
NetCP: Consistent, Non-interruptive and Efficient
Checkpointing and Rollback of SDN

Ye Yu
University of Kentucky

Chen Qian
University of California Santa Cruz

Wenfei Wu
Tsinghua University

Ying Zhang
Facebook

Abstract—Network failures are inevitable due to its increasing
complexity, which significantly hampers system availability and
performance. While adopting checkpointing and rollback recov-
ery protocols (C/R for abbreviation) from distributed systems
into computer networks is promising, several specific challenges
appear as we design a C/R system for Software-Defined Networks
(SDN). The C/R should be coordinated with other applications
in the SDN controller, each individual switch C/R should not
interrupt traffic traversing it, and SDN controller C/R faces
the challenge of time and space overhead. We propose a C/R
framework for SDN, named NetCP. NetCP coordinates C/R
and other applications to get consistent global checkpoints, it
leverages redundant forwarding tables in SDN switches for C/R
so as to avoid interrupting traversing traffic, and it analyzes the
dependencies between controller applications to make minimal
C/R decision. We have implemented NetCP in a prototype system
using the current standard SDN tools and demonstrate that
it achieves consistency, non-interruption, and efficiency with
negligible overhead.

I. INTRODUCTION

Despite that many efforts have been put to add reliability
and high availability to networking systems, the performance
can still be severely impacted by hardware failures, software
errors, software bugs, and configuration mistakes, collectively
called failures in this paper. Since failures are often inevitable
in any large complex systems and online services usually
require for high availability (e.g., 99.999% of the time), in
the case of failures it is essential to restore the network
to a previous working state first instead of fixing problems.
For example, on April 11th 2016 in Google Compute En-
gine (GCE) [3], a network configuration update triggered a
management software bug, and wrong rules were generated
and installed into network devices, which cascadingly caused
a series of network unreachable. The outage was resolved
18min after its appearance by the team “reverting the most
recent configuration changes made to the network even before
knowing for sure what the problem was”. 12 hours later, “the
team was confident that they had established the root cause
as a software bug in the network configuration management
software”.

Rollback-recovery mechanisms in distributed systems are
well-studied. Existing rollback-recovery protocols can be clas-
sified into log-based ones and checkpoint-based ones [13].
In the log-based approach, all changes are recorded, and the
recovery would replay logs until a consistent state; in the
checkpoint-based approach, the system periodically records its

states during normal operations, where the record is called
checkpoint, and overwrites states with checkpoints upon fail-
ures. As the traffic in modern computer networks tends to be
more dynamic and diverse with time (e.g., public cloud, online
services), log-based rollback-recovery is costly on storage and
computation. On the other hand, Software-Defined Networks
(SDN) get more widely deployments with its flexibility and
programmability to handle the dynamics and diversity [17],
[18]. Thus, in this paper, we focus on checkpointing and
recovering (C/R for abbreviation) SDN.

In SDN, a centralized controller configures all distributed
switches, and switches do not communicate control mes-
sages with each other. Without distributed protocols, the SDN
architecture makes us naturally choose a coordinated C/R
approach [13], i.e., the controller decides when and which one
of the switches and itself to make a checkpoint or recovery.

Despite the convenience from the SDN architecture, its
difference from traditional distributed systems also leads to
several challenges when adopting coordinated C/R.
1) Network checkpoints have another level of consistency1

— cross-update consistency. In details, a network update
usually has multiple devices involved (e.g., set up a path),
when checkpointing multiple devices, we must guarantee
all or none of the individual device updates in the same
network update are recorded in the multiple checkpoints;
otherwise, the network would have configuration errors
after recovery (e.g., black holes, loops).

2) The SDN controller has multiple applications control the
network in parallel (e.g., routing, topology discovery), each
of which makes network updates independently. Since C/R
should not overlap in-transit network updates for consis-
tency reasons, it is necessary and challenging to coordinate
C/R with updates.

3) During the control plane C/R, switches are still handling
network traffic. The C/R should be managed without inter-
rupting switches processing in-flight network traffic.

4) The SDN controller is monolithic; it is necessary and chal-
lenging to make an efficient checkpoint of the controller
without full snapshot to avoid interruptions

1There are another two concepts about consistency, and they are different
from cross-update consistency: message consistency in distributed system C/R
means the situation where if sender’s checkpoint records a message, the
receiver’s checkpoint also records it [13]; a consistent update for networks
means all operations in the update are executed in an order so that network
preserves good properties, e.g., loss freedom, congestion freedom [19], [25].978-1-5386-2542-2/18/$31.00 c©2018 IEEE

We propose a C/R framework for SDN, called NetCP.
NetCP checkpoints the SDN data plane and control plane
periodically, and recovers both planes to a more recent
checkpoint when failure happens. In addition to the correct-
ness/consistency guarantee in traditional distributed system
C/R, NetCP overcomes the challenges above. NetCP coor-
dinates switches to make consistent global checkpoints; it
leverages a locking mechanism to achieve the coordination;
SDN switches uses redundant forwarding tables to record
and recover updated rules, so that C/R can be managed
without interrupting running traffic; and the SDN controller
is dissected into applications, and C/R are performed based
on dependencies between applications.

We implement NetCP on POX, OpenDayLight (ODL) and
Open vSwitch (OVS), and experiment shows that NetCP
achieves correct and consistency in SDN C/R, the running
traffic is not interrupted during C/R, and the application-
level C/R for SDN controller can significant reduce C/R time
compared with naive monolithic C/R. The overhead of NetCP
C/R is negligible.

Our work is closely related to the recent efforts in SDN
debugging [22], [27]. In particular, while some of them focus
on replaying data plane packets [16], [33], [35], we concentrate
more on C/R of switches and the controller. Moreover, we
find that existing work [31] has pointed out the need for
a C/R method, which have not been explicitly studied and
implemented in the literature.

Overall, we make the following contributions in this work.
1) We are the first to systematically study the feasibility of

network C/R for both SDN data plane and control plane.
And we address several challenges to implement a C/R
system in SDN. The models and protocols proposed in this
work may lead to valuable research of network C/R in
future.

2) We develop a framework called NetCP for SDN C/R, which
includes global consistency mechanisms, non-interruptive
C/R design on switches, and efficient controller C/R ap-
proaches.

3) We address a number of important problems, including
maintaining TCP connections to switches during check-
pointing, control plane rollback following application de-
pendencies, composition/decomposition of updated rules,
and speedup of the rollback process.

4) We demonstrate the feasibility of NetCP by implementing
it on ODL, POX and OVS and evaluation on mininet.

The rest of this paper is organized as follows. We first give
an overview of the system design in Section III, followed by
the detailed description of global C/R coordination in Section
IV. And then we describe the C/R design for switches and
the controller in Section V and VI. Section VII presents the
evaluation results. Finally, we discuss related issues in Section
VIII and conclude this work in Section IX.

II. RELATED WORK

Checkpointing and rollback for computing systems have
been extensively studied in distributed systems. In [13],

Elnozahy et al. classified rollback protocols into log-based
approaches and checkpoint-based ones, and in [23], Koo et al.
elaborated the design of a checkpoint-based rollback protocol.
In [26], Sancho described how to incrementally checkpoint
a distributed system. However, as we described in Section I,
SDN network has three unique requirements and challenges
which cannot be straightforwardly solved by the traditional
approaches: the cross-update consistency among all switches’
checkpoints, the non-interruption requirements to the running
network traffic, and the time/space efficiency requirements to
checkpoint/rollback an SDN controller.

For SDN, our work is the first to discuss C/R for both
network data plane and control plane collaboratively from
an academic viewpoint in detail. A set of works focus on
individual nodes in the whole network, for example, Ravana
[20] and LegoSDN [11] provide a fault-tolerance mechanism
for the controller only, and FTMB [29] focused on the C/R
mechanism for individual middleboxes. In SDN troubleshoot-
ing works, the solutions usually have the capability to snap-
shot or record network states. For example, SDN verification
solutions [21], [27], [32], [34] snapshot the device rules for
verification. All these solutions fail to consider the cross-
update consistency requirements and do not provide non-
interruptive rollback mechanisms.

More closely related works to ours are the recent proposals
on network-wide record and replay. In particular, Handigol
et al. proposes ndb [16] for debugging SDN data plane,
which allows programmers to set breakpoints for packets and
backtrack the forwarding history.

OFRewind [33] records and replays network events in a
hypervisor, which focuses on filtering packets to improve
scalability. HotSwap [31] is the most relevant work to ours.
It solves the controller upgrade problem by replaying the
recorded network events from the initial state of a new
controller. They did not directly save any forwarding states
of the switches. LegoSDN [11] provides a re-design of the
controller architecture in SDN to enhance the liability and fault
tolerance in SDN control plane using similar checkpoint and
rollback techniques. However, different from NetCP control
plane, which enables both per-application and full-controller
checkpoint, LegoSDN targets to support SDN checkpoints
in application level. Meanwhile, LegoSDN requires applica-
tions to communicates with each other under the proposed
I/O protocol, which may introduce high overhead for inter-
application communication and requires modification on both
the application and controller source code.

III. NETCP OVERVIEW

In this section, we discuss the necessity of C/R capability in
SDN, requirements of system design, NetCP design overview,
and the difference between NetCP and existing work.

A. Motivating examples

C/R is an essential capability for SDN, it reduces the risk
of network outage and improves network availability. We list
a few scenarios where networks benefit from C/R.

2

Fast failure recovery. In the case of network failures (e.g.,
switch down, OpenFlow channel connection interruption),
operators are required to minimize network outage time. So
it is important that the network state is recovered to its
intended operational state as quickly as possible. In most
implementations today, after such failures, the rules in a
switch flow table are removed and later relearned gradually
by querying the controller.

Misconfiguration correction. Software bugs and miscon-
figurations in manual management are inevitable, causing
violations in networks such as black holes and loops. Some
mis-configurations source from human operators. They may
cause no network performance downgrade or affect no network
invariants and can not be easily detected by verification or
troubleshoot tools, until the configuration is deployed and mis-
behaved packets are observed. Incrementally fixing problems
after they happen usually makes the system more complicated
and error-prone. Thus, a proper C/R mechanism is necesssary
to provide backups before any deployment or configuration.

Policy configuration changes. Modern computer net-
works are usually updated frequently to accommodate various
dynamic network traffic (e.g., online services and public
cloud [17], [18]). Coordinate new and existing policy is still an
ad-hoc and manual process. Similarly, NetCP can checkpoint
the network periodically, so if policy has conflict, it provides
a way to eliminate the newly-added policy.

B. Design requirements

In the environment of SDN, NetCP should satisfy the
following requirements.
• Cross-update Consistency. As discussed in Section I, a

network-wide checkpoint consists of all individual switches’
checkpoints. For any network update (e.g., set up paths), all
or none of operations on individual switches in this update is
recorded in the network-wide checkpoint; an update should
never be partially recorded.

• Non-interruption for network traffic. Online service
provider usually requires their service to be online 7-24,
and network traffic also exists with services. Thus, when
NetCP performs C/R, traffic in the network should not be
dropped and services should not be interrupted.

• Time/space efficiency for C/R. NetCP should perform C/R
quick enough so that the outage duration can be reduced, and
availability can be guaranteed (e.g., 99.999% of the time).
NetCP has better reduce storage space for checkpoints, as
storing/loading them into/from the persistent storage system
(e.g., disk) usually takes time.

• Timeliness of the checkpoints. Newer checkpoints record
more recent network states, and recovery from new check-
points can avoid losing too much previous computation and
results. Thus, NetCP should checkpoint the network in a
timely manner.

C. Design Overview

As shown in Fig. 1, NetCP consists of four parts, (1)
a switch coordinator works as an application in the SDN

App 1 ……

Switch Coordinator

Controller

App 3

App 2

Checkpoint-enabled
Applications…

Checkpoint-enabled
NetCP Switches
With local storage

 Controller
Checkpoint
/Recovery

Fig. 1. Overview of NetCP

controller, which decides when and which switch perform C/R,
(2) a controller C/R executor stands aside of the controller,
which is specifically in charge of the C/R of the controller
itself, (3) each application in the controller is modified so
that itsnetwork update operations can be compatible with the
network C/R in the switch coordinator, and (4) each switch
has its routing tables organized friendly for C/R and has a
local agent to execute the C/R operation.

Global Coordination. The switch coordinator communicate
with the agent on each switch to control the C/R of each
switch. It issues checkpoint commands either immediately
after each network update or periodically, depending on the
timeliness requirements on the checkpoints. To achieve cross-
update consistency, a checkpoint command is executed only
between two network updates. This is achieved using a locking
mechanism in both the switch coordinator and all other mod-
ified controller applications, with which C/R never overlaps
with network updates.

Switch C/R. NetCP checkpoints a switch by taking a
snapshot of the flow table in the switch. Due to the scalability
issue (storage, recovery time), we do not choose to store all
switch rules in the controller; instead, NetCP makes each
switch responsible for checkpointing its state. To make the
local C/R on each switch efficient for time and storage space
and non-interruptive for network traffic, NetCP organizes the
table in each switch into three groups, one for routing, one
for incremental checkpointing, and one for recovery (see
Section V for details), and its algorithm for C/R based on
the three-group tables can achieve both efficiency and non-
interruption properties.

Controller C/R. NetCP provides two approaches to check-
point the controller. One approach is full controller C/R, which
leverage Linux process snapshot and recovery. A checkpoint
of the controller includes the controller process’s address
space and the register states; during its recovery, the new
process is spawned which initializes its address space from
the checkpoint file and resets its registers. This function is
essential for the control plane to recover from significant
failures such as a crash of the entire controller program.

The second approach is application-level C/R. It makes
an anatomy of the applications (implemented as threads) in
SDN controller, finds out dependencies between applications,
checkpoints critical states, and recovers only failed applica-
tions (avoiding rollbacking the entire controller).

3

S1

S3

S2

Update 3

S4

Update 2Update 1

Node is affected by the update

Consistent states. S4 is not affected by update3.

Inconsistent states

Fig. 2. Consistent vs. inconsistent checkpoints

IV. CONSISTENT SDN C/R

In this section, we present how NetCP performs C/R for the
whole SDN data plane. During C/R, cross-update consistency
is preserved by making network updates non-overlap with C/R,
and this non-overlapping property is guaranteed by a locking
mechanism.

A. Data Plane C/R Coordination

Cross-update consistency. Networks constantly go through
configuration, policy, or topology changes. Each of these high-
level changes will result in a set of changes in the forwarding
rules, which we refer to as a network update. A network update
usually has multiple devices involved; for example, setting up
a path in a topology must have all on-path switch to configure
corresponding rules. A switch is affected by an update if
the update contains a rule to be added to, removed from, or
modified in the switch. Fig. 2 shows how four switches in a
network are affected by network updates. For example, s2 and
s4 are both affected by Update 1

A data plane2 checkpoint has cross-update consistency
means that for any one network update in the network, either
all of none of the individual device updates in the network
update are recorded in corresponding device checkpoints.

Maximum recoverable checkpoints (MRCs). The SDN
architecture is modeled as a logical controller C and a group of
switches S={s1, s2, ..., sn}. We use cst to denote the snapshot
of the flow table in switch s at time t. When the controller
requests the switches in the network to rollback to checkpoints
that are made before T . The controller should find a set of
consistent checkpoints C = {ct1s1 , c

t2
s2 , ..., c

tn
sn}, where ti ≤ T .

We define the maximum recoverable checkpoints (MRC) of
the SDN date plane to be the latest set of checkpoints before
T yet the network-wide consistency condition is satisfied. By
recovering to MRC, least computation and update results of
the network are lost.

Data plane C/R Algorithms. To achieve MRC, NetCP
applies four checkpointing policies:
1) All checkpointing events on switches are triggered by

checkpoint request messages sent from the controller.
2) The controller requests switches to make checkpoints only

right after a network update. Hence, we use cus to denote
a checkpoint on switch s after network update u.

2A data plane represents all switches in the network.

update 𝑢

S1

S2

S3

S4

update 𝑢’ update 𝑢

S1

S2

S3

S4

update 𝑢’

(a) “All-or-None” Policy (b) Undisciplined Policy

Fig. 3. “all-or-none” policy reduces occurrence of the domino effect.

Algorithm 1 Coordination of Network Update and C/R
1: semaphore CRmtx, Umtx, NUmtx := 1, 1, 1; int readcount := 0
2: function NETWORKUPDATE
3: P(CRmtx); P(Umtx); readcount++;
4: if readcount=1 then P(NUmtx); . exclude C/R
5: V(Umtx); V(CRmtx); . allow following updates
6: Do Network Update
7: P(Umtx); readcount – –;
8: if readcount=0 then V(NUmtx);
9: V(Umtx);

10: function NETWORKCR
11: P(CRmtx); . exclude following C/R and updates
12: P(NUmtx); . wait for existing updates
13: Do Network Checkpoiting or Recovery
14: V(NUmtx); V(CRmtx)

3) For a network update affecting a set of switches, if one
switch is requested to make a checkpoint then all others
are also requested to make checkpoints.

4) If the controller decides to request checkpointing, all the
switches whose states have changed after their latest check-
points shall also be requested to make checkpoints.

B. Achieving Coordination Using Mutex

The first two policies intend to reduce unnecessary check-
points. For example, based on them, a switch will not take a
new checkpoint if there is no update since the last checkpoint.

The third “all-or-none” policy reduces the occurrence of the
domino effect which may force switches to roll back to very
early states. For example, as shown in Fig. 3 (b), a network
update u affects three switches s1, s2, and s3 and only s1 and
s2 are requested to make checkpoints cus1 and cus2 . Suppose a
failure is detected on s1 and s1 rolls back to the checkpoint
cus1 . Since s3 does not make a checkpoint immediately after
u, it is possible that s3 has to roll back to a checkpoint made
earlier than u. This roll back “invalidates” the network update
u and thus s1 and s2 have to roll back to checkpoints earlier
than u, too. cus1 and cus2 then become useless. Such situation
may continue to happen and eventually may lead all switches
to roll back to the initiation states, which is called the domino
effect. By applying the “all-or-none” policy, NetCP completely
prevents the domino effect among the set of switches affected
by the same network update.

By applying the fourth policy, NetCP makes it easy to find
MRCs. All switches whose states have changed are requested
to make a checkpoint after a network update. Hence, the set
of the last checkpoints on all switches is always network-wide

4

consistent. When the controller decides to recover the network
state to the MRCs before T , it just requests all switches to roll
back to their last checkpoints made before T .

We let L denote the maximum waiting time for checkpoint-
ing. When there is a network update, the controller checks
whether there is at least one switch that has not been requested
for checkpointing for time L. If such switch exists, it requests
to checkpoint the switch. This algorithm prevents switches
from being too often or too rarely checkpointed. Adminis-
trators may choose a proper frequency of checkpointing by
tuning the parameter L.

Note that, in the 2nd policy above, NetCP “make check-
points only right after a network update”. That is, the
checkpointing operation never overlaps with network update
operations. In SDN controller, the NetCP application and
other network applications that cause network updates run in
parallel, how to coordinate them to avoid overlapping is a
challenge. We adopt a locking mechanism to overcome this
challenge.

The locking mechanism is designed with the following
principles.
1) When C/R start, if there are existing network updates, the

C/R task waits for them to finish.
2) When C/R start, all following network updates that have

not started are blocked, waiting for the C/R task to finish.
3) When there is no C/R task, network update tasks (from

different applications) do not block each other3.
Algorithm 1 describes the logic of the locking mechanisms.

The function NetworkUpdate() (line 3-10) is used to
modify applications in the controller that generate network
update; and the function NetowrkCR() (line 11-15) is used
by the NetCP application to issue C/R request.

V. NON-INTERRUPTIVE SWITCH C/R
Checkpointing and recovering a switch is not a trivial task,

as there are network flows running through. The C/R operation
should not interrupt the traversing traffic. We leverage the
multi-table design in SDN switches, divide tables into three
groups, and assign rules to different tables during normal
operation, checkpointing, and recovery. And this three-group
design can achieve incremental checkpointing for efficiency
and non-interruption C/R for running traffic.

Requirements. There are two requirements for switch
C/R. First, as network update may be frequent, continuous
checkpointing would be costly for storage and disk I/O time.
Thus, it is important that the switch C/R supports incremental
checkpointing. That is, if requested, the switch is able to
checkpoint the delta between current states (i.e., flow tables)
and the latest checkpoint. For an incremental checkpoint, a
switch only stores the difference between its current state and
the previously checkpointed state: the rules that have been
changed. Upon receiving a rollback request to a checkpoint
cts, the switch reconstructs the state using a full checkpoint

3There is an issue to schedule multiple network updates simultaneously.
This issue can be solved by the consistent update solutions in [19], [25], and
is out of the scope of this paper.

cfulls and the incremental checkpoints sequence after cfulls .
In incremental checkpointing, the restoring time increases for
combining multiple checkpoints. Hence, though much less
frequently, full checkpoints are still requested to switches in
order to guarantee a reasonably fast restore time. Overall,
the I/O cost for making checkpoints is significantly reduced,
especially when the network is relatively stable.

Second, for the availability requirement from network ap-
plications, switches should serve traversing traffic without
interruption. Even during the checkpointing and recovery, the
switch should not drop packets. For example, during recovery,
the rules in switch forwarding tables should be replaced by
historical ones in the checkpoint, naively clear the table and
install historical rules results in a gap in time when there are
no rules in the table, causing packets to be dropped. Even
replacing rules one by one would cause a small period of
table inaccessible, because updating a table would trigger a
write lock on the table, excluding table lookups.

Match Priority Action

All Lowest Goto

Consistent Update
Group

Main
Group

Incremental Checkpoint
Group

Match Priority Action Match Priority Action

Fig. 4. Flow Table Design of NetCP

Three groups of tables. OpenFlow [7] allows a switch
to maintain multiple sequentially organized flow tables. Each
table contains multiple rules, and each rule can be modified
atomically. By default, on each switch, the packet processing
starts from the first flow table and goes along the pipeline.
When a packet matches a rule, the corresponding action will
be executed (e.g., forward the packet to a port). When a packet
matches a rule with “Goto” action, the switch will continue to
try to match the packet with another flow table. Packets that
miss all the flow tables will be dropped or forwarded to the
controller, according to the switch configuration.

As shown in Fig. 4, the flow tables are categorized into three
groups, namely the Consistent Update Group (CUG), the Main
Group (MG), and the Incremental Checkpoint Group (ICG).
Each group may include one or more tables.
• The MG contains the normal flow tables of an OpenFlow

switch.
• The CUG is used during rollback. It maintains replicas of

the safe rules in the MG to ensure update consistency.
• The ICG includes the differential rules between checkpoints,

i.e., rules that have been changed since the last checkpoint.
Its purpose is to support to take incremental checkpoints.
The three-level design is consistent with the OpenFlow

pipeline and can be easily implemented on OpenFlow
switches. In each table in the CUG, there is a table-miss rule,
which contains a wildcard match field that matches all packets
with the lowest priority. The action of this rule is “Goto” the
first table in the MG. Packets that miss all the tables in the
CUG and MG will be forwarded to the controller or dropped
according to the switch configuration.

5

A. Switch C/R Algorithms

The switch C/R agent works as the following algorithm.
On receiving a flow update message. The switch adds,

modifies, or deletes the rules in the MG accordingly. For each
added or modified rule, a replica is stored in the ICG. For each
removed rule, a rule with the same match field is stored in the
ICG. The replica is marked as removed with lower priority
than the table-miss rule, so that no packet would match the
deleted rule. If there is an existing table entry in the ICG shares
the same match fields with the one to be stored, the existing
one is replaced. Note that, adding rules in the ICG does not
affect the MG. Hence, ongoing flows will not be blocked.

On receiving a checkpoint message. NetCP switches are
capable of making two kinds of checkpoints, incremental and
full checkpoints. A checkpoint message from the controller
specifies the type. If the switch is requested to make an
incremental checkpoint, it simply takes a snapshot of the rules
in the ICG and stores the snapshot in its local storage. These
rules reflect how the flow tables in the Main Group have
changed since the last checkpoint. After that, the rules in the
ICG will be cleared. When the switch is requested to take a full
checkpoint, it will store all rules in the MG as a checkpoint.

For software switches running on a hypervisor, the check-
point can be stored in the external memory. For hardware
switches, it can be stored in an external storage disk, or a
distributed file system.

On receiving a rollback message. The switch first com-
putes the safe rules by comparing the current flow table and the
target checkpoint. Then it generates replicas of these rules into
the CUG before any modification of the MG being executed.
Then the MG is cleared, and rules from the checkpoint are
loaded to MG. In this way, every packet is first processed by
the CUG during the rollback. Packets that match the safe rules
will not be processed by the MG. Therefore, the requirement
of update consistency is ensured. Note that the most packets
would match the safe rules, only a small fraction of packets
do not go through the safe rules.

After rollback recovery, a switch clears both the CUG and
ICG to prepare for the next round of checkpointing or rollback.

B. Data plane implementation

We implemented the NetCP data plane module on Open
vSwitch (OVS) [5]. OVS is a software implementation of a
virtual multi-layer network switch. The controller communi-
cates with OVS switches via OpenFlow connections, which is
based on TCP or TLS.

We implemented the NetCP checkpoint/rollback mechanism
on OVS by introducing new commands into the existing
managing tools. For making checkpoints of a switch, we reuse
the code handling the FLOW_STATS_REQUEST message4 to
get the flow table of the switch and write the table as a
file. For recovering switch state, we reuse the code handling

4FLOW_STATS_REQUEST messages requests the switch to reply the status
of the current flow table.

FLOW_MOD message5. The program reads the checkpoint file
and installs the rules into the OVS flow table.

We also extended the functionality of OVS by implementing
a new extension for the OpenFlow protocol. We introduce
two new types of messages, the NetCP_REQUEST and the
NetCP_REPLY messages. Upon receiving these messages,
the switch will carry out the corresponding actions and reply
a NetCP_REPLY message.

Corner cases. The controller may not receive the REPLY
message from a switch that has been requested to checkpoint
due to three reasons: (i) the REQUEST message is lost; (ii)
the switch encounters a failure making checkpoint and hence
does not complete the checkpoint process; and (iii) the REPLY
message is lost. For the first two cases, the controller should
re-send the REQUEST message to request a new checkpoint.
However, re-sending the REQUEST message may cause an
unnecessary checkpoint for the third case. Hence, we request
the controller to send the REQUEST message with the same
TOKEN field if it does not receive the REPLY. The switch
is able to detect the same TOKEN field and reply a REPLY
directly without making a checkpoint in the third case. For
the other two cases, it will make a new checkpoint.

VI. EFFICIENT CONTROLLER C/R
NetCP provides two approaches to checkpoint and rollback

an SDN controller: the full controller C/R and application-level
C/R. The first approach is more straightforward, complete, and
costly, and the second approach is proposed to reduce the high
overhead and provide flexibility.

A. Full Controller C/R

Many aspects of SDN debugging work have mentioned
the need to perform a checkpoint for the entire controller
for various purposes [11], [28], [31]. However, none of them
have done a complete study on how to achieve it. The closest
work is in [28], where the proposed system forks the entire
controller process and runs it as a child process for later
use. However, the forked processes are not saved into non-
volatile storage and hence cost a large amount of memory.
This approach has the efficiency problem to support multiple
checkpoints across time.

For Linux/Unix systems, a number of C/R software tool
packages [1], [10], [12] are available. With the help of these
tools, the state of the running process can be easily dumped
and recovered. Hence, it is intuitive to utilize these tools for
the SDN controller program to achieve checkpointing and
rollback on the process level. However, in SDN environment,
the controller and switches keep communicating via TCP or
TLS connections. Based on our investigation, we find that
existing checkpointing tools have poor support on handling
TCP connections. To handle network connections, we allow
the controller intentionally break its TCP connections before
checkpointing. Then it ignores any new incoming connection
request. Hence, it becomes a stand-alone process without

5FLOW_MOD messages are used to add, modify, or remove one or more
flow table entires.

6

external communication and it thus can be checkpointed using
the existing tools. We implemented the proactive approach for
the POX controller [8] using the BLCR [12] tool. We added
a customized signal handler for POX, so that the following
two procedure can be triggered before and after checkpointing
or rollback. When a checkpoint is requested, the controller
closes the connection. After the checkpointing or rollback,
the controller resumes to listen to the port and wait for
future connections. We also modified POX, so that it handles
reestablished connection correctly and the mapping between
the connections and switch abstractions in the controller can
also be recovered after a rollback.

B. Application-level checkpointing and rollback

Basic application C/R. Full controller C/R is not efficient
and flexible in some scenarios. The controller may contain
multiple applications, each of which is a module resides
as a component of the controller, and is responsible for a
particular management task, e.g., routing, monitoring, access
control, server load balancing, and service chaining. These
applications execute independently and each can be modified
independently. Application level C/R is to store and recover
state for each application separately. Controllers of this kind
may be very large. For example, the OpenDdaylight (ODL)
controller [6] consumes at least 1G memory during normal
execution. C/R on such large piece of memory is expensive
on both time and storage.

We take the ODL Helium controller as an example and
study the structure of its applications. Most applications can
be abstracted as a model that reads from an input data set, does
internal processing, and writes to an output data set, which in
turn is the input of another application. Such processing is
event-driven, i.e., when an application writes its own output
data set, it notifies the dependent applications their new input.
Table I gives a summary of the input/output data of four
common applications of a controller. We also observe similar
designs in modularly designed controllers, such as Floodlight
[2] and Beacon [14].

Based on this observation, we propose the basic application-
level C/R method. For each application, we periodically store
its input data set, including network policies, current flow
status, and output of other dependent applications. During
rollback, the difference between the previous input data and
the current input data is sent to the program as external events.
The program updates its internal states, and produces relevant
outputs. This requires minor modification on the application
to add such functionalities. However, there are still two issues
with this basic approach and NetCP handles them as follows.

Issue 1: application dependencies. Multiple applications in
the controller may be intermingled with each other, so changes
in one application may affect other applications as well. For
instance, the input changes to a routing application will result
in computed path changes, which will be a new input to
the rule management application. Hence, we propagate the
rollback effect of one application to other related applications.

Fig. 5. Application dependency graph of the ODL controller

The dependencies across applications can be learned from
analyzing the controller code. For example, ODL adapts the
OSGi (Open Services Gateway initiative) standard, which is
widely used by the controller with modular designs. In ODL,
each application registers for the set of events of interest,
and will be notified once these events occur. An example
analysis results of the ODL controller is shown in Fig. 5.
The dependency graph across the applications is a directed
acyclic graph and there is no dependency loop. Similarly, we
observe no looping dependencies in Floodlight and Beacon.
The loop-free property suggests the propagation of rollback
effect will terminate after certain rounds of message passing.
This property is reasonable for SDN designs in modularized
models, since it simplifies the management.

Issue 2: rule composition across applications. The output
of different applications may be composed together at later
applications. For example, both the routing and the monitoring
application may affect the rules with the same matching
field. These rules may be composed to reduce the number of
rules [15]. Per-application rollback may cause only a part of
the composed rules to change. To support rollback, we provide
a reversion operation to the composed rules, which requires
keeping track of the rules before composition. For example,
the simplest rule composition is the aggregation based on
prefixes [24], which is used in ODL controller.

To handle the composed rules, we modify the rule manage-
ment component. We first maintain the set of raw rules before
the aggregation and give each of them an index. Then in the
final rule table, for each rule, we add a field to record the
set of raw rules from which this rule is aggregated. If any of
the raw rules are modified after rollback, the aggregated rule
affected is identified and recomputed. Note that the rule de-
aggregation problem is not specific to the C/R system. Our
solution can be generalized to handle other rule modifications
in the context of rule aggregation.

C. Full controller versus application-level
Compared to the controller level C/R, the application-level

approach is more time and memory efficient when the C/R
only affects one or a few applications. Another merit of the
application-level approach is that it does not break the existing
TCP connections. However, the full controller approach may
be preferred when most of the applications have state changes.

VII. EVALUATION

We implement NetCP on OVS, POX, and ODL. We evaluate
its correctness, performance, as well as overhead.

7

TABLE I EXAMPLE INPUT AND OUTPUT FOR SDN APPLICATIONS

Application Input Output
Topology manager Host List, Switch List, Edge List Topology Abstraction
Monitoring manager Topology Abstraction, Monitoring Policy, Flow Paths Monitoring Rules
Routing manager Topology Abstraction Flow Paths
Rules manager Flow Paths, Monitoring Rules Flow-level Rules

A. Implementation

We implemented the NetCP data plane module on Open
vSwitch (OVS) [5] by introducing new commands into its
managing tools. For making checkpoints of a switch, we reuse
the code handling the FLOW_STATS_REQUEST message,
which requests the switch to reply the status of the current flow
table. For recovering switch state, we reuse the code handling
FLOW_MOD message, which is used to add, modify, or remove
one or more flow table entries. Note that, all of these tools
are running programs on an ordinary hypervisor machine, and
checkpoint files are stored in its file system, which can be
either a local file system or distributed file system.

We implemented full controller C/R approach for the POX
controller [8] with the BLCR library [12], and application-
level controller C/R approach on ODL controller [6]. We use
Mininet [4] as the network emulator to connect multiple OVS
instances.

B. Data Plane C/R

We set up a Mininet network with a linear topology of 26
switches and 40 hosts on each end. The link delay between
two switches is set 1 ms and the control channel delay is 10
ms. The hosts ping each other with a 50 ms interval.

C/R overhead. We measure the time to make a checkpoint
or rollback on OVS. Fig. 6 shows the time of performing C/R
with varying number of rules. The overhead grows linearly
with the number of rules for both C/R. The time of a rollback
is five times as that of taking a checkpoint. Even with 10,000
rules, the time taken for checkpointing is less than 0.1 sec and
that of a rollback is less than 0.4 sec. I/O contributes a major
portion of the overhead.

Correctness and network performance during rollback.
In each experiment, end hosts keep performing pairwise pings.
At time 0, all switches restart and try to reconnect the
controller. For a simple start, forwarding rules are learned
by querying the controller. For NetCP, each switch rolls its
internal flow table back to a previously checkpointed state.
The end-to-end RTT reduces to normal faster after the rollback
than after a simple restart.

We run the experiment for 100 times. Fig. 7 shows how
RTT changes after a restart with and without rollback recovery
of a typical experiment. For a simple start, communications
are resumed after 1.5 sec, and all RTTs of ping packets
drop down to the normal value after 2.1 sec. Using NetCP,
communications resumed at 0.6 sec and the convergence time
is 1.1 sec, which is much shorter than those of simple start.
The cumulative distribution of the time for an RTT going back
to normal is shown in Fig. 8. There is a significant gap between

the two curves: NetCP uses 1.5 sec to make the RTTs go back
to normal, while simple restart takes more than 2.5 sec.

C/R effectiveness. We measure the average number of lost
updates at the recovery stage. It is defined as follows. When
a rollback is needed, the goal of this recovery is to find a set
of consistent checkpoints at all switches before time T0. The
state of a switch may have changed after the checkpoint, and
these updates are lost when the switch rolled back. Hence,
we use the number of missed updates to characterize how
close the checkpoints are to T0. Less lost updates indicate
a more effective checkpoint method. We compare NetCP
with a naı̈ve approach: all switches create regular checkpoints
synchronously after a fixed time interval. We use the real-
world traffic data collected by CAIDA [9] and an ISP topology
by Rocketfuel [30]. Fig. 9 shows the number of lost updates
versus the number of checkpoints. When checkpoints are made
more frequently, the MCR has fewer lost updates. We find
that the NetCP has fewer lost updates when making the same
number of checkpoints.

Fig. 10 shows the benefit by making incremental check-
points. We use the same trace data and topology as those
in Fig. 9. The total number of checkpoints made is fixed.
Some checkpoints are incremental ones while the others are
full ones. We let the ratio of incremental checkpoints vary
and measure the total of the size of all checkpoints. Making
incremental checkpoints reduce the total file size significantly.

To evaluate the update consistency during rollback recovery,
we compare NetCP recovery method with a basic recovery
method, in which the flow tables are cleared after switch
restart and the rules are loaded directly into the flow table
without any consistent control mechanism. Two pairs of hosts
communicate via TCP across the network simultaneously,
where the NIC rate is 1 Gbps. Each flow table contains
thousands of rules. The term affected and safe flows are
defined in Section V. For the affected flow, the policy is
different in pre-rollback and post-rollback state. The safe flow
has identical policy pre-rollback and post-rollback. Fig. 11
shows how the data transmission rate changes. We trigger a
basic recovery at 3 sec and trigger another NetCP recovery
at 11 sec. During basic recovery, both the affected and safe
flows are blocked for a while. However, the rate of safe flow
is not affected by NetCP recovery.

C. Full Controller C/R

We run the POX controller together with Mininet to emulate
an SDN and evaluate the full controller C/R performance.

C/R overhead. We measure the time to make a checkpoint
of the entire process and store it on disk and rollback using

8

T
im

e
u
se

d
Hs

ec
L Checkpointing

Recovery

0 2000 4000 6000 8000 10 000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ð of flow table entries

Fig. 6. Overhead of data plane C/R

R
T

T
Hs

ec
L

Simple Restart

NetCP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

Time after restart or rollback HsecL

Fig. 7. End-to-end RTTs after data plane roll-
back or restart

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

NetCP

Simple Restart

1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Time before RTT going back to normal HsecL

Fig. 8. CDF of time for RTTs going back to
normal after data plane rollback or restart

ð
o
f
lo
st
u
p
d
at
es

NetCP Regularly Syncronized

1000 104 105 106
0

50

100

150

200

ð of checkpoints made

Fig. 9. Comparison of data plane C/R methods
T
o
ta
l
F
il
e
S
iz
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

0.527

0.067

Ratio of incremental checkpoints

Fig. 10. Storage cost of incremental checkpoint-
ing

B
an
d
w
id
th
HM

B
L

NetCP

Recovery

Basic

Recovery

Affected flow Safe flow

5 10 15
0

200

400

600

800

1000

1200

1400

Time HsecL

Fig. 11. Flow behaviors under basic and NetCP
rollback

the checkpoint. Fig. 12 shows this value grows linearly as the
size of the controller increases. We find that checkpointing
and rollback has similar time delay under the same memory
size. The delay increases linearly with the memory size. For a
typical POX size (about 100 MB), the latency is only 0.5 sec.

Correctness and network performance during rollback
are studied by examining the disruptions on the data plane
with and without rollback recovery. We set up Mininet with a
linear topology of 10 switches. Then we let the controller fail
for a short duration and restart at time 0. We measure the RTT
values of pairwise pings. Fig. 13 shows the delay changes.
NetCP correctly recovers the connection after recovery. The
communications recovered at 0.7 sec by NetCP and 1.5 sec
by simply restarting the controller. The RTTs of NetCP then
quickly converge to the value at 1.1 sec, while restart takes
a longer time. The results demonstrate that NetCP improves
end-to-end performance during controller rollback.

We run the experiments for 100 times. The cumulative
distribution of the recovery time across all experiments is
shown in Fig. 14. For 90% of the cases, NetCP constantly
performs around 0.2 sec faster than the simple restart.

All of our experiments are carried on a commodity desktop
computer. Disk I/O contributes the most overhead of the
controller C/R. We expect a better performance when the
controller is equipped with faster I/O devices.

D. Application Level C/R

ODL adopts a modular design for multiple application
components which can be extended easily. A typical ODL
process costs about 800 MB memory space and needs about 6
seconds for full controller checkpointing or rollback. We use
the routing manager in ODL as an example for application-
level C/R. This application calculates routing paths using Di-
jkstra algorithm upon request. We setup Mininet with random
topologies, and let the hosts ping each other so that the
controller computes all paths in the network. We measure
the average time used for C/R the routing manager. We also

measure the average time used to restart the application and
re-compute all paths for comparison. We run each of the
experiments for at least 50 times.

As shown in Fig. 15. While the number of switches goes
up the checkpointing time is almost stable. However, rollback
takes longer time, because the inter-application dependencies
need to be handled. Restarting the application costs much
longer time compared to rollback. For a typical random graph
topology with 20 switches, the restart method takes 0.29 sec
to complete, while NetCP rollback can be finished in 0.07 sec,
reducing the time by 75%.

VIII. DISCUSSION

Implementation on Hardware Switches. NetCP is also im-
plementable on hardware SDN switches. OpenFlow switches
can implement checkpointing and recovery by extending the
OpenFlow modules and reusing the components that handle
flow table operations. Some off-the-shelf routers come with
attached hard drives, which can store checkpoint files; if no
hard drives, a distributed file system can be used for the switch.

For OpenFlow switches, C/R can be easily imple-
mented by extending the OpenFlow modules of these
switches and reusing the components that processes
FLOW_STATUS_REQUEST and FLOW_MOD messages. The
checkpoint files can be stored in the attached storage. For
those switches without attached storage, the checkpoint files
can be stored in a distributed file system. The file system
should be implemented so that the switches are able to access
its checkpoint files with low latency. Hence, we believe it is
practical to attach a non-volatile storage to an SDN switch.

Multiple Controllers. In a multi-controller network, the
controllers work collaboratively as a distributed system. Ac-
cordingly, the concepts such as consistent checkpoint and a
virtual clock can also be applied in controller checkpointing.
We leave the details of NetCP in controller environments as
the future work.

In the control plane, the controllers coordinate the manage-
ment of the switch among themselves. Hence, the controllers

9

T
im

e
u
se
d
Hs
ec
L

Checkpointing

Rollback

100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Controller memory size HMBL

Fig. 12. Overhead of full controller C/R

R
T
T
Hs
ec
L

Simple Restart

NetCP

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

Time after restart or rollback HsecL

Fig. 13. End-to-end RTTs after controller restart
or rollback

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n

Simple Restart

NetCP

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Time before RTT going back to normal HsecL

Fig. 14. CDF of time for RTT convergence after
controller restart or rollback

T
im

e
u
se
d
Hs
ec
L

Restart and Recompute

NetCP Rollback

NetCP Checkpointing

5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

ð of switches

Fig. 15. Time cost of application-level checkpointing and rollback

works collaboratively as a distributed system. Accordingly, the
concepts such as consistent checkpoint and virtual clock can
also be applied in controller C/R. We leave the details of C/R
in multiple controller environment as future work.

IX. CONCLUSION

This paper proposes NetCP, a novel checkpointing and
rollback system for SDN. We developed a framework in which
switches perform checkpointing under the coordination of the
SDN controller to achieve global consistency across updates,
each switch makes local checkpointing and recovery without
interrupting network traffic, and the SDN controller can make
fine-grained checkpointing. We demonstrated the feasibility of
NetCP in terms of its correctness and performance for both
the data plane and the control plane during checkpointing and
failure recovery.

ACKNOLEDGEMENTS

We thank the anonymous reviewers for their constructive
comments and suggestions. Y. Yu and C. Qian were supported
by National Science Foundation Grants CNS-1701681 and
CNS-1717948. W. Wu was supported by the National Science
Foundation of China (NSFC) under grant 61373002.

REFERENCES

[1] CRIU, Checkpoint/Restore In Userspace. http://www.criu.org/.
[2] Floodlight OpenFlow Controller. http://www.projectfloodlight.org/.
[3] Google Compute Engine Incident 16007 . https://status.cloud.google.

com/incident/compute/16007.
[4] Mininet. http://www.mininet.org/.
[5] Open vSwitch. http://www.openvswitch.org/.
[6] OpenDaylight Project. http://www.opendaylight.org/.
[7] OpenFlow. http://www.openflow.org/.
[8] POX. http://www.noxrepo.org/pox/.
[9] The CAIDA UCSD Anonymized Internet Traces 2013 - 2014. Mar. .

http://www.caida.org/data/passive/passive 2013 dataset.xml.
[10] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent check-

pointing for cluster computations and the desktop. In Proc. IPDPS’09.
[11] B. Chandrasekaran and T. Benson. Tolerating sdn application failures

with legosdn. In HotSDN, 2014.

[12] J. Duell. The design and implementation of berkeley lab’s linux
checkpoint/restart. Lawrence Berkeley National Laboratory, 2005.

[13] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys (CSUR), 34(3):375–408, 2002.

[14] D. Erickson. The Beacon OpenFlow Controller. In ACM HotSDN, 2013.
[15] N. Foster et al. Frenetic: a network programming language. In Proc. of

ACM ICFP, 2011.
[16] N. Handigol et al. Where is the debugger for my software-defined

network? In HotSDN, 2012.
[17] C.-Y. Hong et al. Achieving high utilization with software-driven wan.

43(4):15–26, 2013.
[18] S. Jain et al. B4: Experience with a globally-deployed software defined

wan. ACM SIGCOMM CCR, 43(4):3–14, 2013.
[19] X. Jin et al. Dynamic Scheduling of Network Updates. In Proc. of ACM

SIGCOMM, 2014.
[20] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller

fault-tolerance in software-defined networking. In Proc. of ACM SOSR,
2015.

[21] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Veriflow: Veri-
fying Network-wide Invariants in Real Time. ACM SIGCOMM CCR,
42(4):467–472, 2012.

[22] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: verifying
network-wide invariants in real time. HotSDN ’12, 2012.

[23] R. Koo and S. Toueg. Checkpointing and Rollback-recovery for
Distributed Systems. Software Engineering, IEEE Transactions on,
(1):23–31, 1987.

[24] M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable Rule
Management for Data Centers. In Proc. of USENIX NSDI, 2013.

[25] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent updates
for software-defined networks: Change you can believe in! In HotNets,
2011.

[26] J. C. Sancho, F. Petrini, G. Johnson, and E. Frachtenberg. On the
feasibility of incremental checkpointing for scientific computing. In
Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, page 58. IEEE, 2004.

[27] C. Scott et al. How did we get into this mess? isolating fault-inducing
inputs to sdn control software. Technical report, EECS Department,
University of California, Berkeley, Feb 2013.

[28] C. Scott et al. Troubleshooting Blackbox SDN Control Software with
Minimal Causal Sequences. In Proc. of ACM SIGCOMM, 2014.

[29] J. Sherry et al. Rollback-recovery for middleboxes. SIGCOMM CCR,
45(4):227–240, August 2015.

[30] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In Proc. of ACM SIGCOMM, 2002.

[31] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford. Hotswap:
Correct and Efficient Controller Upgrades for Software-defined Net-
works. In HotSDN, 2013.

[32] H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam. Practical Network-
wide Packet Behavior Identification by AP Classifier. In Proc. of ACM
CoNEXT, 2015.

[33] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind:
enabling record and replay troubleshooting for networks. In Proc. of
USENIX ATC, 2011.

[34] H. Zeng et al. Libra: Divide and conquer to verify forwarding tables in
huge networks. In Proc. of USENIX NSDI, 2014.

[35] Y. Zhao, H. Wang, X. Lin, T. Yu, and C. Qian. Pronto: Efficient Test
Packet Generation for Dynamic Network Data Planes. In Proc. of IEEE
ICDCS, 2017.

10

