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Observation of generalized Kibble-Zurek mechanism 
across a first-order quantum phase transition in  
a spinor condensate
L.-Y. Qiu*, H.-Y. Liang*, Y.-B. Yang*, H.-X. Yang, T. Tian, Y. Xu†, L.-M. Duan†

The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics 
when a system is driven through a second-order quantum phase transition. However, for first-order quantum 
phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate 
and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum 
phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that 
this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally 
measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with 
respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for 
further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum 
phase transitions.

INTRODUCTION
Nonequilibrium dynamics across phase transitions plays a crucial role 
in various areas of physics ranging from cosmology to condensed 
matter (1). At zero temperature, the properties of a quantum system 
are dictated by its ground state, and the quantum phase transition is 
driven by quantum fluctuations. There, at the phase transition point, 
the energy gap vanishes and the relaxation time diverges, resulting 
in the violation of adiabaticity as the system parameter is tuned across 
the transition point. The Kibble-Zurek mechanism (KZM) describes 
the dynamics across the transition point by three evolution regions: 
two adiabatic and one impulse regions (2–8). Specifically, when a 
system is far away from the transition point, the relaxation time is 
sufficiently short so that the system can respond to the change of a 
parameter and the dynamics is adiabatic. When the system is tuned 
to be near the point, it enters into an impulse region, where the re-
laxation time is sufficiently long so that the system cannot adapt to 
the change and thus remains frozen. After the impulse region, the 
energy gap becomes large and the system reenters into an adiabatic 
region. On the basis of the KZM, universal scaling laws are predicted 
across continuous quantum phase transitions for various quantities, 
such as topological defects and spin excitations. The KZM in quantum 
phase transitions has been experimentally observed in several systems 
(9–16), such as Bose-Einstein condensates (BECs) and a program-
mable Rydberg simulator.

Different from the second-order quantum phase transition, mul-
tiple phases coexist at the transition point for the first-order one. Sim-
ilar to the former, numerical simulations have suggested that scaling 
laws may also exist in the dynamics of several first-order phase tran-
sitions (15, 17–21). However, while the KZM is very successful in the 
former, some direct application of the KZM to the first-order tran-
sition cannot give a satisfied description of the scaling law compared 

to the numerical simulation results, such as in an extended Bose- 
Hubbard model (21). In addition, there has been no experimental 
evidence for the existence of the scaling law at the first-order quan-
tum phase transition.

A spinor BEC provides a versatile platform to study the non-
equilibrium physics, such as spin domains (22–26), topological de-
fects (27–30), the KZM through the second-order phase transition 
(11), and dynamical quantum phase transitions (31, 32). The con-
densate is described by a vector order parameter. Under single-mode 
approximation, all spin states share the same spatial wave function so 
that the spin and spatial degrees of freedom are decoupled (33, 34). 
For an antiferromagnetic (AFM) sodium condensate, its spin degrees 
of freedom exhibit a first-order quantum phase transition between 
an AFM phase with two mF = ± 1 levels equally populated and a polar 
phase with only the mF = 0 level populated (mF is the magnetic quan-
tum number). This system therefore provides an ideal platform to 
explore the dynamics across the first-order quantum phase transition. 
Many interesting phenomena, such as coarsening dynamics of the 
instability (35), nematic and magnetic spin density waves (36), and 
dynamical phase transitions (31), have been experimentally observed 
in the spinor condensate.

Here, we theoretically and experimentally study the scaling law as 
a quadratic Zeeman energy is slowly varied from positive to negative 
values (or from negative to positive values) across the first-order 
quantum phase transition between the polar phase and the AFM phase. 
Our numerical simulation shows the existence of a power-law scaling 
of the temporal onset of the spin excitations with respect to the quench 
rate. Similar to the KZM at the continuous quantum phase transition, 
we find that the dynamics exhibits two adiabatic and one frozen 
evolution region, suggesting the existence of the KZM. For the KZM, 
the power-law scaling exponent is directly related to the scaling of 
the energy gap. For the conventional one, the scaling exponent is 
determined by the energy gap between the ground state and the first 
excited state. However, we find that this does not agree with our 
simulation result. We therefore generalize the KZM by considering 
the energy gap between the maximally occupied state (corresponding 
to the metastable phase) and its corresponding first excited state. 
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Using this gap, we find that the predicted exponent agrees very well 
with our simulation result.

We further perform experiments in the sodium condensate to 
show the power-law scaling of the temporal onset of spin excitations 
with respect to the quench rate by measuring the spin population. 
The experimental results agree well with our numerical simulations 
and the generalized KZM. Our result shows the first experimental 
evidence for the existence of the power-law scaling in the dynamics 
across the first-order quantum phase transition.

RESULTS
Theoretical analysis
We start by considering a spinor BEC, which is well described by the 
following Hamiltonian under single-mode approximation

	​​  ̂  H ​(q ) = ​c​ 2​​ ​ ​​   L ​​​ 
2
​ ─ 2N ​ + ​  ∑ 

​m​ F​​=−1
​ 

1
 ​ ​(​qm​F​ 2 ​ − ​pm​ F​​ ) ​​   a ​​​m​ F​​​ †  ​ ​​   a ​​ ​m​ F​​​​​	 (1)

where ​​​   a ​​ ​m​ F​​​​​ (​​​   a ​​​m​ F​​​ †  ​​) is the annihilation (creation) operator for the spin 
mF component corresponding to the hyperfine level ∣F = 1,mF〉, 
​​L​ ​​=​∑ m,n​ ​​ ​​   a ​​m​ † ​ ​(​f​ ​​)​ mn​​ ​​   a ​​ n​​​ is the condensate’s total spin operator along 
 ( = x, y, z) with f being the corresponding spin-1 angular mo-
mentum matrix, c2 is the spin-dependent interaction (c2 > 0 for the 
AFM sodium atoms), N is the total atom number, and q (p) is the 
quadratic (linear) Zeeman energy.

In the absence of the linear Zeeman energy (p = 0), there are two 
phases for the ground state: a polar phase with atoms all occupying 
the mF = 0 level for q > 0 and the AFM phase with atoms equally 
occupying the mF = ± 1 levels for q < 0 (34). If we take mean value 
〈0〉 with ​​​ 0​​ = ​​   a ​​0​ †​ ​​   a ​​ 0​​ / N​ as an order parameter, we can clearly see that 
〈0〉 abruptly drops from one to zero at q = 0, showing the first-order 
quantum phase transition there (see Fig. 1A). At the transition point 
qc = 0 Hz, these two phases coexist. Near this point, we can observe 
the existence of the polar phase for q < 0 and AFM phase for q > 0 as 
metastable states, which is the characteristic of the first-order phase 
transitions. In real experiments, p is nonzero. However, because 
the Hamiltonian commutes with the total magnetization ​​​   L ​​ z​​​, i.e., ​
[​ ̂  H ​(q), ​​   L ​​ z​​ ] = 0​, the quench dynamics is restricted in the subspace 
with zero magnetization if we prepare the initial state in the polar 
phase and the linear Zeeman term therefore becomes irrelevant.

To simulate the scaling in the dynamics across the first-order quantum 
phase transition, we start with the ground state of a spinor conden-
sate in the polar phase for positive qi and then linearly vary the qua-
dratic Zeeman energy q by q(t) = qi − vt with qi > qc, qf < qc, and v = 
(qi − qf)/q characterizing the quench rate with q being the total time 
as q changes from qi to qf. To numerically simulate the dynamics, we 
solve the Schrödinger equation ​iℏ∂ ∣(t)〉/∂t = ​ ̂  H ​(t)∣(t)〉​ by directly 
diagonalizing the many-body Hamiltonian with Fock state basis 
∣N+1, N0, N−1⟩ = {∣N/2,0, N/2⟩,∣N/2 − 1,2, N/2 − 1⟩, ⋯∣0, N,0⟩} 
(we will take h = 1 for simplicity hereafter). The time evolution of 0 
can be obtained by 〈0〉(t) = 〈(t)∣0∣(t)〉 for distinct v. In the 
dynamics across the transition point, spin excitations from the po-
lar state emerge, which can be reflected by the decrease of 〈0〉(t) 
from one. Let ta be the temporal onset of the spin excitations and qa 
= q(t = ta) be the critical quadratic Zeeman energy at which 〈0〉(t) 
begins to change. In Fig. 1B, we show the presence of a power-law 

scaling for qa with respect to the quench rate v (see the orange 
squares).

To delve into the reason underlying the presence of the scaling, 
let us show the presence of impulse and adiabatic evolution regions. 
It is well known that a metastable phase exists across a first-order 
quantum phase transition, as shown in Fig. 1A. Intuitively, when we 
vary the system parameter q across zero, the evolving state should 
stay around this metastable state if the energy gap relative to this 
metastable state is sufficiently small, suggesting the presence of an 
impulse region. Yet, when the energy gap becomes sufficiently large, 
the state cannot jump to the metastable state of the following q so 
that 0 begins to decrease, suggesting an entrance into an adiabatic 
region. Specifically, in the impulse region, an evolving state remains 
frozen in the initial state as time progresses. In other words, if the 
system remains in the initial state, its maximally occupied level for 
the evolving state is the same as the maximally occupied level for the 
initial state. Here, the maximally occupied energy level of the evolv-
ing state is defined as the nmax(t)th eigenstate ∣nmax(q)⟩ satisfying 
∣〈nmax(q)∣(t)〉∣≥∣〈n(q)∣(t)〉∣ for all n with ∣n(q)⟩ being the 

B
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A

Fig. 1. (Color online) Theoretical demonstration of the existence of a power-
law scaling and impulse and adiabatic regions in the dynamics. (A) 〈0〉 for 
each energy level as a function of q. The existence of an AFM metastable state for q > 
0 and a polar metastable state for q < 0 is observed. (B) The scaling of the q onset 
of the spin excitations qa with respect to the quench rate v. Orange squares, green 
diamonds, and blue circles are obtained by the numerical simulation, the KZM, and 
the generalized KZM, respectively. The inset displays the scaling for the two gaps 
used in the KZM (green diamonds) and the generalized KZM (blue circles) with 
power-law fitting exponents of  = 0.521 and  = 0.371, respectively. (C) The evolu-
tion of the maximally occupied level nmax(t) for distinct v when q is varied from 
positive to negative values. The solid red line depicts the maximally occupied en-
ergy level nsmax for the initial state. This line coincides with the metastable polar 
phase as shown in (A). (D) The evolution of the probability on the maximally occu-
pied level, i.e., Pm=∣〈nmax(q)∣(t)〉∣2, for distinct v. In (C) and (D), the diagonal cross-
es label the position qa where the spin excitations begin appearing, calculated by 
the numerical simulation. In (C) and (D), the filled light blue region shows the fro-
zen region for v = 260 Hz/s, where the evolving state remains unchanged. We take 
c2 = 25.4 Hz and the total atom number N = 1.0 × 104 in the numerical simulation 
with the energy level index of the Hamiltonian varying from 1,2,…,5001.
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eigenstate of ​​   H ​(q(t))​, and the maximally occupied energy level 
for the initial state is defined as the nsmaxth energy level that has 
the maximal overlap with the initial state, i.e., ∣〈nsmax(q)∣0〉∣≥∣ 
〈n(q)∣0〉∣ for all n. The latter level coincides with the metastable 
polar phase with respect to q (see Fig. 1, A and C), which is consist
ent with the first-order quantum phase transition.

We find that when q is varied across zero, the former maximally 
occupied level nmax(t) rapidly increases by following the latter 
maximally occupied one nsmax, as shown in Fig. 1C, suggesting the 
existence of an impulse region where the state remains frozen. In 
contrast, when the system leaves this region, the maximally occupied 
level nmax(t) begins approaching a fixed level, suggesting the pres-
ence of an adiabatic evolution. For instance, when v = 260 Hz/s, the 
maximally occupied level nmax(t) follows nsmax inside the blue region 
and then converges to around the 2510th level in the long time limit 
(see the green line in Fig. 1C).

To further demonstrate the existence of impulse and adiabatic 
regions in the dynamics, we compute the evolution of the probabil-
ity of atoms occupying the maximally occupied level, i.e., Pm(q) = 
∣〈nmax(q)∣(t)〉∣2. As shown in Fig. 1D, we find that the probability 
changes rapidly near the transition point, consistent with the pre-
diction of an impulse evolution, and remains almost constant in 
other regions, consistent with the prediction of an adiabatic evolution. 
In addition, we mark out qa as diagonal crosses determined by the 
numerical simulation, which agrees well with the q where the sys-
tem leaves the impulse region and enters the adiabatic region (see 
Fig. 1, C and D).

The presence of the impulse and adiabatic regions suggests that 
the scaling law may be accounted for by the KZM. Suppose that at 
t = 0, q = qc = 0 and the system is in the polar phase. q is then linearly 
varied by q = − vt. On the basis of the KZM, the critical time when 
the system begins to respond is determined by (ta) = ta, where (ta) is 
the relaxation time proportional to 1/E(t), with E(t) being the energy 
gap near the transition point. We can also determine the critical time 
ta by 1/∣E(t)∣ = ∣E(t)/(dE(t)/dt)∣, after which the adiabaticity 
is restored. If the energy gap E ∝ ∣q − qc∣ with  being a positive 
real number, then the critical time is given by ta ∝ v−/( + 1), yielding 
qa ∝ v1/( + 1). This shows a power-law scaling of qa with respect to 
v and the scaling exponent is determined by the energy gap. At the 
second-order phase transition, the relevant energy gap is the gap be-
tween the ground state and the first excited state labeled E12. In our 
system, this energy gap E12 ∝ q1/2 is contributed by the Bogoliubov 
spin excitations as q → 0 (34). This gives us qa ∝ v2/3, consistent with 
our numerical result qa ∝ v0.662 (see Fig. 1B). It also tells us that the 
finite-size effects are very small when N = 1 × 104 (see the Supple-
mentary Materials for details about finite-size effects). However, at 
the first-order transition point, the numerical evolution gives us the 
exponent of 0.740, which is larger than the value predicted by the 
KZM by more than 10%. In stark contrast, if the energy gap is taken as 
the gap (dubbed the generalized energy gap) between the maximally 
occupied energy level, i.e., the nsmaxth level and the corresponding 
first excited state relative to it, i.e., the (nsmax + 1)th level, we find the 
exponent of 0.734, which agrees well with our numerical result. This 
is due to the different energy gap scaling as shown in the inset of 
Fig. 1B (the scaling exponent for the generalized energy gap is  = 
0.371). For the maximally occupied energy level, while there are two 
gaps relative to it, one with the next level and the other with the 
previous level, only the former is relevant because it determines the 
impulse and adiabatic regions (see Materials and Methods for details). 

We call this method the generalized KZM. Yet, when we apply the 
generalized KZM to the second-order quantum phase transition, we 
find that the result is not as good as the one predicted by the first one, 
suggesting the difference between the first-order and second-order 
quantum phase transitions (see the Supplementary Materials for details 
about the KZM across the second-order quantum phase transition). 
While the energy gap for a second-order quantum phase transition 
generically exhibits a power-law scaling near the critical point, whether 
the power-law scaling of the generalized energy gap for a first-order 
quantum phase transition is universal is still an open question.

Experimental results
In experiments, we prepare a sodium BEC in the 32S1/2∣F = 1⟩ hyper
fine state by evaporation of atoms in an all-optical trap (31) and 
then apply a strong magnetic field gradient to kick the atoms on the 
mF = ± 1 levels out of the optical trap, leaving all atoms on the mF = 0 
level. After that, we hold the BEC atoms in a uniform magnetic 
field for 3 s to obtain a polar phase under the quadratic Zeeman 
energy of qB = 42 Hz induced by the magnetic field. At the end 
of the holding, we turn on the microwave pulse with a frequency 
of 1.7701264 GHz (with a detuning of −1500 kHz from ∣F = 1, mF = 
0⟩ to ∣F = 2, mF = 0⟩) to change the quadratic Zeeman energy to 
qi ∼ 15 Hz (this time is defined as t = 0). Subsequently, we linearly 
vary the quadratic Zeeman energy from qi ≃ 15 Hz to qf ≃ − 38 Hz by 
ramping up the amplitude of the microwave field. During the entire 
ramping time, we control the microwave power by a proportional- 
integral-derivative (PID) system according to the calibration of the 
quadratic Zeeman energy (see Materials and Methods for details 
about the q calibration). As time progresses, we apply the Stern-Gerlach 
fluorescence imaging to measure 0(t). At each time t, we repeat 15 
to 20 measurements to obtain the average 〈0〉 over the ensemble. 
Figure 2 displays the observed 〈0〉 as time evolves for a number of 
ramping rates v. qa is taken as the value when 〈0〉 drops below the 
threshold 0c = 0.98. Evidently, qa approaches zero as v is decreased.

To experimentally measure the power-law scaling, qc should be 
precisely probed. We here use the quench dynamics to identify the 
error of transitions point (31) in our calibration.

Fig. 2. (Color online) Experimentally measured mean value and SD of 0. 〈0〉 
and 0 (denoted by the error bar) are evaluated with respect to q(t) as q(t) is slow-
ly varied from positive to negative values for a number of ramp rates v with each 
point repeating 10 times. The horizontal and vertical dashed lines show the 〈0〉 
threshold 0c = 0.98 and the phase transition point qc, respectively. 〈0〉 remains 
unchanged in the frozen region until at qa when it begins to change, entering into 
the adiabatic region. Here, c2 = 25.5 ± 1.5 Hz.
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Besides, we also use the result to evaluate the error of v (see Ma-
terials and Methods for details about the q error evaluation).

In Fig. 3 (A and B), we plot the observed ∣qa − qc∣ with respect 
to v in the logarithmic scale, showing the existence of a power-law 
scaling, i.e., ∣qa − qc∣∝ v. The fitting of the experimental data 
gives the exponent of  = 0.728 ± 0.20 when c2 = 25.5 ± 1.5 Hz and 
 = 0.723 ± 0.25 when c2 = 23.5 ± 0.7 Hz, which are slightly different 
for different c2 owing to the finite-size effect. The experimental results 
are also in good agreement with the numerical simulation results: 
 = 0.739 for the former and  = 0.744 for the latter (see the insets in 
Fig. 3). We also calculate the scaling law determined by the KZM 
and find that the exponents predicted by the generalized KZM are 
0.733 for (A) and 0.740 for (B), which are closer to the simulation and 
the experimental results than the exponents of 0.662 and 0.657 predicted 
by the KZM. In addition, we find that the scaling is not sensitive 
to the atom loss as we can still observe it in the presence of 18% atom 
loss (see Materials and Methods for details about atom loss).

The scaling can also be observed when the system is driven from 
the AFM phase to the polar phase. In experiments, we prepare the 
initial state of the spinor BEC in a nearly AFM state by shining a 
/2-pulse radio frequency radiation to the BEC on the ∣mF = 0⟩ level. 
We then shine a resonant microwave pulse with a frequency of 
1.7716264 GHz on the atoms for 300 ms to remove the remaining 
atoms on the ∣mF = 0⟩ level to obtain an AFM state. After that, we 
suddenly switch off this microwave pulse and switch on another one 
with a frequency of 1.7701264 GHz. By controlling the amplitude of 
a microwave field, we are able to linearly vary the quadratic Zeeman 
energy from around −12 Hz to around 28 Hz. In Fig. 3C, we show 
the experimentally measured relation between ∣qa − qc∣ and v, illus-
trating a power-law scaling with an exponent of 0.724 ± 0.32, 
which agrees very well with the numerical simulation result of 0.734 
and the result of 0.730 predicted by the generalized KZM.

DISCUSSION
In summary, we have theoretically and experimentally studied the 
dynamics across the first-order quantum phase transition in a spin-1 

condensate. We find the existence of a power-law scaling of the 
temporal onset of the spin excitations with respect to the quench rate. 
The scaling is well explained by the generalized KZM. We further 
perform an experiment to observe the power-law scaling by measur-
ing the spin populations, which agrees well with the numerical sim-
ulation and the generalized KZM results. Our experiment is the first 
one to observe the scaling in the dynamics across the first-order 
quantum phase transition and hence opens an avenue for further 
studying universal scaling laws for first-order quantum phase tran-
sitions both theoretically and experimentally.

MATERIALS AND METHODS
The relevant energy gap
For the maximally occupied energy level (the nsmaxth level), there are 
two energy gaps relative to it: one gap (labeled E+) between this level 
and the next level [the (nsmax + 1)th level] and the other (labeled 
E−) between this level and the previous level [the (nsmax − 1)th lev-
el]. To show that E− is not relevant, let us suppose that E− were 
relevant. Let us further suppose that the evolving state occupies the 
maximally occupied energy level when we change q to q1 < 0. At this 
q, if E− is very small compared to the quench rate and E+ is very 
large compared to it, then the system should be in the impulse evo-
lution region so that 0 should remain unchanged. However, because 
the evolution is adiabatic with respect to the next level due to the large 
E+, the state cannot evolve to this level when we slightly decrease 
q, indicating that it cannot evolve to the maximally occupied energy 
level given that the level index of the maximally occupied level rises 
as q is decreased. This leads to the decrease of 0 as we decrease q, 
which contradicts with the result that 0 should remain unchanged. 
This conflict shows that the relevant gap is not E−.

Calibration of the spin-dependent interaction c2
The calibration of the spin-dependent interaction parameter c2 in 
our experiments is achieved by applying a widely used spin oscilla-
tion procedure as detailed in the following. In experiments, we 
first prepare the BEC in the polar state with all atoms occupying the 

A B C

Fig. 3. (Color online) Experimentally observed scaling for with respect to the quench rate shown in the logarithmic scale. ∣qa − qc∣ v In (A) and (B), q is tuned from 
around 15 Hz to around −38 Hz, and in (C), q is tuned from around −12 to 28 Hz. In (A) to (C), c2 = 25.5 ± 1.5 Hz, c2 = 23.5 ± 0.7 Hz, and c2 = 25.2 ± 0.9 Hz, respectively. The 
fitting of the experimental data shows the power-law scaling with the exponent of 0.728 ± 0.20 in (A), 0.723 ± 0.25 in (B), and 0.724 ± 0.32 in (C) with 95% confidence 
boundary. In the insets, we also plot the results of the numerical simulation (orange line), the KZM (green line), and the generalized KZM (blue line). For the numerical 
simulation, we take N = 1.16 × 104 in (A), N = 0.99 × 104 in (B), and N = 1.07 × 104 in (C) associated with the corresponding c2. The experimentally observed exponents agree 
well with the exponents of 0.739 in (A), 0.744 in (B), and 0.734 in (C), which are obtained by the numerical calculation. The corresponding exponents predicted by the 
(generalized) KZM are 0.662 (0.733), 0.657 (0.740), and 0.662 (0.730), respectively. The error of ∣qa − qc∣ arises from the onset time errors in experiments. For instance, if 
0(t1) > 0.98 and 0(t2) < 0.98, we take ta = (t1 + t2)/2 with the error of t1 − t2, leading to the error of qa being v(t1 − t2). In experiments, the error is smaller than 0.5 Hz, and if 
v < 52 Hz/s, the error is smaller than 0.2 Hz.
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mF = 0 level and then apply a radio frequency radiation to create a 
coherent state with 〈0〉 = 1/2 and 〈±1〉 = 1/4 under a magnetic field, 
which contributes a quadratic Zeeman energy of qB. After that, the 
radio frequency radiation is switched off and the time evolution of 
the spinor condensates exhibits oscillations (37). Because the period 
and amplitude of the oscillations are determined by c2 and qB, we can 
obtain c2 by comparing the experimental results with the theoretical 
ones under a certain qB with qB = qzB2, where qz = 277 Hz/G2. Specifi-
cally, we measure the spin oscillation diagram under six different 
magnetic quadratic Zeeman energy qB and evaluate the mean value 
and SD of c2, i.e., ​​ ̄  ​c​ 2​​​​ and c2, with a narrow range of fluorescence 
counting number between a low limit NL and a high limit NH as shown 
by the horizontal error bar in fig. S1.

Calibration of the quadratic Zeeman energy q
To calibrate the quadratic Zeeman energy q, we measure the Rabi 
frequency of +, , − transitions under a PID microwave power con-
trol system in experiments. We also apply the quench dynamics meth-
od to evaluate the error in the calibration process of q.

In our experiments, the quadratic Zeeman energy is given by q = 
qB + qM, where qB and qM are generated by the magnetic field and 
microwave pulse, respectively. The magnetic Zeeman energy qB is 
about 42 Hz in the whole ramping period. The microwave Zeeman 
energy is given by

	​​ q​ M​​ = ​ 
​E​ ​m​ F ​​=+1​​ + ​E​ ​m​ F ​​=−1​​ − 2​E​ ​m​ F ​​=0​​

   ────────────────  2  ​​	 (2)

where

                          ​​E​ ​m​ F​​​​ = ​ 1 ─ 4 ​ ​  ∑ 
k=−1,0,+1

​​​ ​ 
​​​m​ F​​→​m​ F​​+k​ 2 ​

 ─ ​​ ​m​ F​​→​m​ F​​+k​​ ​​	 (3)

	​= ​ 1 ─ 4 ​ ​  ∑ 
k=−1,0,+1

​​​ ​ 
​​​m​ F​​ →​m​ F ​​+k​ 

2 ​
  ───────────────────   ​​ 0​​ − [(​m​ F​​ + k ) ​g​ F​​ − (− ​m​ F​​ ) ​g​ F​​ ] ​​ B​​ B  ​​		

			 
		  (4)

with mF→mF + k being the resonant Rabi frequency for the transi-
tion from ∣F = 1, mF⟩ to ∣F = 2, mF + k⟩ and 0 being the microwave 
detuning for the transition from ∣F = 1, mF = 0⟩ to ∣F = 2, mF = 0⟩.

In experiments, we measure three Rabi frequencies of +, , and 
− transitions corresponding to mF = 0→mF = 1, mF = −1→mF = −1, and 
mF = 0→mF = −1, respectively, and then determine qM based on the 
above formula. The detuning of the microwave pulse 0 is precisely 
controlled by the Keysight E8663D PSG RF Analog Signal Generator. 
Without a PID system, its power requires more than 1 s to reach a 
stable value (after the radio frequency amplifier ZHL-30 W-252-S+), 
causing an error of q of about −3 Hz. We therefore apply a PID sys-
tem to shorten the time for the microwave power to reach a set value 
Vset to less than 100 s. The Rabi frequencies are measured during 
130 to 300 s after the microwave pulse is switched on.

In fig. S2, we plot the result of q based on the experimentally mea-
sured Rabi frequencies at six distinct Vset with frequency detuning 
0 = −1500 kHz. The figure also shows the fitting of these data by a 
parabola (see the dashed red line) and, with this fitting line, Vset is 
controlled following the line shown in fig. S2B to realize the linear 
change of the q.

In the following, we apply the quench dynamics to measure the 
quantum phase transition point and evaluate the q calibration error. 
We first prepare the BECs in the polar phase under a positive qi and 

then suddenly quench q to qf. If qf is positive, the atoms remain on 
the mF = 0 level after 500 ms of evolution, and if qf is negative, the 
atoms on the mF = ± 1 levels show up after 500 ms of evolution. In 
experiments, 〈0〉 is measured after this period of time for distinct 
Vset as the microwave frequency is suddenly tuned to f. To find the 
transition point, we control f to find the minimum 1 so that 〈0〉 
remains unchanged and the maximum 2 so that 〈0〉 is decreased. 
Note that q decreases as the frequency f is increased with 0 varying 
from −2000 to −1300 kHz. For these two frequencies 1,2, we calculate 
the quadratic Zeeman energy q1 and q2, respectively, under the Vset.

In table S1, we show the mean value  ​​   ​q​ 1,2​​​​  and SD q1,2 of q1,2 based on 
the quench dynamics data in 1 month. The error of the q leads to the 
error of v as ​v = ​√ 

_____________________________________
    ​q​ 1​​ ​(​V​ set​​ = 500 mV)​​ 2​ + ​q​ 1​​ ​(​V​ set​​ = 900 mV)​​ 2​ ​ / ​​ q​​​, 

where q1(Vset = 500 mV) and q1(Vset = 900 mV) are the SDs for 
Vset = 500 mV and Vset = 900 mV, respectively.

The effects of atom loss
In experiments, atom loss occurs owing to the microwave and optical 
radiation. In fig. S3, we display the amount of atom loss for different 
quench rates, showing that the amount increases when q is linearly 
decreased, achieved by controlling the microwave amplitude, and it 
also increases for smaller v. Specifically, when v = 17.1 Hz/s, which 
is the slowest quench rate in the experiments, the amount of atom 
loss is roughly 18% at the end of the ramp and 10% near the qc = 
0 Hz point. Despite the presence of atom loss, it does not have obvious 
effects on our measured scaling property as shown in Fig. 3.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/21/eaba7292/DC1
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