
Proactive Serving Decreases User Delay Exponentially

Shaoquan Zhang
The Chinese University of

Hong Kong

Longbo Huang
Tsinghua University

Minghua Chen
The Chinese University of

Hong Kong

Xin Liu
University of California, Davis

ABSTRACT

In online service systems, the delay experienced by a user
from the service request to the service completion is one of
the most critical performance metrics. To improve user de-
lay experience, recent industrial practice suggests a modern
system design mechanism: proactive serving, where the sys-
tem predicts future user requests and allocates its capacity
to serve these upcoming requests proactively. In this pa-
per, we investigate the fundamentals of proactive serving
from a theoretical perspective. In particular, we show that
proactive serving decreases average delay exponentially (as a
function of the prediction window size). Our results provide
theoretical foundations for proactive serving and shed light
on its application in practical systems.

1. INTRODUCTION
The fast growing number of personal devices with Inter-

net access, e.g., smart mobile devices, has led to the blossom
of diverse online service systems, such as cloud computing,
cloud storage, online social networks, mobile Internet access,
and a variety of online communication applications. In on-
line service systems, delay experienced by a user from the
service request to the service completion is one of the most
critical performance metrics. For example, experiments at
Amazon showed that every 100-millisecond increase in load
time of Amazon.com would decrease revenues by 1% [5].
Google also found that an extra 0.5 seconds in search page
generation time dropped traffic by 20% [5].
Traditionally, to reduce user delay and to improve quality

of experience, a widely adopted design mechanism is capacity
boosting, i.e., increasing the service capacity by for example
deploying more servers. However, such a mechanism may
be expensive as it needs to provision for the peak demand
and thus results in low average utilization due to the bursty
nature of service requests, especially when the user arrivals
are time-varying.
Recently, both industrial practice and academic studies

suggest proactive serving, i.e., serving future requests before
they arrive, as a modern approach for reducing user delay.
Proactive serving is based on the key observation on service
request predictability. It is a technique that has been widely
used in computer systems based on what is likely to happen
next, such as cache pre-loading and command pre-fetching.
Similarly, in cloud service systems, it is not atypical to have
predictable service requests. For example, in cloud comput-
ing platforms, service jobs, such as indexing, page-ranking,
backup, crawling, and maintenance-related load, are often
predictable. In fact, in an industrial grade cloud comput-
ing system, we observe a significant portion of the workload

Copyright is held by author/owner(s).

to be periodic and thus predictable [4]. Intuitively, if one
user is observed to watch football news consistently in the
morning, then such contents can be preloaded in the future.
In practice, Amazon launched Amazon Silk, a mobile web

browser in its tablet Kindle Fire [1]. All the web traffic
from the browser goes through the Amazon cloud and gets
managed by the servers in the cloud. Based on cached user
traffic, the cloud uses machine learning techniques to pre-
dict what users will browse in the future. When service in
the cloud is available, web pages that are likely to be re-
quested are preloaded to users tablet by servers. In this
manner, when the user clicks on the corresponding content,
the loading is instant and the user delay is reduced to zero.
This technique speeds up request responses and improves
user browsing experience.
All the above exciting developments suggest proactive serv-

ing as a new design mechanism for reducing user delay:
based on user request arrival prediction, the system can al-
locate its capacity proactively and pre-serve future requests
to reduce the delay experienced by users. This observation
naturally leads to a fundamental question: How much user
delay reduction can we obtain by proactive serving?
In this paper, we explore the answer to the above open

question and investigate the fundamentals of proactive serv-
ing from a queuing theory perspective. In particular, we
study proactive serving with a prediction window of size ω,
where one has the ability to predict future requests in a
time window of ω and serve them if needed. We investigate
the impact of proactive serving on reducing user delay as a
function of the prediction window size ω.
In comparison, authors in [7] and [9] use future informa-

tion to control admission of requests into the system to re-
duce waiting time. Previous studies also focus on request
scheduling algorithm design based on future prediction but
without proactive serving capacity [2], [6], [7]. The authors
in [8] investigate how proactive serving reduces the proba-
bility of server outage. Predictive scheduling in controlled
queuing systems is studied in [3], where Predictive Back-
pressure algorithm is proposed to achieve the optimal util-
ity performance. In this paper, we study the capability of
proactive serving in delay reduction and make the following
contributions. First, we show that the average user delay de-
creases exponentially in the prediction window size ω under
perfect prediction. Then, based on the insights, we prove
that exponential delay reduction holds for proactive serving
under imperfect prediction.

2. MODEL
Consider a service system as shown in Fig. 1. In the sys-

tem, the single backend server provides service to incoming
user requests that arrive at the system according to a con-
tinuous process {A(t)}t with rate λ. When a user request
arrives and the server is idle, the request will be served.

Performance Evaluation Review, Vol. 43, No. 2, September 2015 39

)(tQ)(tA server

Figure 1: A single queue service system.

t ω+t
time

 windowprediction

Figure 2: Prediction model.

Otherwise, the request waits in the queue Q(t) for service.
The queueing discipline is FCFS. Upon completing service,
the request leaves the system. We assume that service times
of requests are i.i.d. random variables with mean 1/μ. We
define user delay as the time from when the user request
arrives at the system till it leaves the system.
Now suppose that the service system has proactive serv-

ing capability. As shown in Fig. 2, we assume that the sys-
tem can perfectly predict user request arrivals ω time ahead.
That is, at time t, the system knows exactly in (t, t+ω) the
request arrival epochs (red solid arrows) and the correspond-
ing users who generate the requests. Meanwhile, we do not
assume the knowledge of the service time of each user re-
quest.
Based on the arrival prediction, the system can allocate its

service capacity to serve future requests proactively. Specif-
ically, the servers can provide service to the users who are
predicted to generate requests. The user requests that get
pre-served will not enter the system. Such a proactive serv-
ing model captures service systems that can perform cache
pre-loading or command pre-fetching. As a practical exam-
ple of cache pre-loading, the web browser in Amazon’s Kin-
dle Fire can predict web page requests and pre-load desired
web pages to users’ tablets beforehand. When the user clicks
on the predicted content, it gets the content immediately.
We depict the service system which can proactively serve

future requests based on perfect prediction in Fig. 3. Let
Q0(t) represent the queue of the requests that have arrived
at the system and are waiting for service at time t, and
Wω(t) be the prediction window of size ω.
Each user request first goes through the prediction win-

dow Wω(t) and then enters the queue Q0(t). The servers
can serve the requests in both Q0(t) and Wω(t). We remark
that each request entering Wω(t) will transit to Q0(t) after
exactly ω amount of time, if it has not been pre-served be-
fore that. The requests will not queue up in Wω(t). Thus
Wω(t) should be viewed as a pipe. User delay corresponds
to the time that the request spends in Q0(t) and with the
server, and it does not include the time spent in Wω(t).

3. AVERAGE USER DELAY UNDER PER-

FECT PREDICTION
In this section, we assume user requests arrive according

to a Poisson process and service times of requests are inde-
pendent and identically distributed according to an expo-
nential distribution. We characterize the average user delay
of the system shown in Fig. 3. Let Dω denote the user delay
when the system can predict ω time ahead.
When ω = 0, i.e., without proactive serving, the system

reduces to the classical M/M/1 queue. It’s well known that
the average user delay is given by

E
[
D0] = 1

μ− λ
. (1)

)(ω+tA

)(0 tQ

)(tWωω

server

Figure 3: Service system with perfect prediction.

The probability density function of D0 is also known as

fD0(t) = (μ− λ)e−(μ−λ)t, t ≥ 0. (2)

To characterize the user delay, we first observe an in-
teresting result that Qsum(t) � Q0(t) + Wω(t) evolves the
same as an M/M/1 system with a properly initialized queue.
Based on this observation, the distribution of user delay un-
der proactive serving, i.e., Dω, turns out to be a “shifted”
version of that of user delay without proactive serving as
shown in (2). Once we know the distribution of Dω, we
can compute the average user delay E [Dω] as shown in the
following theorem. Detailed proof can be found in [10].

Theorem 1. Assume μ > λ. The average user delay is
given by

E[Dω] =
1

μ− λ
e−(μ−λ)ω. (3)

Theorem 1 reveals that the average user delay decays ex-
ponentially in the prediction window size ω. We have de-
rived similar results for G/G/1 queue in [10]. These results
indicates that a small amount of future information can
improve user delay experience significantly. In particular,
they suggests that, for Amazons new mobile web-browser
described in Section 1, if the Amazon cloud can predict near-
future web requests actually, the request response time can
be reduced significantly.

4. AVERAGE USER DELAY UNDER IMPER-

FECT PREDICTION
In Section 3, we analyze the benefit of proactive serving

under perfect arrival prediction. In this section, we study
the performance of proactive serving under imperfect arrival
prediction with two types of prediction errors. For ease of
analysis and illustration, we consider a single server sys-
tem. Due to the space limitation, we highlight only the
main results in this section, and refer interested readers to
our technical report [10] for more details.

4.1 Modeling
The first type of error is failing to predict actual arrivals,

i.e., miss detection (also called false negative). When miss
detection happens, the arrival will be out of the system’s vi-
sion. Therefore, it cannot be served proactively. Intuitively,
such errors result in a “side flow” into the system and will
affect the ultimate gain one can obtain by proactive serving.
The other type of error is false alarm (also called false pos-
itive), which happens when the system mistakenly predicts
the existence of non-existing arrivals. Such false arrivals
will not eventually enter the system for service. However,
the system may incorrectly allocate resources to serve them,
resulting in wasted service opportunities.

40 Performance Evaluation Review, Vol. 43, No. 2, September 2015

)(2 ω+tA

server

)(0 tQ

)(tW
ω

)(1 tA

ω

p−1 p

Figure 4: Service system with imperfect prediction.

We model the system with these two types of prediction
errors by the model shown in Fig. 4. In this model, {A2(t)}t
represents the process of predicted arrivals, which include
false alarms and actual arrivals that are predicted correctly.
{A1(t)}t instead represents the process of miss detections.
Q0(t) stores requests that have already entered the system
and are waiting for service at time t. Wω(t) is the prediction
window with length ω. Requests in {A2(t)}t go through
the prediction window and can be served proactively by the
server. In contrast, requests in {A1(t)}t enter Q0(t) directly
and cannot be served proactively. False alarms in {A2(t)}t
will not enter Q0(t). They are either pre-served in Wω(t) or
depart once they leave the prediction window.
For tractability, we make the following two assumptions

on {A1(t)}t and {A2(t)}t. First, we assume that request ar-
rivals in {A2(t)}t are independent, and each request is an ac-
tual request with probability p and is a “false-alarm” request
with probability 1−p. The larger p is, the more accurate the
prediction mechanism is. Second, we assume that {A1(t)}t
and {A2(t)}t are independent Poisson processes. Note that
these assumptions are reasonable for systems with a large
number of users, where consecutive arrivals are likely origi-
nated from different users. In this case, the prediction about
one arriving request can be considered as independent from
others.
Denote E[A1(t)] = λ1 and E[A2(t)] = λ2. Since all the

miss detections and the actual arrivals among the predicted
arrivals compose the real arrivals, we have

λ1 + pλ2 = λ. (4)

In this system, the server applies the FCFS service pol-
icy. Different from the case of perfect prediction, here we
assume that the requests that are already in Q0(t) and the
arrivals from {A1(t)}t have preemptive priority. That is,
the service of arrivals in Wω(t) will be suspended unless the
queue is empty and there is no new arrival entering Q0(t)
from {A1(t)}t.
4.2 Impact of Miss Detections

Now suppose that are only miss detections in the system,
i.e., p = 1 and λ1+λ2 = λ. In this case, it is conceivable that
the delay improvement may be less significant as compared
to the perfect-prediction case, because miss detection cannot
be pre-served by the system. We have the following result.

Theorem 2. Assume λ = λ1+λ2 < μ. The average user
delay under miss detections is given by:

E[Dω] (5)

=
λ1

(μ− λ1)λ
+

λ2

λ

[
λ2 − λ1μ

λ2
2(μ− λ)

· eλ2(λ−μ)
λ

ω · 1λ2>λ1μ
+

1

2π

ˆ 4
√
λ1μ

0

(μ− λ)
√

x(4
√
λ1μ− x)e(−(

√
μ−√

λ1)
2−x)ω(

(
√
μ−√

λ1)2 + x
)2 · (λx+ (

√
λ1μ− λ)2

) dx
]
,

which decreases exponentially in ω.

The result in (6) consists of two components. The first com-
ponent does not depend on ω. This part is due to that
miss detections enter Q0(t) directly without going through
the prediction window and thus proactive serving cannot re-
duce this part of delay. The second component of the delay
decreases exponentially with ω and diminishes as the sys-
tem predicts sufficiently far, which we formally established
in the proof in [10]. This exponential delay reduction is due
to that the system can pre-serve the predicted arrivals in
the prediction window Wω(t).

4.3 Impact of False Alarms
When there exist only false alarms in the system, i.e.,

λ1 = 0 and pλ2 = λ, the server capacity will be wasted if a
false alarm is pre-served. As a result, the power of proactive
serving will be affected compared to the perfect prediction
scenario. Despite this effect, as we will see, proactive serving
still provides significant delay improvement.

Theorem 3. Assume λ = pλ2 < μ. The average user
delay under the impact of false alarms is given by

E[Dω] =

{ μ−λ2
(μ−λ)2

1

e(μ−λ2)ω−λ2−λ
μ−λ

λ2 �= μ

1
(μ−λ)[(μ−λ)ω+1]

λ2 = μ
. (6)

The average delay decreases exponentially in ω when λ2 �= μ.

From (6), it is not immediately clear that E[Dω] decreases
exponentially in ω when λ2 �= μ. Instead, we show in the
proof in [10] that E[Dω] can be lower and upper bounded
by exponential functions which decrease exponentially in ω.

5. CONCLUSIONS
In this paper, we investigate the fundamentals of proactive

serving from a queuing theory perspective. We show that
proactive serving decreases average delay exponentially (as a
function of the prediction window size). Our results provide
theoretical justification for practical use of proactive serving.

6. REFERENCES
[1] Kindle fire.

http://www.amazon.com/gp/product/b0051vvob2.
[2] B. Coleman. Quality vs. performance in lookahead

scheduling. In JCIS, 2006.
[3] L. Huang, S. Zhang, M. Chen, and X. Liu. When

backpressure meets predictive scheduling. In Proc.
MobiHoc, 2014.

[4] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload
characterization and prediction in the cloud: A
multiple time series approach. In IEEE Network
Operations and Management Symposium, 2012.

[5] R. Kohavi and R. Longbotham. Online experiments:
Lessons learned. IEEE Computer, 2007.

[6] M. Mandelbaum and D. Shabtay. Scheduling unit
length jobs on parallel machines with lookahead
information. Journal of Scheduling, 2011.

[7] J. Spencer, M. Sudan, and K. Xu. Queueing with
future information. arXiv:1211.0618, 2012.

[8] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive
resource allocation: harnessing the diversity and
multicast gains. IEEE Trans. Information Theory,
2013.

[9] K. Xu and C. W. Chan. Using future information to
reduce waiting times in the emergency department.
under submission.

[10] S. Zhang, L. Huang, M. Chen, and X. Liu. Effect of
proactive serving on user delay reduction in service
systems. Techniical Report, CUHK. http://www.ie.
cuhk.edu.hk/~mhchen/papers/proa_serv.tr.pdf.

Performance Evaluation Review, Vol. 43, No. 2, September 2015 41

