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Abstract. We introduce a new family of utility functions for exchange
markets. This family provides a natural and “continuous” hybridization
of the traditional linear and Leontief utilities and might be useful in
understanding the complexity of computing and approximating market
equilibria. Because this family of utility functions contains Leontief util-
ity functions as special cases, finding approximate Arrow-Debreu equi-
libria with hybrid linear-Leontief utilities is PPAD-hard in general. In
contrast, we show that, when the Leontief components are grouped, fi-
nite and well-conditioned, we can efficiently compute an approximate
Arrow-Debreu equilibrium.

1 Introduction

In recent years, the problem of computing market equilibria has attracted many
computer scientists. In an exchange market, there is a set of traders and each
trader comes with an initial endowment of commodities. They interact through
some exchange process in order to maximize their own utility functions. In the
state of an equilibrium, the traders can simply sell their initial endowments at
a determined market price and buy the commodities to maximize their utilities.
Then, the market will clear — the price is so wisely set that the supplies exactly
satisfy the demands. This price is called the equilibrium price.

Arrow-Debreu [1] proved the existence of equilibrium prices under a mild con-
dition. Since then, efficient algorithms have been developed for various settings.
Naturally, the complexity for finding an equilibrium price is determined not just
by the initial endowments, but also by traders’ utility functions.

1.1 From Linear to Leontief Utilities

Two popular families of utility functions are the linear and Leontief utilities.
Both utilities can be specified by an m × n demand matrix D = (di,j ), for m
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goods and n traders. If trader 1 ≤ j ≤ n receives a bundle of goods xj , then
its linear utility is uj(xj) =

∑
i xi,j/di,j , while its Leontief utility is uj(xj) =

mini(xi,j/di,j). Both linear and Leontief utility functions are members a large
family of utilities functions, referred to as CES utilities. The CES utility function
with parameter ρ ∈ (−∞, 1] − {0} is:

uρ
j (xj) =

(
∑

i

di,jx
ρ
i,j

)1/ρ

.

As ρ → −∞, CES utilities become the Leontief utilities. When ρ = 1, the utility
functions are linear functions.

Although the Leontief utility functions and linear utility functions look simi-
lar, the complexity for finding their market equilibria might be very different. A
market equilibrium with linear utilities can be approximated and computed in
polynomial time, thanks to a collection of great algorithmic works by Nenakhov
and Primak [16], Devanur et al. [10], Jain, Mahdian and Saberi [14], Garg and
Kapoor [11], Jain [13], and Ye [17].

However, approximating market equilibria with Leontief utilities has proven
to be hard, under some reasonable complexity assumptions. In particular, by
analyzing a reduction of Codenotti, Saberi, Varadarajan and Ye [5] from Nash
equilibria to market equilibria, Huang and Teng [12] showed that approximating
Leontief market equilibria is as hard as approximating Nash equilibria of gen-
eral two-player games. Thus, by a recent result of Chen, Deng, and Teng [3], it
is PPAD-hard to approximate a Leontief market equilibrium in fully polyno-
mial time. In fact, the smoothed complexity of finding a market equilibrium in
Leontief economies cannot be polynomial unless PPAD ⊂ RP.

1.2 Hybrid Linear-Leontief Utilities and Our Results

In this paper, we introduce a new family of utility functions and study the
computation and approximation of equilibria in exchange markets with these
utilities. Our work is partially motivated by the complexity discrepancy of lin-
ear and Leontief utilities. In our market model, each trader’s utility function is a
linear combination of a collection of Leontief utility functions. We parameterize
such a utility function by the maximum number of terms in its Leontief com-
ponents. If the number of terms in any of its Leontief components is at most k,
we refer to it as a k-wide linear-Leontief function. We further focus on grouped
hybridizations in which the commodities are divided into groups. Each trader’s
utility is the summation over the Leontief utilities of all groups. If each group
has at most k commodities, we refer to the hybrid functions as grouped k-wide
linear-Leontief functions.

Intuitively, the new utility function combines an “easy” linear function with
several “hard” Leontief utility functions. Clearly, a 1-wide linear-Leontief func-
tion is a linear function, and hence a market equilibrium with 1-wide linear-
Leontief functions can be found in polynomial time. On the other hand, market
equilibria with general hybrid linear-Leontief utilities are PPAD-hard to find.
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A market with grouped linear-Leontief utility functions can be viewed as a
linear combination of several Leontief markets, one for each group of commodi-
ties. In an equilibrium, the supplies exactly satisfy the demands for each group
of commodities. However, the trader can invest the surplus it earned from one
Leontief market to other Leontief markets.

We present two algorithmic results on the computation and approximation of
equilibria in markets with hybrid linear-Leontief utilities.

– We show that a Fisher equilibrium of an exchange market with n traders,
M commodities and hybrid linear-Leontief utility functions can be found in
O(

√
Mn(M + n)3L) time.

– We also show that, in the grouped hybridizations when the Leontief com-
ponent is well-conditioned, we can compute an approximate Arrow-Debreu
equilibrium in polynomial time either in M or n. (An interesting observa-
tion is that a recent result of Chen, Deng, and Teng [4] on sparse two-player
games implies that it is PPAD-hard to approximate Arrow-Debreu equi-
libria in an exchange market with 10-wide linear-Leontief utilities in fully
polynomial-time.)

In this paper, we only give formal definition for grouped linear-Leontief utility
functions. It is easy to extend the definition and the first algorithmic result to
hybrid ones.

1.3 Notations

We will use bold lower-case Roman letters such as x, a, bj to denote vectors.
Whenever a vector, say a ∈ R

n is present, its components will be denoted by
lower-case Roman letters with subscripts, such as a1, . . . , an. Matrices are de-
noted by bold upper-case Roman letters such as A and scalars are usually de-
noted by lower-case Roman letters.

We now enumerate some other notations that are used in this paper.

– R
m
+ : the set of m-dimensional vectors with non-negative real entries;

– P
n: the set of vectors x ∈ R

n
+ with

∑n
i=1 xi = 1;

– 〈a|b〉: the dot-product of two vectors in the same dimension;
– ‖x‖p: the p-norm of vector x, that is, (

∑ |xp
i |)1/p and ‖x‖∞ = maxi |xi|.

2 Grouped Linear-Leontief Markets

Assume there are n traders in the market, denoted by T = {1, 2, . . . , n}. The
market contains m groups of commodities, denoted by G = {G1, . . . , Gm}. Each
group Gj contains kj kinds of commodities.

The trader i’s initial endowment of goods is a collection of m vectors: {ei
j ∈

R
kj

+ | 1 ≤ j ≤ m}, where ei
j,k is the amount of good k in group j held by

trader i. For each group j, let the matrix Ej = (e1
j , . . . , e

n
j ) denote the traders’
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initial endowments in the groups. We assume that the amount of each commodity
is normalized to 1, i.e., 〈Ej|1〉 = 1, or equivalently,

n∑

i=1

ei
j,k = 1, ∀1 ≤ j ≤ m, 1 ≤ k ≤ kj .

Similar to the initial endowments, the allocation to trader i is a collection
of m vectors, denoted by xi = {xi

j ∈ R
kj

+ | 1 ≤ j ≤ m}. The trader i’s utility
function is characterized by a tuple {ai ∈ R

m
+ , {di

j ∈ R
kj

+ | 1 ≤ j ≤ m}}. Given

an allocation xi = {xi
j ∈ R

kj

+ | 1 ≤ j ≤ m}, trader i’s utility is defined as follows:

ui(xi) =
m∑

j=1

ai
jv

i
j , where vi

j = min

{
xi

j,k

di
j,k

∣
∣
∣ k = 1, 2, . . . , kj

}

In other words, trader i’s utility function is a linear combination of m Leontief
utility functions.

Locally, each group j is a Leontief economy. That is, every trader i demands
the goods in group j in proportion to the vector di

j . Therefore, we can introduce
the matrix Dj = (d1

j , . . . ,d
n
j ) to characterize the traders’ demands in group j.

Let vj = (v1
j , v2

j , . . . , vn
j )� be an n-dimensional column vector, which can be

viewed as an allocation of goods in group j. Then a feasible allocation vj of
goods in group j should satisfy Djvj ≤ 1. The allocation of the whole market
is denoted by v = {vj ∈ R

n
+ | 1 ≤ j ≤ m}.

Let D = (D1, . . . ,Dm), E = (E1, . . . ,Em) and A = (ai
j), then the market

can be denoted by a tuple M = (T,G,D,E,A). Now we define the exchange
equilibrium and approximate equilibrium in this market model.

Definition 1 (Exchange Equilibrium). An equilibrium is a pair (p,v),
where p = {pj ∈ R

kj

+ | 1 ≤ j ≤ m} is a collection of m price vectors and
v = {vj ∈ R

n
+ | 1 ≤ j ≤ m} is the allocation of the whole market, satisfying

that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

ui = max{
m∑

j=1

ai
jz

i
j |

m∑

j=1

〈
pj |di

j

〉
zi

j ≤
m∑

j=1

〈
pj |ei

j

〉}, ∀i = 1, . . . , n

Djvj ≤ 1, ∀j = 1, . . . , m

Definition 2 (ε-approximate Equilibrium). An ε-equilibrium is a pair
(p,v), satisfying that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

ui ≥ (1 − ε)max{
m∑

j=1

ai
jz

i
j |

m∑

j=1

〈
pj |di

j

〉
zi

j ≤
m∑

j=1

〈
pj |ei

j

〉}, ∀i = 1, . . . , n

Djvj ≤ (1 + ε)1, ∀j = 1, . . . , m
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3 An Equivalent Equilibrium Condition

Next, we prove a necessary and sufficient condition of an equilibrium. This con-
dition will be useful in our equilibrium computation algorithms.

Theorem 1. A pair (p,v) is an equilibrium if and only if it satisfies that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Djvj ≤ 1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ ui

〈
pj |di

j

〉
, ∀i, j

(1)

Proof. For each trader i, the pair (p,v) maximizes his utility if and only if

m∑

j=1

vi
j

〈
di

j |pj

〉 ≤
m∑

j=1

〈
ei

j|pj

〉
(2)

vi
j > 0 ⇒ ai

j/
〈
di

j |pj

〉 ≥ ai
k/
〈
di

k|pk

〉
(∀k) (3)

The first equation is the trader’s budget constraint, and the second equation
implies that the trader buys only those groups that maximizes his utility gained
per unit money spent on the groups.

Note that the equation (2) and (3) can be replaced equivalently by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , wi =

m∑

j=1

〈
pj |ei

j

〉

ai
j〈

pj |di
j

〉 ≤ ui

wi
, ∀j

ai
j〈

pj |di
j

〉vi
j ≤ ui

wi
vi

j , ∀j

Therefore, (p,v) is an equilibrium if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Djvj ≤ 1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ ui

〈
pj |di

j

〉
, ∀i, j

wia
i
jv

i
j ≤ ui

〈
pj |di

j

〉
vi

j , ∀i, j

Now, it suffices to prove that the last equation can be derived from the other
four equations. By wia

i
j ≤ ui

〈
pj |di

j

〉
, we have
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wia
i
jv

i
j ≤ ui

〈
di

j |pj

〉
vi

j , ∀i, j

⇒ wi

m∑

j=1

ai
jv

i
j ≤ ui

m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

⇒ wi =
m∑

j=1

〈
ei

j|pj

〉 ≤
m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

⇒
n∑

i=1

m∑

j=1

〈
ei

j |pj

〉 ≤
n∑

i=1

m∑

j=1

〈
di

jv
i
j |pj

〉

⇒
m∑

j=1

〈1|pj〉 ≤
m∑

j=1

〈Djvj |pj〉

Since Djvj ≤ 1 for all j, we have
⎧
⎨

⎩

〈Djvj |pj〉 = 〈1|pj〉
wi =

m∑

j=1

〈
ei

j |pj

〉
=

m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

Again, by wia
i
j ≤ ui

〈
pj |di

j

〉
, we have

wia
i
jv

i
j ≤ ui

〈
di

j |pj

〉
vi

j , ∀i, j

⇒ wiui = wi

m∑

j=1

ai
jv

i
j ≤ ui

m∑

j=1

〈
di

j |pj

〉
vi

j = uiwi, ∀i

This forced that wia
i
jv

i
j = ui

〈
di

j |pj

〉
vi

j for all i, j. �

3.1 Solving the Fisher’s Model

The Fisher’s model is a special case of the Arrow-Debreu’s exchange market
model. In the Fisher’s model, the commodities are held by a seller initially. The
traders come to the market with the initial endowments of money, instead of the
endowments of commodities in the general setting. The traders buy goods from
the seller to maximize each’s utility, under the budget constraints. The market is
in an equilibrium if the supplies satisfy the demands. Usually, the computation
of equilibria in the Fisher’s setting is much easier than that in the general case.

Assume in the Fisher’s model, trader i has wi dollars initially. As shown
in [15], the equilibrium can be approximated by solving the following convex
programming problem:

max
n∑

i=1

wi log(ui)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

Djvj ≤ 1 , ∀j = 1, . . . , m
vj ≥ 0 , ∀j = 1, . . . , m

(4)

With the same argument as in Ye [17], we can prove that

Theorem 2 (Fisher’s Equilibrium). The Fisher’s model can be solved by the

interior-point algorithm in time O(
√

Mn(M + n)3L), where M =
m∑

j=1

kj is the

total number of commodities, n is the number of traders and L is the bit-length
of the input data. �
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4 An Approximation Algorithm

Since Leontief economy is a special case of the hybrid linear-Leontief economy,
the hardness results [5,8,12] in Leontief economy can be imported to our case.
For example, it is NP-hard to determine the existence of equilibria [5], and there
is no algorithm to compute the equilibrium in smoothed polynomial time, unless
PPAD ⊂ RP [12]. In this section, we propose an approximation algorithm for
the grouped linear-Leontief economy, running in

min

{

O
(
(τε)−M+mpoly(M, n)

)
, O

((
log(1/τ)

ε

)2mn

poly(M, n)

)}

time,

where M =
m∑

j=1

kj is the total number of commodities and τ = min
i,j,k

{ei
j,k,di

j,k}.

4.1 Intuition

Since the market can be viewed as a linear combination of several Leontief mar-
kets, we may expect that it can be reduced to a linear market when the equilib-
rium information of the sub-markets are given. We first discuss this intuition in
this subsection.

Assume the market is M = (T,G,D,E,A) and (p,v) is one of its equilibria.
In the following discussion, it is more convenient to replace pj by qjpj , where
qj ∈ R+ and ‖pj‖1 = 1 is a normalized vector in R

kj

+ . Thus the equilibrium
(p,v) is replaced by (q,p,v), where q ∈ R

m
+ .

We define a market M̂ with linear utilities as follows. The set of traders are
same as M. For each group Gj ∈ G, we introduce a commodity j to M̂. The
trader i’s initial endowment of commodity j is defined by êi

j =
〈
ei

j |pj

〉
and his

preference to commodity j is âi
j = ai

j/
〈
di

j |pj

〉
. The following lemma is obvious.

Lemma 1 (Market Reduction). Let x̂i
j = vi

j

〈
di

j |pj

〉
for all 1 ≤ i ≤ n and

1 ≤ j ≤ m, then (q, x̂) is an equilibrium for the linear market M̂. �

The above lemma shows that if we are so lucky that we know the internal price pj

of every group Gj , the hybrid market can be transformed to a linear market,
where every group Gj in the market M is replaced by a special commodity j

in M̂, which plays the role of currency of this group. The traders’ endowments
and preferences to this group are changed to the endowments and preferences to
this currency. M̂ can be viewed as the foreign currency exchange market. The
equilibrium price q of M̂ is the exchange rate between groups, which can be
computed in polynomial time, since the market M̂ is linear.

This fact leads to the following approximation heuristic. We exhaustively enu-
merate the internal prices of every group j in the simplex P

kj . With the collection
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of sampled internal prices p = {pj | 1 ≤ j ≤ m}, we transform the market M to
the linear market M̂. Then we compute the equilibrium price q and allocation x̂
in the market M̂. Let vi

j = x̂i
j/ 〈dj |pj〉 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. For every

group j, let vj = (v1
j , . . . , vn

j )�. Finally, we check that if Djvj ≤ 1 are approxi-
mately satisfied. If true, we have found an approximate equilibrium (q,p,v) for
the original market M.

Before we explicitly present the algorithm, we prepare two important tools in
the following two subsections.

4.2 Efficient Sampling Problem

Problem: Given ε > 0 and n vectors {xi ∈ P
k | i = 1, . . . , n}, called anchor

points, find a sampling set S ⊆ P
k such that for any p ∈ P

k, there exists a
sample point p̂ ∈ S satisfying 1 − ε ≤ 〈p|xi〉 / 〈p̂|xi〉 ≤ 1 + ε for any anchor
point xi, 1 ≤ i ≤ n. The set S is called the efficient sampling set of {xi} and ε.
Our goal is to minimize the size of S.

We give two constructions for set S.

Lemma 2. If τ = min
i,j

{xi,j} > 0, then we can construct an efficient sampling

set S of size O(
log(1/τ)

ε
)n.

Proof. For x1 and any p ∈ P
k, we have τ ≤ 〈p|x1〉 ≤ 1.

Define log(1/τ)/ log(1 + ε) ≈ log(1/τ)/ε planes:
{

a0 = τ, plane0 = {y | 〈y|x1〉 = a0};
ai = (1 + ε)ai−1, planei = {y | 〈y|x1〉 = ai}.

These planes cut P
k into O(log(1/τ)/ε) polytopes, denoted by P0, P1, . . ..

For x2, we similarly define O(log(1/τ)/ε) planes which cut each Pi into at
most O(log(1/τ)/ε) polytopes, denoted by Pi,0, Pi,1, . . ..

Repeat this process for n rounds, we divide simplex P
k to O(log(1/τ)/ε)n

polytopes. The sampling set S is constructed by picking an inner point from
each polytope. �

Lemma 3. If τ = min
i,j

{xi,j} > 0, then we can construct an efficient sampling

set S of size O((τε)1−k).

Proof. The sampling set S is constructed by meshing the simplex P
k, such that

for any p ∈ P
k, there exists a p̂ ∈ S satisfying ‖p− p̂‖∞ ≤ ετ . Obviously, S is

an efficient sampling set and is of size O((τε)1−k). �

In our algorithm, we are going to construct the efficient sampling set Sj for
{ei

j | i = 1, . . . , n} ∪ {di
j | i = 1, . . . , n} and ε. Let S be S1 × · · · × Sm. The time

complexity of the algorithm is dominated by the size of S.
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4.3 Convex Optimization Problem

Consider the equilibrium condition in Theorem 1. As in the above discussion,
an equilibrium (p,v) is replaced by a 3-tuple (q,p,v). We now introduce the
following optimization problem:

min θ
s.t. Djvj ≤ (1 + θ)1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

qj

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ uiqj

〈
pj |di

j

〉
, ∀i, j

〈pj |1〉 = 1, q > 0, ∀j

(5)

The quantity θ can be viewed as the surplus of the demands. We can prove
that θ is always nonnegative for any feasible solution of problem (5). The proof
is omitted here since it is similar to the one in Ye [17].

Lemma 4. For any feasible solution (q,p,v) of (5), θ ≥ 0. Moreover, (q,p,v)
is an equilibrium if and only if θ = 0.

Assume we have guessed a set of internal prices p̂ = {p̂j | 1 ≤ j ≤ m}, then
problem (5) is reduced to the following convex optimization problem, denoted
by Opt(p̂):

min θ
s.t. Djvj ≤ (1 + θ)1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

qj

〈
p̂j |ei

j

〉
, ∀i

wia
i
j ≤ uiqj

〈
p̂j |di

j

〉
, ∀i, j

q > 0, ∀j

(6)

Opt(p̂) can be solved in polynomial time [17]. Note that since p̂ may not be an
equilibrium internal prices, the optimum of Opt(p̂) may not be zero.

4.4 The Algorithm

Finally, our algorithm is described in Figure 1. Its correctness is guaranteed by
the following lemma. The lemma shows that there exists an internal price p̂ ∈ S
such that the solution of Opt(p̂) is an ε-approximate equilibrium, according to
Definition 2.

Lemma 5. Assume (q∗,p∗,v∗) is an equilibrium. If p̂ satisfies that

1 − ε ≤
〈
p∗

j |di
j

〉

〈
p̂j |di

j

〉 ≤ 1 + ε and 1 − ε ≤
〈
p∗

j |ei
j

〉

〈
p̂j |ei

j

〉 ≤ 1 + ε

for all i and j, then the optimum of the problem Opt(p̂) satisfies θ̂ ≤ 3ε.
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for each group Gj do

Construct the efficient sampling set Sj for

{ei
j | i = 1, . . . , n} ∪ {di

j | i = 1, . . . , n} and ε/3.

end

Let S = S1 × · · · × Sm.

for each p̂ ∈ S do

Solve the convex optimization problem Opt(p̂);

If the optimum θ̂ < ε, break the loop and output.

end

Fig. 1. An Approximation Algorithm

Proof. Since (q∗,p∗,v∗) is an equilibrium, it should satisfy that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Djv∗
j ≤ 1, ∀j

u∗
i =

m∑

j=1

ai
jv

i∗
j , ∀i

w∗
i =

m∑

j=1

q∗j
〈
p∗

j |ei
j

〉
, ∀i

λ∗
i = wi/ui, ∀i

λ∗
i = min{q∗j

〈
p∗

j |di
j

〉
/ai

j | 1 ≤ j ≤ m}, ∀i

We explicitly construct a feasible solution (q,v) of the problem (6) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qj = q∗j , ∀j
λi = min{qj

〈
p̂j |di

j

〉
/ai

j | 1 ≤ j ≤ m}, ∀i

wi =
m∑

j=1

qj

〈
p̂j |ei

j

〉
, ∀i

ui = wi/λi, ∀i

vi
j = vi∗

j

ui

u∗
i

, ∀i, j

Since λi/λ∗
i ≥ 1 − ε and wi/w∗

i ≥ 1 + ε, we have

ui

u∗
i

=
wi

w∗
i

λ∗
i

λi
≤ 1 + ε

1 − ε
≤ 1 + 3ε

and thus, Djvj ≤ Djv∗
j (1 + 3ε) ≤ 1 + 3ε. Therefore, the optimum of (6) must

be less or equal to 3ε. �
The time complexity of our algorithm is |S|poly(M, n), where poly(M, n) is

spent on solving each optimization problem Opt(p̂) and M =
m∑

j=1

kj is the total

number of commodities. According to Lemma 2 and Lemma 3, the size of S is

min
{
O
(
(τε)−M+m

)
, O
(
(log(1/τ)/ε)2mn

)}
,

where τ = min
i,j,k

{ei
j,k,di

j,k}.
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5 Discussion

In this paper, we introduce a new family of utility functions — hybrid linear-
Leontief functions. We study the computation and approximation of exchange
equilibria in markets with grouped linear-Leontief utilities, which are special
cases of the hybrid ones. We show that equilibria in the Fisher’s model can
be found in polynomial time. We also develop an approximation algorithm for
approximating equilibria in the Arrow-Debreu’s exchange market model. The
time complexity of this approximation algorithm depends on the answer to the
efficient sampling problem, which is described in Section 4.2. At this moment,
it is exponential to either the number of commodities or the number of traders.
Any improvement to the sampling problem will improve the performance of our
approximation algorithm.

As a grouped hybrid market is a linear combination of Leontief economies,
given the fact that linear markets are easy to solve [16,13,17], we conjecture that
there exists an approximation algorithm that runs in polynomial time to the
number of groups and the number of traders, with an access to an oracle that
can compute equilibria in Leontief economies.

More generally, we can extend the concept of hybrid linear-Leontief utility
functions to hierarchical linear-Leontief utility functions. Such a function can
be specified by a tree whose internal vertices are either plus or max operators.
Each of its leaves is associated with one commodity. Given an allocation vector,
one can evaluate the utility function from bottom up. Clearly, we can use the
family of hierarchical utility functions to characterize more complicated market
behaviors. With the same technique used in Section 3.1, an equilibrium in the
Fisher’s setting can be computed efficiently. We hope that, the study to these
utilities will lead us to a better understanding of the complexity of computing
market equilibria.
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