get g(SB1) < g(SB2),

i.e., bi < b′i.
On the other hand, for B1, from Observation 2, we have

S2
B1

= v1(SB1
− b1) = v1(

∑k
i=2 bi +mr) (3)

Similarly we get

S2
B2

= v1(
∑k+l

i=2 b
′
i + (m− l)r) (4)

Since we already have bi < b′i, ∀1 < i ≤ k and also note
that b′i > r, ∀k + 1 ≤ i ≤ k + l, we get

∑k
i=2 bi +mr <

∑k+l
i=2 b

′
i + (m− l)r,

Put this into (3) and (4) we have SB1
< SB2

, contradic-
tion. So the lemma is proved.

Given the value of any subset of bidders, by Lemma 5
there is a unique way partition them into two sets T and
R, such that for all i ∈ T , vi > S2

S−r and for all i ∈ R,

vi ≤ S2

S−r . (Here we ignore the condition that vi > S.) We
introduce Algorithm 1 to find the partition.

Lemma 6. Given the valuations of any subset of bidders,
Algorithm 1 returns a partition of the bidders into two sets
T and R, such that for all i ∈ T , vi > S2

S−r and for all

i ∈ R, vi ≤ S2

S−r .

Algorithm 1: Partition
Input: U = {1, 2, . . . , n′} (n′ > 1)
Output: set T ,R and revenue S

1: T ← U ,R = ∅
2: for i = n′ down to 0 do
3: Compute S according to Lemma 4

(kB ← |T |, |RB | = |R|).
4: if T = ∅ or vi >

S2

S−r then

5: return T ,R and S
6: end if
7: T = T \ {i}, R = R ∪ {i}
8: end for

716



Note that the partition given by Algorithm 1 is not enough
for finding an equilibrium, since the returned set R includes
bidders with value less than S. We need the following Algo-
rithm 2 to check the existence of equilibrium:

Lemma 7. Given values of all bidders, if there is no equi-
librium Algorithm 2 returns “No Equilibrium”; otherwise
Algorithm 2 returns the locally efficient equilibrium (see def-
inition 2) with the minimum number of participants (where
the revenue is also the minimum among all equilibria).

Definition 2. An equilibrium is locally efficient if the value
of any participant is no less than the value of any non-
participant.

Algorithm 2: Finding the locally efficient Equilibrium
with the minimum number of participants.

Input: U = {v1, v2, . . . , vn}
Output: Equilibrium

1: if v1 ≤ r then
2: return (0, 0, . . . , 0)
3: end if
4: for i = 1 to n do
5: Partition {1, . . . , i}(i > 1) by Algorithm 1 to get T ,R

and S (for i = 1, let S ← r).
6: if vi ≤ S then
7: return “No Equilibrium”
8: end if
9: if i = n or vi+1 ≤ S + r then

10: B ← (bi = S − S2/vi ∀i ∈ T, bi = r ∀i ∈
R, bi = 0 otherwise)

11: return B
12: end if
13: end for

To find all locally efficient equilibria, we can simply mod-
ify Algorithm 2 by letting it continue the for-loop when an
equilibrium is found.

Proof of Theorem 2. By Lemma 5, fix the number of par-
ticipants, any equilibrium has the same form to a locally
efficient equilibrium. Given a locally efficient equilibrium
B, we can derive all equilibria with the same number
of participants as B. We construct an equilibrium B′ =
(b′1, b

′
2, . . . , b

′
n) as follows:

• For all i such that vi > SB + r, let b′i = bi. Suppose
the number of these bidders is p, then these bidders are
the first p bidders and they are all participants in B, i.e.,
p ≤ |TB |+ |RB |.

• For the remaining n − p bidders, define Q as the set of
bidders such that for all i ∈ Q, SB ≤ vi ≤ SB + r. Note
that if one of the n− p remaining bidders is a participant
in B — hence his value is no less than SB — then he
belongs to Q. So, |TB | + |RB | − p ≤ |Q|. Choose any
|TB |+ |RB | − p bidders from Q and set their bids to r in
B′.

• For the remaining n− |TB |+ |RB | bidders, set their bids
to 0 in B′.

It is not hard to check that B′ is also an equilibrium. There
are in total

( |Q|
|TB |+|RB |−m

)
equilibria derived from B.

Revenue Guarantee

A natural question is that, as the reserve increases from 0,
how does the revenue changes? When r continuously in-
creases from 0, it will first meet a point such that vk =
S2/(S − r) for some bidder k. Then as r continues to in-
creasing, bidder k will bid r to follow, which leads a con-
tinuous increasing of the revenue, until r = vk and bidder k
will choose to leave, which leads to a suddenly decrease of
the revenue. As a result, the shape of the reserve-to-revenue
curve should be serrated. At each local optimum, the rev-
enue S = vk is larger than the initial revenue (r = 0).

We then prove that the 2-approximation result still holds.
Theorem 3. In the APAPA with reserve, the revenue of any
equilibrium (if exists) is at least v2/2.

Proof. For any equilibrium B, if kB > 1, from Lemma 4
we have

SB ≥ kB−1∑kB
i=1 v−1

i

≥ kB−1

v−1
1 +v−1

2 +(kB−2)/SB

=⇒SB ≥ v1v2
v1+v2

≥ v2/2

If kB + |RB | > 1 and kB ≤ 1, we assume by contradic-
tion that v2 > 2SB , then v2 > 2SB > 4r

Since b2 = r,

v2 ≤ S2
B

SB−r <
v2
2/4

v2/2−r

This implies that v2 < 4r, contradiction.
It remains to consider the case where only bidder 1 par-

ticipates, so SB = b1 = r.
As bidder 2 does not have any incentive to participate, we

have v2 ≤ SB + r = 2r, so v2 ≤ 2SB .
By summing up, we prove the lemma.

No pure Nash equilibrium Now we show a 2-bidder ex-
ample where no pure Nash equilibrium exists. v1 > v22/r
and v2 = 2r + ε. Then if: 1) Bidder two bids b2 = 0
, then bidder one will bid b1 = r and hence bidder twos
best response is b2 = r in this case (since b1 + r < v2 <
(b1 + r)2/b1), for sufficiently small ε); 2) Bidder two bids
b2 = r, then bidder one will bid b1 =

√
v1r − r > rand

hence bidder twos best response is b2 = 0 in this case (since
v2 < b1 + r). Also note that no matter b1 = 0 or b1 ≥ r,
bidder two never bids b2 > r in best response. Therefore,
there is no pure Nash equilibrium in this example.

Experiments

To empirically evaluate how revenue changes as a function
of reserve, we simulate a setting with n = 10000 bidders
and show how revenue changes as the reserve grows from 0
to a reasonably large price. In particular, we evaluate
• how the (best equilibrium/worst equilibrium/equilibria on

average) revenue varies;
• how the average number of players (who meet the reserve)

at pure Nash equilibria varies.
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(a) Revenues change as the reserve grows.
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(b) Revenues change rapidly as the reserve grows.
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(c) The number of players in PNEs decreases as the re-
serve grows.
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(d) The number of players in PNEs decreases as the re-
serve grows.

Basic setups

We run simulations for bidders whose types are i.i.d. sam-
pled from given valuation distributions. Here we consider
two different distributions:

• Power law distribution with α = 7 and vmin = 1, i.e.,

fpower(v) = αv−1−α, v ∈ [1,+∞).

• [0, 1] uniform distribution.

Power law distributions (Faloutsos, Faloutsos, and
Faloutsos 1999; Mitzenmacher 2004; Gabaix 2008) have
been used in many situations, such as city populations, in-
comes, etc., and to model online distributions. In particular,
power law distribution is also a reasonable assumption on
the valuation distribution for our model.

In contrast, for simulations using uniform distributions,
they give intuitions on the structural properties of the pure
equilibria. In fact, one can observe that when the sev-
eral highest bids are very close, the revenue curve is very
volatile.

For each sample (a value profile of n bidders) and reserve
price r, we find all the pure Nash equilibria and calculate the
best, worst, and average4 revenue on them and the average
number of players (with positive bidders) in these PNEs.

We repeat the sampling process for N times and take the
average values of the statistics to draw the above charts,

4By average, we mean average among all the PNEs with uni-
form weights.

where for power law distribution N = 10000 and for uni-
form distribution N = 1000 (since the latter converges fast).

Discussions

In the figures above, revenue for either distributions in-
creases and decreases periodically. Moreover, each decrease
on revenue corresponds to one bidder leaves the auction
(bidding 0) due to the increase in reserve. Notably, at almost
every peak (local maximum), the revenue is larger than the
revenue of APAPA without reserve (dashed yellow line). In
particular, the improvements at the last two peaks for power
law distribution are quite significant, which suggests that lo-
cal search might be a proper algorithm for revenue maxi-
mization in practice.

Another observation on the revenue for power law dis-
tribution (Fig 1(a)) is that the revenue variance (difference
between the best and worst revenue) is quite small, and con-
verges fast when the reserve price is more than 1. It suggests
that although the APAPA with reserve has many PNEs, the
revenue does not vary too much on different PNEs.

As we mentioned that revenue decrease corresponds to
bidders leaving the auction, which can be verified by com-
bining Fig 1(a) with Fig 1(c) (or Fig 1(b) with Fig 1(d)). For
example, the number of players significantly drops from 2
to 1 when the reserve price grows from 1.5 to 2, where rev-
enue drops from a local maximum to a local minimum. The
fact matches our observation that bidder 2 will not be in the
PNE if 2r > v2, where the mean value of v2 is around 3.5
as shown in Fig 1(a).
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