
2960 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Intelligence of Smart Systems: Model,
Bounds, and Algorithms

Longbo Huang

Abstract— We present a general framework for understanding
system intelligence, i.e., the level of system smartness perceived by
users, and propose a novel metric for measuring the intelligence
levels of dynamical human-in-the-loop systems, defined to be
the maximum average reward obtained by proactively serving
user demands, subject to a resource constraint. Our metric
captures two important elements of smartness, i.e., being able
to know what users want and pre-serve them, and achieving
good resource management while doing so. We provide an
explicit characterization of the system intelligence, and show
that it is jointly determined by user demand volume (opportunity
to impress), demand correlation (user predictability), and system
resource and action costs (flexibility to pre-serve). We then pro-
pose an online learning-aided control algorithm called learning-
aided budget-limited intelligent system control (LBISC), and
show that LBISC achieves an intelligence level that is within
O(N (T )− 1

2 + ε) of the highest level, where N (T ) repre-
sents the number of data samples collected within a learning
period T and is proportional to the user population size,
while guaranteeing an O(max(N (T )− 1

2 /ε, log(1/ε)2)) aver-
age resource deficit. Moreover, we show that LBISC possesses
an O(max(N (T )− 1

2 /ε, log(1/ε)2) + T ) convergence time,
which is smaller compared with the Θ(1/ε) time required for
existing non-learning-based algorithms. Our analysis rigorously
quantifies the impact of data and user population (captured
by N (T )), learning (captured by our learning method), and
control (captured by LBISC) on the achievable system intelligence,
and provides novel insight and guideline into designing future
smart systems.

Index Terms— Network control, queueing theory, Lyapunov
analysis.

I. INTRODUCTION

DUE to rapid developments in sensing and monitoring,
machine learning, and hardware manufacturing, building

intelligence into systems has recently received strong attention,
and clever technologies and products have been developed
to enhance user experience. For instance, recommendation
systems [1], smart home [2], artificial intelligence engines [3],
and user behavior prediction [4]. Despite the prevailing success
in practice, there has not been much theoretical understanding
about system smartness. In particular, how do we measure
the intelligence level of a system, how do we compare
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two systems and decide which one is smarter, which com-
ponents of a system contribute most to the level of smartness,
can the intelligence level of a system be pushed arbitrarily
high.

Motivated by these fundamental questions, we propose a
general framework for modeling system smartness and propose
a novel metric for measuring system intelligence. Specifically,
we consider a discrete time system that serves a set of
applications for a user. The status of each application changes
from time to time, resulting in different demand that needs
to be fulfilled. At each time, the server observes the demand
condition of each application over time and decides whether
to pre-serve (serve before the user even places a request)
the demand that can come in the next slot (which may
not be present then), or to do nothing now and serve it
then if it arrives. Depending on whether demand is served
passively or proactively, the server receives different rewards
representing user’s satisfaction levels, or equivalently, different
user perception of system smartness (a system that can serve
us before being asked is often considered smarter). On the
other hand, due to time-varying service conditions, the service
actions incur different costs. The objective of the server is to
design a control policy that achieves the system intelligence,
defined to be the maximum achievable reward rate subject to
a constraint on the average cost expenditure.

This formulation models many examples in practice. For
example, newsfeed pushing and video prefetching [5], [6],
instant searching [7], and branch prediction in computer
architecture [8], [9]. It captures two key elements of a smart
system, i.e., being able to know what users want and pre-
execute actions, and performing good resource management
while doing so. Note that resource management here is critical.
Indeed, one can always pre-serve all possible demands to
impress users at the expense of inefficient resource usage, but
an intelligent system should do more than that.

Solving this problem is non-trivial. First of all, rewards
generated by actions depend on their execution timing,
i.e., before or after requests. Thus, this problem is different
from typical network control problems, where outcomes of
traffic serving actions are independent of timing. Second,
application demands are often correlated over time. Hence,
algorithms must be able to handle this issue, and to effi-
ciently explore such correlations. Third, statistical information
of the system dynamics are often unknown. Hence, con-
trol algorithms must be able to quickly learn and utilize
the information, and be robust against errors introduced in
learning.
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There have been previous works studying optimal stochastic
system control with resource management. Reference [10]
designs algorithms for minimizing energy consumption of
a stochastic network. Reference [11] studies the tradeoff
between energy and robustness for downlink systems. Refer-
ences [12] and [13] develop algorithms for achieving the opti-
mal utility-delay tradeoff in multihop networks. Reference [14]
studies the problem of scheduling delay-constrained flows
over wireless systems. However, all these works focus only
on causal systems, i.e., service begins only after demand
enters the system. Recent works [15]–[19] consider queue-
ing system control with future traffic demand information.
Works [20] and [21] also consider similar problems where
systems can proactively serve user demand. They obtain inter-
esting results that characterize cost reduction under proactive
service, and the impact of number of users and prediction
in terms of proactive service window size. However, system
utilities in the aforementioned works are measured by average
metrics, e.g., throughput or outage probabilities, and actions
taken at different times for serving traffic are considered
equivalent. Moreover, they do not investigate the impact of
predictability and benefits of learning. Works [22] and [23]
also consider learning and systems with Markov dynamics
separately. Yet, the joint setting is different and not considered.
Therefore, investigating the current problem requires non-
trivial extensions of their results.

We tackle the problem by first establishing an explicit
characterization of the maximum achievable intelligence level,
which provides a fundamental limit of system intelligence
and reveals that it is jointly determined by user demand
volume (opportunity to impress), demand correlation (user pre-
dictability), and system resource and control costs (flexibility
to pre-serve). Then, by carefully defining effective rewards
and costs that represent action outcomes in consecutive slots,
we propose an ideal control algorithm that assumes per-
fect system statistics, called budget-limited intelligent system
control (BISC).

We further develop Learning-aided BISC (LBISC), by incor-
porating a maximum-likelihood-estimator (MLE) for estimating
statistics, and a dual learning component (DL) [22] for learning
an empirical Lagrange multiplier that can be integrated into
BISC, to facilitate algorithm convergence and reduce resource
deficit. We show that LBISC achieves a system intelligence
that can be pushed arbitrarily close to the highest value while
ensuring a deterministic budget deficit bound. Furthermore,
we investigate the user-population effect in system intelli-
gence, and rigorously quantify the degree to which the user
population size can impact algorithm performance, i.e., algo-
rithm convergence speed can be boosted by a factor that is
proportional to the square-root of the user population. The
analysis of LBISC quantifies how system intelligence depends
on system resource, action costs, data sample size, and control
algorithm. To the best of our knowledge, we are the first to
propose a rigorous metric for quantifying system intelligence
and jointly analyze the effects of different factors.

The contributions of this paper are summarized as follows.
• We propose a mathematical model for investigating intel-

ligence in smart systems. Our model captures important

components including observation (data), learning and
prediction (model training), and algorithm (control).

• We propose a novel metric for measuring system
intelligence, and explicitly characterize the optimal intel-
ligence level. The characterization shows that intelli-
gence is jointly determined by system resource and
action costs (flexibility to pre-serve), steady-state user
demand (opportunity to impress), and demand correlation
(predictability, captured by demand transition rates).

• We propose an online learning-aided algorithm, called
learning-aided budget-limited intelligent system con-
trol (LBISC). LBISC consists of three components,
(i) a maximum-likelihood-estimator (MLE) for learning
system statistics, (ii) a dual-learning component (DL)
for learning a control-critical empirical Lagrange mul-
tiplier, and (iii) an online queue-based controller based
on carefully-defined effective action rewards and costs.

• We show that LBISC achieves an intelligence level that
is within O(N(T )−1/2 + ε) of the maximum, where T
is the algorithm learning time, N(T ) is the number of
data samples collected in learning and is proportional to
user population of the system, and ε > 0 is an tunable
parameter, while guaranteeing an average resource deficit
of O(max(N(T )−

1
2 /ε, log(1/ε)2)).

• We prove that LBISC achieves a convergence time of
O(T + max(N(T )−1/2/ε, log(1/ε)2)), which can be
much smaller than the Θ(1/ε) time for its non-learning
counterpart. The performance of LBISC shows that a
company with more users has significant advantage over
those with fewer, in that its algorithm convergence can be
boosted by a factor that is proportional to the square-root
of the user population.

The rest of the paper is organized as follows. In Section II,
we provide a few examples of smart system. We then present
our general model and problem formulation in Section III, and
characterize the optimal system intelligence in Section IV. Our
algorithms are presented in Section V. Analysis is given in
Section VI. Simulation results are presented in Section VII,
followed by the conclusion in Section VIII.

II. EXAMPLES

In this section, we provide a few examples that will serve
both as explanations and motivation for our general model.

Instant Searching [7], [24]: Imagine you are searching on a
search engine. When you start typing, the search engine tries
to guess whether you will type in a certain keyword (or a
set of related search queries) and pre-computes search results
that it believes are relevant (predict and pre-service). If the
server predicts correctly, results can be displayed immediately
after typing is done, and search latency will be significantly
reduced, resulting in a great user experience (high reward).
If the prediction is inaccurate, the search engine can still
process the query after getting the keyword, with the user
being less impressed by the performance (low reward) and
resources being wasted computing wrong results (cost).

Video Streaming [5]: When a user is watching videos on
Youtube or a smart mobile device, the server can predict
whether the user wants a particular video clip, and pre-load the
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Fig. 1. A multi-application system that serves a set of applications of a
customer.

video to the user device (predict and pre-service). This way,
if the prediction is correct, the user’s experience will be greatly
improved and he enjoys a large satisfaction (high reward).
If the prediction is incorrect, the bandwidth and energy spent
in pre-loading are wasted (cost), but the server can still stream
the content video to on the fly, potentially with a degraded
quality-of-service (low reward).

Smart Home [25]: Consider a smart home environment
where a thermostat manages room temperatures in the house.
Depending on its prediction about the behavior of hosts,
the thermostat can pre-heat/pre-cool some of the rooms
(predict and pre-service). If the host enters a room where
temperature is already adjusted, he receives a high satisfac-
tion (high reward). If the prediction is incorrect, the room
temperature can still be adjusted, but may affect user experi-
ence (low reward). Moreover, the energy spent is wasted (cost).

In the above examples, the smart level of a system perceived
by users is closely related to whether his demand is served
proactively, and whether such predictive service is carried out
without too much unnecessary resource expenditure. These
factors will be made precise in our general given in the next
section.

III. SYSTEM MODEL

We consider a system where a single server is serving a
customer with M applications (Fig. 1). Here each application
can represent, e.g., a smartphone application, watching a
particular video clip, or a certain computing task the customer
executes regularly. We assume that the system operates in
slotted time, i.e., t ∈ {0, 1, . . .}.

A. The Demand Model

We use A(t) = (Am(t), m = 1, . . . , M) to denote the
demand state of the customer at time t. We assume that
Am(t) ∈ {0, 1}, where Am(t) = 1 means there is a unit
demand from application m at time t and Am(t) = 0
otherwise. For instance, if application m represents a video
clip watching task, Am(t) can denote whether the users wants
to watch the video clip in the current slot. If so, the server
needs to stream the video clip to the customer’s device.

We assume that for each application m, Am(t) evolves
according to an independent two-state Markov chain depicted

in Fig. 1, where the transition probabilities εm and δm are as
shown in the figure. This ON/OFF model captures the fact that
human user actions are often correlated and predictable. It has
also been commonly adopted for modeling network traffic
states, e.g., [26], [27]. Our choice of the two-state Markov
chain model is to both capture the correlated and predictable
features of human-behavior and facility analysis. It is possible
to adopt a more general multi-state Markov chain for each
application.1 We assume that εm and δm are unknown to the
server, but the actual states can be observed every time slot.
This assumption is due to the fact that the states essentially
denote whether or not the user requests a particular service
from the server. Thus, by observing the user’s response one
can see the states.

B. The Service and Cost Model

In every time slot t, the system serves application m’s
demand as follows. If Am(t) has not yet been served in slot
t−1, it will be served in the current slot. Otherwise the current
demand is considered completed. Then, in addition to serving
the current demand, the server can also try to pre-serve the
demand in time t + 1. We denote μmc(t) ∈ {0, 1} the action
taken to serve the current demand and μmp(t) ∈ {0, 1} the
action taken to serve the demand in time t + 1.2 We have:

μmc(t) = max[Am(t) − μmp(t − 1), 0]. (1)

That is, demand will be fulfilled in the same time slot. Since
μmc(t) is completely determined by μmp(t − 1) and Am(t),
we define μ(t) � (μmp(t), ∀m) for notation simplicity and
view μ(t) as the only control action made at time t.

We assume that each service to application m, either proac-
tive or passive, consumes certain resources, e.g., due to energy
expenditure or bandwidth consumption. To capture the fact
that the condition under which actions are taken may be time-
varying, we denote Sm(t) the resource state for application
m at time t, which affects how much resource is needed for
service, e.g., channel condition of a wireless link, or cost spent
for getting a particular video clip from an external server.
We denote S(t) = (S1(t), . . . , SM (t)) the overall system
resource state, and assume that S(t) ∈ S = {s1, . . . , sK}
with πk = Pr

{
S(t) = sk

}
and is i.i.d. every slot (also

independent of A(t)). Here we assume that the server can
observe the instantaneous state S(t) and the {πk} values are
known. This assumption is made to allow us to focus on the
user demand aspect. It is also not restrictive, as S(t) is a non-
human parameter and can often be learned from observations
when serving different applications, whereas A(t) is more
personalized and targeted learning is needed. Our method also
applies to the case when {πk, k = 1, . . . , K} are unknown.

1Markov models are widely used for modeling user behavior for video
streaming [28], smart home applications [29], [30], and internet traffic. Our
results can likely be extended to model systems where user behavior exhibits
periodic patterns. In these scenarios, Markov models can be built for user
behavior in different time periods and learned with data collected in those
periods.

2Our results can be extended to having μmp(t) ∈ [0, 1], in which case
partial pre-service is allowed. They can also be further extended to include
pre-service over multiple slots using a similar frame-based design approach,
e.g., [31].
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To model the fact that a given resource state sk typically
constrains the set of feasible actions, we denote US(t) the set of
feasible actions under S(t). Examples of US(t) include Usk

=
{0, 1}M for the unconstrained case, or Usk

= {μ ∈ {0, 1}M :∑
m μmp ≤ Nk} when we are allowed to pre-serve only Nk

applications. We assume that Usk
is compact and if μ ∈ Usk

,
then a vector obtained by setting any entry in μ to zero remains
in Usk

.3

Under the resource state, the instantaneous cost
incurred to the server is given by C(t) =

∑
m Cm(t),

where

Cm(t) � Cm(μmc(t), S(t)) + Cm(μmp(t), S(t)). (2)

With (2), we assume that the cost in each slot is linear in
μ(t), a model that fits situations where costs for serving
applications are additive, e.g., amount of bandwidth required
for streaming videos. We assume that Cm(·, sk) = 0 is
continuous, Cm(0, sk) = 0 and Cm(1, sk) ≤ Cmax for some
Cmax < ∞ for all k and m. We define

Cav � lim sup
t→∞

1
t

t−1∑

τ=0

E
{
C(τ)

}
(3)

as the average cost spent serving the demand. For notation
simplicity, we also denote Cm �

∑
k πkCm(1, sk) as the

expected cost for serving one unit demand.

C. The Reward Model

In each time slot, serving each application demand generates
a reward to the server. We use rm(t) to denote the reward
collected in time t from application m, which takes the
following form:

rm(t) =

⎧
⎪⎨

⎪⎩

0 Am(t) = 0
rmc Am(t) = 1 & μmp(t − 1) = 0
rmp Am(t) = 1 & μmp(t − 1) = 1

(4)

By varying the values of rmp and rmc, we can model different
sensitivity levels of the user to pre-service. We assume that
rmp ≥ rmc are both known to the server.4 This is natural
for capturing the fact that a user typically gets more satis-
faction if his demand is pre-served. We denote rd � maxm

(rmp − rmc) the maximum reward difference between pre-
service and passive service.

To evaluate the performance of a control policy, we define
the following average reward rate, i.e.,

rav = lim inf
t→∞

1
t

t−1∑

τ=0

∑

m

E
{
rm(τ)

}
. (5)

rav is a natural index of system smartness. A higher value of
rav implies that the server can better predict what the user
needs and pre-serves him. As a result, the user experience

3The i.i.d. assumption is commonly made in the literature to facilitate
presentation and analysis, e.g., [32], [33]. Allowing different states to have
different action sets is to make the model more general.

4This can be done by monitoring user feedbacks, e.g., display a short
message and ask the user to provide instantaneous feedback. In the case when
they are not known a-priori, they can be learned via a similar procedure as
in the LBISC algorithm presented later.

better service and perceives a smarter system. In the special
case when rmp = 1 and rmc = 0, the average reward equals
the rate of correct prediction.

D. System Objective

In every time slot, the server accumulates observations
about applications, and tries to learn user preferences and
to choose proper actions. We define Γ the set of feasible
control algorithms, i.e., algorithms that only choose feasible
control actions μ(t) ∈ US(t) in every time slot, possi-
bly with help from external information sources regarding
application demand statistics. We also introduce a rate of
cost expenditure constraint ρ ∈ (0, ρmax], where ρmax �∑

k πk

∑
m

∑
Cm(1, sk) is the maximum budget needed to

achieve the highest level of intelligence, which corresponds
to the case of always pre-serving user demand. Despite a
poor resource utilization, all demands will be pre-served
and I(ρmax) =

∑
m

εmrmp

εm+δm
where εm

εm+δm
is the steady-

state distribution of having Am(t) = 1. Then, for each
policy Π ∈ Γ, we denote I(Π, ρ) = rav(Π) and Cav(Π)
the resulting algorithm intelligence and average cost rate,
respectively.

The objective of the system is to achieve the system intel-
ligence I(ρ), defined to be the maximum reward rate rav

achievable over all feasible policies, subject to the rate of cost
expenditure being no more than ρ, i.e.,

I(ρ) � max: I(Π, ρ) (6)
s.t. Cav(Π) ≤ ρ

Π ∈ Γ. (7)

E. Discussions of the Model

In our model, we have assumed that user demand must be
served within the same slot it is placed. This is a suitable
model for many task management systems where jobs are
time-sensitive, e.g., newsfeed pushing, realtime computation,
elevator scheduling, video streaming and searching. In these
problems, a user’s perception about system smartness is often
based on whether jobs are pre-served correctly.

Our model captures key ingredients of a general smart
system including observations, learning and prediction, and
control. Indeed, general monitoring and sensing methods can
be integrated into the observation part, various learning meth-
ods can be incorporated into our learning-prediction step, and
control algorithms can be combined with or replace our control
scheme presented later. On the other hand, due to the facts
that system reward can only be accumulated when demand is
proactively served, and that the system dynamics are governed
by unknown Markov processes, existing results on average
utility optimization cannot be directly applied.5 Below, for
reader convenience, we summarize the notations in the paper
in Table I.

5In some cases, users may also try to behave in a way that the Markov
chain transitions are chosen in an adversarial manner, e.g., to protect privacy.
This is a very interesting aspect not captured in the current model, and will
be a subject of our future work.
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TABLE I

TABLE OF NOTATIONS

IV. CHARACTERIZING INTELLIGENCE

In this section, we first obtain a characterization of I(ρ).
This result provides interesting insight into system intelli-
gence, and provides a useful criteria for evaluating smartness
of control algorithms.

To this end, denote z(t) = (A(t), S(t)) and Z =
{z1, . . . , zH} the state space of z(t), and denote πh the
steady-state distribution of zh. Furthermore, define for notation
simplicity the transition probability a

(ih)
m as:

a(ih)
m =

{
1 − δm when ih = A

(h)
m = 1

εm when ih = A
(h)
m = 0

(8)

That is, a
(i)
m denotes the probability of having Am(t + 1) = 1

in the next time slot given the current state being i. Then, our
theorem is as follows.

Theorem 1: I(ρ) is equal to the optimal value of the
following optimization problem6:

max :
∑

h

πh

3∑

j=1

θ
(h)
j

∑

m

a(ih)
m [μ(h)

mpjrmp + (1 − μ
(h)
mpj)rmc]

(9)

s.t.
∑

h

πh

3∑

j=1

θ
(h)
j

∑

m

[Cm(μ(h)
mpj , s(zh))

+(1 − μ
(h)
mpj)a

(ih)
m Cm] ≤ ρ

θ
(h)
j ≥ 0,

∑

j

θ
(h)
j = 1, ∀ zh, j

μ
(h)
j ∈ Uzh

, ∀ zh, j. (10)

Here θ
(h)
j represents the probability of adopting the pre-service

vector μ
(h)
j under state zh, and s(zh) is the channel state

under zh.
Proof: See Appendix A. �

Theorem 1 states that no matter what learning and prediction
methods are adopted and however the system is controlled,

6Here the index j = 1, 2, 3 is a result of the Caratheodory’s theorem
(see Appendix A).

Fig. 2. System intelligence (M = 1): The left y-axis is for I(ρ) and the right
y-axis is for the entropy rate. The x-axis shows the value of ε. We see that
I(ρ) is consistent with our finding that one can achieve higher intelligence
levels for more predictable systems.

the intelligence level perceived by users will not exceed the
value in (9). This is a powerful result and provides a funda-
mental limit about the system intelligence. Theorem 1 also
reveals some interesting facts and rigorously justify various
common beliefs about system intelligence. (i) When user
demands are more predictable (captured by transition rates εm

and δm, represented by a
(ih)
m in (9)), the system can achieve

a higher intelligence level. (ii) A system with more resources
(larger ρ) or better cost management (smaller Cm functions)
can likely achieve a higher level of perceived smartness.
(iii) When there is more demand from users (captured by
distribution πh), there are more opportunities for the system
to impress the user, and to increase the perceived smartness
level. The inclusion of transition rates in the theorem shows
that our problem can be very different from existing network
optimization problems, e.g., [34], [35], where typically steady-
state distributions matter most.

As a concrete example, Fig. 2 shows the I(ρ) values for a
single-application system with rp = 10, rc = 1 and ρ = 0.8.
The channel has two states S(t) = 1 and S(t) = 2 with equal
probabilities, and the cost is S(t). We examine two cases,
(i) ε = δ and (ii) δ = 0.6. We see that in the symmetric
case, where the steady-state distribution is always (0.5, 0.5),
I(ρ) is inverse-proportional to the entropy rate of the demand
Markov chain, which is consistent with our finding that a
higher intelligence level is achievable for more predictable sys-
tems (lower entropy). For the δ = 0.6 case, I(ρ) first increases,
then decreases, and then increases again. The reason is as
follows. At the beginning, as ε increases, demand increases.
Then, when ε ∈ [0.4, 0.7], I(ρ) is reduced by either the
increasing randomness (less predictable) or budget constraint,
as demand increases, which reduces the pre-service attempts
that can potentially be risky. As a result, the intelligence level
also decreases. After that, predictability increases and I(ρ)
increases again. This shows that I(ρ) is jointly determined by
the steady-state distribution and the transition rates.

Note that solving problem (9) is non-trivial due to the need
of system statistics and the potentially complicated structure
of Uzh

. Thus, in the next section, we propose a learning-
based algorithm for solving the optimal control problem. For
our algorithm design and analysis, we define the following
modified dual function of (9), where V ≥ 1 is a control
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parameter introduced for later use7:

gπ(γ) �
∑

h

πh sup
μ

(h)
p

∑

m

{
V a(ih)

m [μ(h)
mprmp + (1 − μ(h)

mp)rmc]

−γ[Cm(μ(h)
mp, zh) + (1 − μ(h)

mp)a
(ih)
m Cm − ρ]

}
.

(11)

Here we use the subscript π to denote that the dual function
is defined with distribution π. We also use γ∗ to denote a
minimizer of the dual function. It is shown in [23] that:

gπ(γ∗) ≥ V × I(ρ). (12)

We also define the dual function for each state zh as follows:

gh(γ) � sup
μ

(h)
p

∑

m

{
V a(ih)

m [μ(h)
mprmp + (1 − μ(h)

mp)rmc]

− γ[Cm(μ(h)
mp, zh) + (1 − μ(h)

mp)a
(ih)
m Cm − ρ]

}
.

(13)

It can be seen that gπ(γ) =
∑

h πhgh(γ).

V. ALGORITHM DESIGN

In this section, we present an online learning-aided con-
trol algorithm for achieving maximum system intelligence.
To facilitate understanding, we first present an ideal algorithm
that assumes full information of εm, δm, and πh. It serves as
a building block for our actual algorithm.

A. An Ideal Algorithm

To do so, we first define the effective reward and cost for
each application m as functions of A(t) and μ(t). Specifically,
if Am(t) = i, we have: :

r̃(i)
m (μmp(t)) =

{
a
(i)
m rmp if μmp(t) = 1

a
(i)
m rmc if μmp(t) = 0

(14)

Here a
(i)
m is defined in (8) as the probability of having

state Am(t + 1) = 1 conditioning on the current state i.
To understand the definition, we see that when Am(t) = i,
by taking μmp(t) = 0, the server does not pre-serve the
potential future demand at Am(t + 1). Hence, if there is
demand in slot t+1 (happens with probability a

(i)
m ), it will be

served by μmc(t+1), resulting in a reward of rmc. On the other
hand, if μmp(t) = 1, with probability a

(i)
m , the future demand

will be pre-served and a reward rmp can be collected. It is
important to note that the effective reward is defined to be the
reward collected in slot t + 1 as a result of actions at time t.
We denote r̃(μ(t)) �

∑
m r̃

(Am(t))
m (μmp(t)).

Similarly, we define the effective cost as a function of μ(t)
for Am(t) = i:

C̃(i)
m (μmp(t)) =

⎧
⎨

⎩

Cm(1, S(t)) if μmp(t) = 1
a
(i)
m

∑

k

πkCm(1, sk) if μmp(t) = 0 (15)

7Although (11) does not include θ
(h)
j , it can be shown to be equivalent.

Moreover, (11) is sufficient for our algorithm design and analysis.

Note that C̃m(μmp(t)) is the expected cost spent in slots t
and t + 1. As in the effective reward case, we denote C̃(t) �∑

m C̃
(Am(t))
m (μmp(t)).

With the above definitions, we introduce a deficit queue
d(t) that evolves as follows:

d(t + 1) = max[d(t) + C̃(t) − ρ, 0], (16)

with d(0) = 0. Note that this deficit is not the actual deficit,
instead, it is defined with the expected cost incurred in slots
where no pre-service takes place. Nonetheless, it can be shown
that the stability of d(t) implies stability of the actual deficit.
Next, we define a Lyapunov function L(t) � 1

2d2(t) and
define a single-slot sample-path drift Δ(t) � L(t + 1)−L(t).
By squaring both sides of (16), using (max[x, 0])2 ≤ x2 for
all x ∈ R, and C̃(μ(t)) ≤ MCmax, we obtain the following
inequality:

Δ(t) ≤ B − d(t)[ρ − C̃(t)]. (17)

Here B � ρ2
max + M2C2

max. Adding to both sides the term
V

∑
m r̃m(μmp(t)), where V ≥ 1 is a control parameter,

we obtain:

Δ(t) − V r̃(μ(t)) ≤ B−
(

V r̃(μ(t)) + d(t)[ρ − C̃(μ(t))]
)

.

(18)

Having established (18), we construct the following ideal
algorithm by choosing pre-service actions to minimize the
right-hand-side of the drift.

Budget-Limited Intelligent System Control (BISC): At every
time t, observe A(t), S(t) and d(t). Do:

• For each m, define the cost-differential as follows:

Dm(t) � Cm(1, S(t)) − a(i)
m Cm. (19)

Here i = Am(t). Then, solve the following problem to
find the optimal pre-service action μ(t):

max:
∑

m

μmp(t)[V a(i)
m (rmp − rmc) − d(t)Dm(t)]

s.t. μ(t) ∈ US(t). (20)

• Update d(t) according to (16). ♦
A few remarks are in place. (i) The value a

(i)
m (rmp − rmc)

can be viewed as the expected reward loss if we choose
μmp(t) = 0 and the value Dm(t) is the expected cost saving
for doing so. The parameter V and d(t) provide proper
weights to the terms for striking a balance between them.
If the cost saving does not overweight the reward loss, it is
more desirable to pre-serve the demand in the current slot.
(ii) For applications where a

(i)
m (rmp − rmc) is smaller, it is

less desirable to pre-serve the demand, as the user perception
of system intelligence may not be heavily affected. (iii) In the
special case when ρ ≥ ρmax, we see that d(t) will always stay
near zero, resulting in μmp(t) = 1 most of the time. (iv) BISC
is easy to implement. Since each μmp(t) is either 0 or 1,
problem (20) is indeed finding the maximum-weighted vector
from US(t). In the case when US(t) only limits the number
of non-zero entries, we can sort the applications according to
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the value V a
(i)
m (rmp − rmc) − d(t)Dm(t) and choose the top

ones.
For readers who are familiar with the drift-plus-penalty

literature, e.g., [36], you see that BISC is indeed a drift-plus-
penalty algorithm. However, due to the Markov dynamics of
the system and that transition rates are unknown, a learning
component must be incorporated into algorithm design prop-
erly. This requires a different analysis from existing results.

B. Learning-Aided Algorithm With User Population Effect

In this section, we present an algorithm that learns
δm and εm online and performs optimal control simultane-
ously. We also explicitly investigate how the system user
population size affects algorithm performance.

To rigorously quantify the user effect, we first introduce the
following user-population effect function N(T ).

Definition 1: A system is said to have a user population
effect N(T ) if within T slots, (i) it collects a sequence of
demand samples {A(0), . . . , A(N(T )− 1)} generated by the
Markov process A(t), and (ii) N(T ) ≥ T for all T . ♦

N(t) captures the number of useful user demand samples
a system can collect in t time slots, and is an indicator of
how user population contributes to learning user preferences.
For instance, if there is only one user, N(T ) = T . On the
other hand, if a system has many users, it can often collect
samples from similar users (often determined via machine
learning techniques, e.g., clustering) to study a target user’s
preferences. One typical example for N(T ) can be:

N(T ) = f(# of user) · T, (21)

where f(# of user) computes the number of similar users that
generate useful samples.

Now we present our algorithm. We begin with the first com-
ponent, which is a maximum likelihood estimator (MLE) [37]
for estimating user demand statistics.8

Maximum Likelihood Estimator (MLE(T )): Fix a learning
time T and obtain {A(0), . . . , A(N(T ) − 1)} in [0, T − 1].
Output:

ε̂m(T ) =
∑N(T )−1

t=0 1{Am(t)=0,Am(t+1)=1}
∑T−1

t=0 1{Am(t)=0}
(22)

δ̂m(T ) =
∑N(T )−1

t=0 1{Am(t)=1,Am(t+1)=0}
∑T−1

t=0 1{Am(t)=1}
. (23)

That is, use empirical frequencies to estimate the transition
probabilities. ♦

Note that after estimating ε̂ and δ̂, we also obtain an
estimation of π̂. We now have the second component, which is
a dual learning module [22] that learns an empirical Lagrange
multiplier based on ε̂ and δ̂, and π̂.

Dual Learning (DL(ε̂, δ̂, π̂)): Construct ĝπ̂(γ) with ε̂, δ̂,
and π̂ according to (11). Solve the following problem and
output the optimal solution γ∗

T .

min : ĝπ̂(γ), s.t. γ ≥ 0. ♦ (24)

8We adopt MLE to demonstrate how learning can be rigorously and efficiently
combined with control algorithms to achieve good performance. Alternative
estimators that possess similar features as MLE can also be used.

Here ĝπ̂(γ) is the dual function with true statistics being
replaced by ε̂, δ̂, and π̂. Since the dual problem is always con-
cave in the dual variable, (24) can always be solved efficiently
be standard optimization algorithms, e.g., dual subgradient.
However, similar to the classic NUM problems, whether or not
it can be solved in a distributed manner depends heavily on
properties of the underlying physical system. Specifically, for
systems where action sets are separable, e.g., rate allocation
in wired networks, distributed algorithms can be designed to
solve the dual problem, whereas if the action sets are not-
separable, e.g., power allocation with interference, NUM prob-
lems do not admit exact distributed algorithms, and neither
does our problem.

With MLE(T ) and DL(ε̂, δ̂, π̂), we have our learning-aided
BISC algorithm.9

Learning-Aided BISC (LBISC(T , θ)): Fix a learning time T
and perform the following10:

• (Estimation) For t = 0, . . . , T − 1, choose any μp(t) ∈
US(t). At time T , perform MLE(T ) to obtain ε̂ and δ̂,
and π̂.

• (Learning) At time T , apply DL(ε̂, δ̂, π̂) and compute
γ∗

T . If γ∗
T = ∞, set γ∗

T = V log(V ). Reset d(T ) = 0.
• (Control) For t ≥ T , run BISC with π̂, ε̂ and δ̂, and

with effective queue size d̃(t) = d(t) + (γ∗
T − θ)+. ♦

Here θ (to be specified) is a tuning parameter introduced
to compensate for the error in γ∗

T (with respect to γ∗).11 It is
interesting to note that LBISC includes three important func-
tions in control, namely, estimation (data), learning (training)
and control (algorithm execution). This structure highlights
three major sources that contribute to making a system non-
intelligent: lack of data samples, incorrect training and para-
meter tuning, and inefficient control algorithms. An intelligent
system requires all three to provide good user experience and
to be considered smart (Thus, if a search engine does not
provide good performance for you at the beginning, it may
not be because its algorithm is bad).

Our approach can be viewed as trying to combine the offline
optimization approach that makes decisions purely based on
system statistics, and the queue-based control approach that
control the system based on Lyapunov optimization. Doing so
not only enables rigorous analysis of the resulting algorithm,
but also provides tighter budget management. These advan-
tages are hard to obtain by either approach alone.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of LBISC.
We focus on three important performance metrics,
i.e., achieved system intelligence, budget guarantee, and
algorithm convergence time. The optimality and convergence
analysis is challenging. In particular, the accuracy of the

9The methodology can be applied to the case when rmp and rmc are also
unknown.

10The main reason to adopt a finite T is for tractability. In actual imple-
mentation, one can continuously refine the estimates for ε̂, δ̂, and π̂.

11Due to estimation error, it is possible that γ∗
T > γ∗. Thus, if θ is not

introduced, it can happen that γ∗
T + d(t) > γ∗ for all time (since d(t) ≥ 0).

If this happens, the system will always make conservative actions, resulting
in a poor system performance.
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MLE estimator affects the quality of dual-learning, which in
turn affects algorithm convergence and performance. Thus,
the analysis must simultaneously take into account all three
components.

Throughout our analysis, we make the following assump-
tions, in which we use ĝπ̂(γ) to denote the dual function
in (11) with different ε, δ and π values.

Assumption 1: There exists a constant ν = Θ(1) > 0 such
that for any valid state distribution π′ = (π′

1, . . . , π
′
H) with

‖π′ − π‖ ≤ ν, there exist a set of actions {μ(h)
j }j=1,2,3

with μ
(h)
j ∈ Uzh

and some variables {θ(h)
j ≥ 0}j=1,2,3 with

∑
j θ

(h)
j = 1 for all zh (possibly depending on π′), such that:

∑

h

π′
h

3∑

j=1

θ
(h)
j

∑

m

[Cm(μ(h)
mpj , zh)+(1 − μ

(h)
mpj)a

(ih)
m Cm] ≤ ρ0,

where ρ0 � ρ − η > 0 with η = Θ(1) > 0 is independent
of π′. Moreover, for all transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ρ satisfies:

ρ ≥
∑

m

max[ε′mCm, (1 − δ′m)Cm]. ♦ (25)

Assumption 2: There exists a constant ν = Θ(1) > 0 such
that, for any valid state distribution π′ = (π′

1, . . . , π
′
H) with

‖π′ − π‖ ≤ ν, and transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ĝπ̂(γ) has a unique optimal
solution γ∗ > 0 in R. ♦

These two assumptions are standard in the network opti-
mization literature, e.g., [32], [33]. They are necessary condi-
tions to guarantee the budget constraint and are often assumed
with ν = 0. In our case, having ν > 0 means that systems that
are alike have similar properties. (25) is also not restrictive.
In fact,

∑
m[πm0ε

′
mCm+πm1(1−δ′m)Cm] (πmi is the steady-

state probability of being in state i for m) is the overall
cost without any pre-service. Hence, (25) is close to being
a necessary condition for feasibility.

We now have the third assumption, which is related to the
structure of the problem. To state it, we have the following
system structural property introduced in [13].

Definition 2: A system is polyhedral with parameter β > 0
under distribution π if the dual function gπ(γ) satisfies:

gπ(γ) ≥ gπ(γ∗) + β‖γ∗ − γ‖. ♦ (26)

Assumption 3: There exists a constant ν = Θ(1) > 0 such
that, for any valid state distribution π′ = (π′

1, . . . , π
′
H) with

‖π′ − π‖ ≤ ν, and transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ĝπ̂(γ) is polyhedral with the
same β. ♦

The polyhedral property often holds for practical systems,
especially when control action sets are finite (see [13] for more
discussions).

A. System Intelligence and Budget

We first present the performance of LBISC in system
intelligence and budget guarantee. The following theorem
summarizes the results.

Theorem 2: Suppose the system is polyhedral with β =
Θ(1) > 0. By choosing θ = max(V log(V )2√

N(T )
, log(V )2)

and a sufficiently large V , with probability at least
1 − 2Me− log(V )2/4, LBISC achieves:

• Budget:

d̃(t) ≤ dmax � V rd/D̂min + MCmax, ∀ t (27)

d = O(max(
V log(V )2
√

N(T )
, log(V )2)). (28)

Here d = lim supt→∞
1
t

∑t−1
τ=0 E

{
d(t)

}
and D̂min =

Θ(1) (defined in (36)). (27) implies Cav(Π) ≤ ρ.
• System intelligence:

I(LBISC, ρ) ≥ I(ρ)−B1 + 1
V

− max
zh

emax(T
2

h − Th)
2V Th

.

(29)

Here B1 � B +2M(V rd +dmaxCmax) log(V )/
√

N(T ),
emax � (MCmax + ρ)2, and Th and T

2

h are the first
and second moments of return times of state zh. ♦

Proof: See Appendix B. �
Theorem 2 shows that LBISC achieves an [O(N(T )−

1
2 +ε),

O(max(N(T )−
1
2 log(1/ε)2/ε, log(1/ε)2)] intelligence-budget

tradeoff (taking ε = 1/V ), and the system intelligence level
can be pushed arbitrarily close to I(ρ) under LBISC. Thus,
by varying the value of V , one can tradeoff the intelligence
level loss and budget deficit as needed. Although Theorem 2
appears similar to previous results with learning, e.g., [22], its
analysis is different due to (i) the Markov nature of the demand
state A(t), and (ii) the learning error in both transition rates
in (20) and the distribution. Finally, note that since our Markov
model includes the i.i.d. setting as a special case, the optimality
of the [O(ε), O(log(1/ε))] tradeoff derived in [12] also holds
as a lower bound for our setting. This further confirms that
LBISC achieves a good performance, especially when N(T )
is large.

B. Convergence Time

We now look at the convergence speed of LBISC, which
measures how fast the algorithm learns the desired system
operating point. This is an important metric for dynami-
cal systems, as a faster convergence implies both a faster
matching between demand and resource allocation, and a
better algorithm robustness against the changing environment.
Indeed, how to improve algorithm convergence time has
recently received an increasing attention in the literature,
e.g., [38]–[40].

To present our result, we adopt the following definition of
convergence time from [22] to our setting.

Definition 3: Let ζ > 0 be a given constant. The
ζ-convergence time of a control algorithm, denoted by Tζ ,
is the time it takes for d̃(t) to get to within ζ distance of γ∗,
i.e., Tζ � inf{t : |d̃(t) − γ∗| ≤ ζ}. ♦

The intuition behind Definition 3 is as follows. Since the
LBISC algorithm is a queue-based algorithm, the algorithm
will starting making optimal choice of actions once d̃(t) gets
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close to γ∗. Hence, Tζ naturally captures the time it takes for
LBISC to converge. For comparison, we also analyze the con-
vergence time of BISC. The slower convergence speed of BISC
is due to the fact that it does not utilize system information
to perform learning-aided control. It is important to note that
BISC assumes full statistical information beforehand, whereas
LBISC learns everything online.

Theorem 3: Suppose the conditions in Theorem 2 hold.
Under LBISC, with probability at least 1 − 2Me− log(V )2/4,

E
{
T LBISC

D1

}
= O(max(

V log(V )2
√

N(T )
, log(V )2)) + T, (30)

E
{
T BISC

D1

}
= O(V − max(

V log(V )2
√

N(T )
, log(V )2)), (31)

E
{
T BISC

D2

}
= Θ(V ). (32)

Here D1 = O(V log(V )/
√

N(T ) + D) with D = Θ(1) and
D2 = Θ(1).

Proof: See Appendix C. �
Here the reason why D1 may be larger than D2 is due to the

fact that LBISC uses inaccurate estimates of a
(i)
m for making

decisions. In the case when N(T ) = T , we can recover
the O(V 2/3) convergence time results in [22] by choosing
T = V 2/3, whereas BISC requires a time that is O(V ).
Theorem 3 also shows that it is possible to achieve faster
convergence if a system has a larger population of users from
which it can collect useful samples for learning the target user
quickly. It also explicitly quantifies the speedup factor to be
proportional to the square-root of the user population size,
i.e., when N(T ) = N ∗ T where N is the number of users,
the speedup factor is

√
N(T )/

√
T =

√
N .

This result reveals the interesting fact that a big company
with many users naturally has advantage over companies with
smaller user populations, since they can collect more useful
data and adapt to a “smart” state faster. Also note that although
we consider a stationary system in this paper, the results here
can serve as an building block for the heterogeneous case
where dynamics are non-stationary. Indeed, using a similar
design approach as in [41], we can likely extend our results
to the case where the underlying distribution changes over
time.

VII. SIMULATION

We now present simulation results for BISC and LBISC.
We simulate a three-application system (M = 3) with the
following setting. (r1p, r2p, r3p) = (3, 5, 8) and rmc = 1 for
all m. Then, we use ε = (0.6, 0.5, 0.3) and δ = (0.2, 0.6, 0.5).
The channel state space is S = {1, 2} for all m, with
Pr

{
S1(t) = 1

}
= 0.5, Pr

{
S2(t) = 1

}
= 0.3, and Pr

{
S3(t) =

1
}

= 0.3. The service cost is given by Cm(1, S(t)) = Sm(t).
We simulate the system for Tsim = 105 slots, with V =
{5, 10, 20, 50, 100}. For LBISC, we simulate a user population
effect function as in (21), i.e., N(T ) = f(# of user) · T and
choose f(# of user) = 2, 5, 8. We also fix the value ρ = 3.5
and choose the learning time T = V 2/3.

We first present Fig. 3 that shows I(ρ) as a function
of ρ. For comparison, we include a second setting, where
we change (r1p, r2p, r3p) = (4, 5, 3), ε = (0.8, 0.4, 0.3),

Fig. 3. I(ρ) versus ρ: in the two settings tested, I(ρ) are both concave
increasing in ρ.

Fig. 4. Intelligence and deficit performance of BISC and LBISC with different
user-population effect.

Fig. 5. Convergence of BISC and LBISC with N(T ) = 8T for V = 300.

δ = (0.2, 0.9, 0.5), and Pr
{
S2(t) = 1

}
= 0.8. It can be

seen that I(ρ) first increases as ρ increases. Eventually ρ
becomes more than needed after all the possible predictability
has been exploited. Then, I(ρ) becomes flat. This diminishing
return property is consistent with our understanding obtained
in Section IV.

We then look at algorithm performance. From Fig. 4 we see
that both BISC and LBISC are able to achieve high intelligence
levels. Moreover, LBISC does much better in controlling the
deficit (2×-4× saving compared to BISC). Note that we
are plotting the real deficit incurred instead of the expected
value. Also, the actual deficit measures the steady-state deficit
under LBISC. To demonstrate this, we include in Fig. 5 the
deficit incurred if d(t) is not reset to zero. We see that it
eventually converges to the actual deficit value. From the plot,
we also see that the reset step is very useful for accelerating
algorithm convergence. We remark here that BISC assumes
full knowledge beforehand, while LBISC learns them online.
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Finally, we look at algorithm convergence. Fig. 5 compares
BISC and LBISC with N(t) = 8T and V = 300. We see
that LBISC converges at around 460 slots, whereas BISC
converges at around 920 slots, resulting in a 2× improve-
ment. Moreover, the actual deficit level under LBISC is
much smaller compared to that under BISC (80 versus 510,
a 6× improvement). From this result, we see that it is impor-
tant to efficiently utilize data collected over time, and dual
learning provides one way to boost algorithm convergence.
In both Fig. 4 and Fig. 5, the learning period does not heavily
affect performance because its length is short compared to the
simulation time.

VIII. CONCLUSION

In this paper, we present a general framework for defining
and understanding system intelligence, and propose a novel
metric for measuring the smartness of dynamical systems,
defined to be the maximum average reward rate obtained
by proactively serving user demand subject to a resource
constraint. We show that the highest system intelligence level
is jointly determined by system resource, action costs, user
demand volume, and correlation among demands. We then
develop a learning-aided algorithm called Learning-aided
Budget-limited Intelligent System Control (LBISC), which effi-
ciently utilizes data samples of system dynamics and achieves
a near-optimal intelligence, and guarantees a deterministic
deficit bound. Moreover, LBISC converges much faster com-
pared to its non-learning based counterpart.

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 here using an argument similar to that
in [10].

Proof (Theorem 1): Consider any control scheme Π and
fix a time T . Define the joint state z(t) = (A(t), S(t)) and
denote its state space as Z = {z1, . . . , zH}. Then, consider
a state zh and let Th(T ) be the set of slots with z(t) = zh

for t = 1, . . . , T . Denote {μp(0), . . . , μp(T )} the pre-service
decisions made by Π. Denote the following joint reward-cost
pair:

(Reward(h)(T ), Cost(h)(T ))

� 1
T

T−1∑

τ=0

∑

m

E
{
I[Am(τ+1)=1][μmp(τ)rmp

+(1 − μmp(τ))rmc];
Cm(μmp(τ), s(zh))

+(1 − μmp(τ))I[Am(τ+1)=1]Cm | z(τ) = zh

}
.

Here we use the notation E
{
X ; Y | A

}
to denote

(E
{
X | A

}
, E

{
Y | A

}
) to save space. Notice that this is a

mapping from zh to a subset in R
2 and that both the reward

and cost are continuous. Also note that E
{
I[Am(τ+1)=1]

}
=

a
(ih)
m , where ih = A

(h)
m is defined in (14) to denote the

probability of having Am(τ + 1) = 1 given Am(τ) =
A

(h)
m . Using the independence of A(t) and S(t), and

Caratheodory’s theorem [42], it follows that there exists three

vectors μ
(h)
j (T ) ∈ Uzh

, j = 1, 2, 3, with appropriate weights

θ
(h)
j (T ) ≥ 0, j = 1, 2, 3, and

∑
i θ

(h)
j (T ) = 1, so that:

(Reward(h)(T ), Cost(h)(T ))

�
3∑

j=1

θ
(h)
j (T )

∑

m

(
a(ih)

m [μ(h)
mpj(T )rmp + (1 − μ

(h)
mpj(T ))rmc];

Cm(μ(h)
mpj(T ), s(zh)) + (1 − μ

(h)
mpj(T ))a(ih)

m Cm

)
. (33)

Now consider averaging the above over all zh states. We get:

(Rewardav(T ), Costav(T ))

�
∑

h

πh

3∑

j=1

θ
(h)
j (T )

∑

m

(
a(ih)

m [μ(h)
mpj(T )rmp

+ (1 − μ
(h)
mpj(T ))rmc];

Cm(μ(h)
mpj(T ), s(zh)) + (1 − μ

(h)
mpj(T ))a(ih)

m Cm

)
.

Using a similar argument as in the proof of [10, Th. 1], one

can show that there exist limit points θ
(h)
j ≥ 0 and μ

(h)
j as

T → ∞, so that the reward-cost tuple can be expressed as:

(Rewardav, Costav)

=
∑

h

πh

3∑

j=1

θ
(h)
j

∑

m

(
a(ih)

m [μ(h)
mpjrmp + (1 − μ

(h)
mpj)rmc];

Cm(μ(h)
mpj , s(zh)) + (1 − μ

(h)
mpj)a

(ih)
m Cm

)
.

This shows that for an arbitrarily control algorithm Π, its aver-
age reward and cost can be expressed as those in problem (9).
Hence, its budget limited average reward cannot exceed Φ,
which is the optimal value of (9). This shows that Φ ≥ I(ρ).

The other direction I(ρ) ≥ Φ will be shown in the analysis
of the LBISC algorithm, where we show that LBISC achieves
an intelligence level arbitrarily close to Φ. �

APPENDIX B
PROOF OF THEOREM 2

We prove Theorem 2 here with the following two lemmas,
whose proofs are given in Appendix D. The first lemma
bounds the error in estimating εm and δm.

Lemma 1: MLE(T ) ensures that:

Pr
{

max
m

|ε̂m − εm, δ̂m − δm| ≥ log(V )
√

N(T )

}

≤ 2Me− log(V )2/4. (34)
The second lemma bounds the error in estimating γ∗.

In the lemma, we define an intermediate dual function ĝπ(γ)
defined as:

ĝπ(γ) �
∑

h

πh

∑

m

sup
μ

(h)
p

{
V â(ih)

m [μ(h)
mprmp + (1 − μ(h)

mp)rmc]

− γ[Cm(μ(h)
mp, zh) + (1 − μ(h)

mp)â
(ih)
m Cm − ρ]

}
.

(35)

That is, ĝπ(γ) is the dual function defined with the true
distribution πh and the estimated â

(ih)
m . We use γ̂∗ to denote

the optimal solution of ĝπ(γ).
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Lemma 2: With probability at least 1 − 2Me− log(V )2/4,
DL outputs a γ∗

T that satisfies |γ∗
T − γ∗| ≤ dγ where dγ �

cV log(V )√
N(T )

and c = Θ(1) > 0. Moreover, |γ∗ − γ̂∗| ≤ dγ .

We now prove Theorem 2. Proof: (Theorem 2) We
first prove the budget bound, followed by the intelligence
performance.

(Budget) We want to show that under LBISC, if γ∗
T is

estimated accurate enough (happens with high probability),
d̃(t) is deterministically bounded throughout. This will imply
that the budget constraint is met. Note that under LBISC,
Dm(t) in (19) is defined with â

(i)
m . Thus, we denote it

as D̂m(t).
To see this, first note from Lemma 1 that with probability at

least 1−2Me− log(V )2/4, maxm |ε̂m−εm, δ̂m−δm| ≤ log(V )√
N(T )

.

Hence, ‖ε− ε̂‖ ≤ ν and ‖δ − δ̂‖ ≤ ν when V is large. Thus,
(25) in Assumption 1 holds. Denote

D̂min

� min
m,k,i

{Cm(1, sk) − â(i)
m Cm : Cm(1, sk) − â(i)

m Cm > 0},

(36)

and look at the algorithm steps (19) and (20). We claim that
whenever d̃(t) ≥ V rd/D̂min, it stops increasing. To see this,
let us fix an m and consider two cases.

(i) Suppose D̂m(t) > 0 in (19) (defined with â
(i)
m ), then we

must have μmp(t) = 0, as V â
(i)
m (rmp−rmc)−d(t)D̂m(t) ≤ 0

in (20) by definition of D̂min.
(ii) Suppose instead D̂m(t) ≤ 0. Although in this case we

set μmp(t) = 1, it also implies that the state sk is such that
Cm(1, sk) ≤ â

(i)
m Cm (from the definition in (19)).

Combining the two cases, we see that whenever d̃(t) ≥
V rd/D̂min, C̃(t) ≤

∑
m â

(i)
m Cm, which implies that C̃(t) ≤ ρ

by (25) in Assumption 1. Therefore, we conclude that:

d̃(t) ≤ dmax � V rd/D̂min + MCmax. (37)

This completes the proof of (27). The proof for (28) is given
in the intelligence part at (43).

(Intelligence) First, we add to both sides of (18) the drift-
augmentation term Δa(t) � −(γ∗

T − θ)+[ρ − C̃(μ(t))] and
obtain:

Δ(t) + Δa(t) − V r̃(μ(t))

≤ B −
(

V r̃(μ(t)) + d̃(t)[ρ − C̃(μ(t))]
)

. (38)

From Lemma 2, we know that the event {|γ∗
T − γ∗| ≤ dγ}

takes place with probability at least 1−2Me− log(V )2/4. Hence,
from now on, we carry out our argument conditioning on this
event.

Note that in every time, we use the estimated ε̂ and δ̂ for
decision making, i.e., we maximize:
∑

m

μmp(t)[V [a(i)
m + e(a(i)

m )](rmp − rmc)

−d(t)(Cm(1, S(t)) − [a(i)
m + e(a(i)

m )]Cm)],

where e(a(i)
m ) = â

(i)
m − a

(i)
m . Let μL

p (t) be the action chosen
by LBISC, and let μ∗

p(t) be the actions chosen by BISC, i.e.

with the exact a
(i)
m values. We have

∑

m

μL
mp(t)V [â(i)

m (rmp − rmc) − d(t)D̂m(t)]

≥
∑

m

μ∗
mp(t)V [â(i)

m (rmp − rmc) − d(t)D̂m(t)].

With the definition of D̂m(t) and that maxm |ε̂m − εm,

δ̂m − δm| ≤ log(V )√
N(T )

in Lemma 1, this implies that:

∑

m

μL
mp(t)V [a(i)

m (rmp − rmc) − d(t)Dm(t)]

≥
∑

m

μ∗
mp(t)V [a(i)

m (rmp − rmc) − d(t)Dm(t)] − Etot,

where Etot � 2M(V rd +dmaxCmax)
log(V )√

N(T )
. This means that

the actions chosen by LBISC approximately maximize (20).
Therefore, by comparing the term in V r̃(μ(t)) + d̃(t)[ρ −
C̃(μ(t))] in (38) and the definition of gh(γ) in (13), we have:

Δ(t) + Δa(t) − V r̃(μ(t)) ≤ B1 − gz(t)(d̃(t)).

Here B1 � B + Etot and B � ρ2
max + M2C2

max.
Now assume without loss of generality that z(0) = z and

let tn be the n-th return time for z(t) to visit z (z(t) is a finite-
state irreducible and aperiodic Markov chain. Hence, the return
time is well-defined). We get:

tn+1−1∑

t=tn

[Δ(t) + Δa(t) − V r̃(μ(t))]

≤ B1(tn+1 − tn) −
tn+1−1∑

t=tn

gz(t)(d̃(t))

(∗)
≤ B1(tn+1 − tn) −

tn+1−1∑

t=tn

gz(t)(d̃(tn))

+
tn+1−1∑

t=tn

(t − tn)emax

≤ B1(tn+1 − tn) −
tn+1−1∑

t=tn

gz(t)(d̃(tn)) +
T 2

n − Tn

2
emax.

Here emax = (MCmax + ρ)2 and Tn � tn+1 − tn denotes
the length of the n-th return period, and (*) follows since
|gz(t)(d̃(tn))−gz(t)(d̃(t))| ≤ |d̃(tn)− d̃(t)|(MCmax +ρ), and
|d̃(tn) − d̃(t)| ≤ (t − tn)(MCmax + ρ).

Taking an expectation over Tn, and using that for any state
zh, the expected time to visit zh during the return period to z
is πh/πz and that T z = 1/πz [43], we get:

E
{ tn+1−1∑

t=tn

[Δ(t) + Δa(t) − V r̃(μ(t))] | z(tn) = z, d̃(tn)
}

≤ B1T z − T z

∑

h

πhgz(t)(d̃(tn)) +
T

2

z − T z

2
emax

≤ B1T z − V T zI(ρ) +
T

2

z − T z

2
emax

In the last step we have used gπ(γ) ≥ gπ(γ∗) ≥ V I(ρ)
in (12). Therefore, taking an expectation over d̃(tn) and taking
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a telescoping sum over {t0, t1, . . . tn}, and using an argument
almost identical as in the proof of [23, Th. 2], we obtain:

lim inf
n→∞

1
n

n−1∑

t=0

E
{
r̃(t) | z(0) = z

}
≥ I(ρ) − B1/V

− emax(T
2

z − T z)
2V T z

+
1
V

lim inf
n→∞

1
n

n−1∑

t=0

E
{
Δa(t) | z(0) = z

}
.

(39)

It remains to show that the last term is small. To do so, recall
its definition Δa(t) = −(γ∗

T − θ)+[ρ − C̃(μ(t))]. According
to LBISC, γ∗

T is fixed at time T . Hence, we have (from now
on we drop the conditioning on z(0) = z for brevity):

lim inf
n→∞

1
n

n−1∑

t=0

E
{
Δa(t)

}

= −(γ∗
T − θ)+ lim inf

n→∞
1
n

n−1∑

t=0

E
{
ρ − C̃(μ(t))

}

We thus want to show that this term is O(1). To do so, note
that ρ and C̃(μ(t)) are the service and arrival rates to the
actual queue d(t). From the queueing dynamics we have:

lim inf
n→∞

1
n

n−1∑

t=0

E
{
ρ − C̃(μ(t))

}

≤ lim inf
n→∞

1
n

n−1∑

t=0

E
{
1d(t)<ρ

}
(ρ + Cmax)

= (ρ + Cmax) lim inf
n→∞

1
n

n−1∑

t=0

Pr
{
d(t) < ρ

}
. (40)

Hence, it remains to show that the last term,
i.e., lim infn→∞ 1

n

∑n−1
t=0 Pr

{
d(t) < ρ

}
is small.

Recall that γ̂∗ is the optimal solution for ĝπ(γ) defined
in (35), and that ĝπ(γ) is polyhedral with parameter β = Θ(1)
according to Assumption 3. Hence, [13, Th. 1] shows that there
exist Θ(1) constants N1, D and η1 > 0, such that at every
time t, if |d̃(t) − γ̂∗| ≥ D,

E
{
|d̃(t + N1) − γ̂∗| | d̃(t)

}
≤ |d̃(t) − γ̂∗| − η1. (41)

Using θ = max(V log(V )2√
N(T )

, log(V )2), we see that when V is

large, θ/2 ≥ dγ = cV log(V )√
N(T )

. Combining it with d̃(t) = d(t)+

γ∗
T − θ (conditioning on {|γ∗

T − γ∗| ≤ dγ}, we have (γ∗
T −

θ)+ = γ∗
T − θ) and θ̂ � γ̂∗− γ∗

T + θ ∈ [θ/2, θ], which implies
that whenever |d(t) − θ̂| ≥ D,

E
{
|d(t + N1) − θ̂| | d̃(t)

}
≤ |d(t) − θ̂| − η1. (42)

Using the same proof argument in [13, Th.1], one can show
that there exist Θ(1) positive constants c1 and c2 that:

lim sup
t→∞

1
t

t−1∑

τ=0

Pr
{
|d(t) − θ̂| > D + l

}
≤ c1e

−c2l. (43)

This shows that d(t) = Θ(θ̂) = O(max(V log(V )2√
N(T )

, log(V )2)).

Since D = Θ(1) and θ ≥ log(V )2, it can be seen that when
V is large,

lim inf
n→∞

1
n

n−1∑

t=0

E
{
ρ − C̃(μ(t))

}

≤ lim inf
n→∞

1
n

n−1∑

t=0

Pr
{
|d(t) − θ̂| > D +

2 log(V )
c2

}
(ρ + Cmax)

(44)

= O(1/V 2). (45)

Combining with the fact that γ∗
T − θ = Θ(V ), we conclude

that the last term in (39) is O(1/V ). This completes the proof
of (29). �

APPENDIX C
PROOF OF THEOREM 3

We will use of the following technical lemma from [42] for
our proof.

Lemma 3 [42]: Let Fn be filtration, i.e., a sequence of
increasing σ-algebras with Fn ⊂ Fn+1. Suppose the sequence
of random variables {yn}n≥0 satisfy:

E
{
||yn+1 − y∗|| | Fn

}
≤ E

{
||yn − y∗|| | Fn

}
− un, (46)

where un takes the following values:

un =

{
u if ||yn − y∗|| ≥ D,

0 else.
(47)

Here u > 0 is a given constant. Then, by defining ND �
inf{k | ‖yn − y∗‖ ≤ D}, we have:

E
{
ND

}
≤ ||y0 − y∗||/u. ♦ (48)

We now present the proof.
Proof (Theorem 3): To start, note that the first T slots are

spent learning ε̂, δ, and π̂. Lemma 2 shows that after T slots,
with high probability, we have |γ∗

T −γ∗| ≤ cV log(V )√
N(T )

for some

c = Θ(1). Using the definition of d̃(t), this implies that when
V is large,

|d̃(T ) − γ∗| ≤ θ/2

= max(V log(V )2/
√

N(T ), log(V )2)/2. (49)

Using (41) in the proof of Theorem 2, and applying Lemma 3,
we see that the expected time for d̃(t) to get to within D of
γ̂∗, denoted by T̃D, satisfies:

E
{
T̃D

}
≤ N1 max(V log(V )2/

√
N(T ), log(V )2)/2η1. (50)

Here N1 is due to the fact that the drift takes N1 steps in (41),
and recall that N1 = Θ(1) is a constant in (41).

Since |γ∗ − γ̂∗| ≤ dγ = cV log(V )/
√

N(T ), by defining
D1 = cV log(V )/

√
N(T ) + D, we conclude that:

E
{
T LBISC

D1

}
≤ N1 max(

V log(V )2

2η1

√
N(T )

,
log(V )2

2η1
) + T. (51)
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In the case of BISC, one can similarly show that there exists
Θ(1) constants N1, D (only related to z(t) and β), and η2,
so that,

E
{
|d(t + N1) − γ∗| | d(t)

}
≤ |d(t) − γ∗| − η2. (52)

Since γ∗ = Θ(V ) [13] and d(0) = 0, we conclude that:

E
{
T LBISC

D

}
≤ N1V/η2. (53)

This completes the proof of the theorem. �

APPENDIX D
PROOF OF LEMMAS 1 AND 2

We will make use of the following results from [44]
Theorem 4 [44]: For a finite state irreducible and aperi-

odic and reversible Markov chain with state space with state
space G steady-state distribution π and an initial distribu-
tion q. Let y = maxs1,s2∈G

πs1
πs2

and let Nq = ‖ qs

πs
, s ∈ G‖2.

Moreover, let a = 1 − λ2 where λ2 < 1 is the second largest
eigenvalue of the transition matrix. Then, for any subset A ⊂ G
and let tn be the number of visits to A in n steps. We have
for any b that:

Pr
{
|tn − nπA| ≥ b

}
≤ 2Nqe

−b2a/20ny. (54)
Proof (Lemma 1): We first estimate the number of times

state Am(t) = 0 is visited, denoted by Nm0. Using Theorem 4,
with b =

√
N(T ) log(V ) and using the fact that both Nq , y

and a > 0 are Θ(1), we have:

Pr
{
|Nm0 − N(T )πm0| ≥

√
N(T ) log(V )

}

≤ cm1e
−cm2 log(V )2 . (55)

Thus, with high probability, the number of times we visit
state Am(t) = 0 is within N(T )πm0 ±

√
N(T ) log(V ).

This implies that we try to sample the transition 0 → 1 at
least Nm0 = N(T )πm0 −

√
N(T ) log(V ) times with high

probability, and each time we succeed with probability εm.
Thus, using the concentration bound in [45] for i.i.d. Bernoulli
variables, we have that the number of times transition 0 → 1
takes place, denoted by Nm01, satisfies:

Pr
{
|Nm01 − εmNm0| ≥ 0.95

√
N(T ) log(V )

}

≤ 2e
−(0.95)2N(T ) log(V )2

2(εmNm0−
√

N(T) log(V )+0.95
√

N(T) log(V )/3) ≤ 2e− log(V )2/2.

(56)

Combining (55) and (56), we conclude that:

Pr
{
|ε̂m − εm| ≤ log(V )

√
N(T )

}

≥ 1 − 2e− log(V )2/2 − cm1e
−cm2 log(V )2

≥ 1 − e− log(V )2/4. (57)

We can now repeat the above argument for δ̂m to obtain a
similar result. Then, (34) can be obtained by applying the
union bound. �

Proof (Lemma 2): In LBISC, we actually solve ĝπ̂(γ) =∑
h π̂hĝh(γ) for computing γ∗

T . Here ĝh(γ) is due to the
fact that we use the estimated values δ̂m and ε̂m in the dual
function.

Define e(πh) = π̂h−πh and e(a(ih)
m ) = â

(ih)
m −a

(ih)
m . Then,

we can rewrite ĝπ̂(γ) as:

ĝπ̂(γ)

�
∑

h

[πh + e(πh)]
∑

m

sup
μ

(h)
p

{
V [a(ih)

m + e(a(ih)
m )]

× [μ(h)
mprmp + (1 − μ(h)

mp)rmc]

− γ[Cm(μ(h)
mp, zh)+(1 − μ(h)

mp)[a
(ih)
m + e(a(ih)

m )]Cm − ρ]
}

.

(58)

Using Lemma 1, we see that when V is large, with probabil-
ity 1−2Me− log(V )2/4, e(a(ih)

m ) ≤ log(V )√
N(T )

, which also implies

that the estimated π̂h is within O( log(V )√
N(T )

) of πh. In this case,

Assumption 1 implies that there exist a set of actions that
achieve:

∑

h

π̂h

3∑

j=1

θ
(h)
j

∑

m

[Cm(μ(h)
mpj , zh)+(1 − μ

(h)
mpj)â

(ih)
m Cm] ≤ ρ0,

for some ρ0 = ρ − η > 0 for some η > 0. Using the fact

that e(a(ih)
m ) ≤ log(V )√

N(T )
, we see that the same set of actions

ensures that:

∑

h

π̂h

3∑

j=1

θ
(h)
j

∑

m

[Cm(μ(h)
mpj , zh)

+(1 − μ
(h)
mpj)â

(ih)
m Cm] ≤ ρ − η/2. (59)

Using [22, Lemma 1], this implies γ∗
T ≤ ξ � 2V rp

η . Therefore,
we have:

ĝπ̂(γ∗
T ) ≥ gπ(γ∗

T ) −
∑

h

|e(πh)|M(V rp +
2V rp

η
Cmax)

−
∑

m

(V max
m

|e(a(ih)
m )|rp +

2V rp

η
max

m
|e(a(ih)

m )|Cmax).

Similarly, we have:

ĝπ̂(γ∗) ≤ gπ(γ∗) +
∑

h

|e(πh)|M(V rp +
2V rp

η
Cmax)

+
∑

m

(V max
m

|e(a(ih)
m )|rp +

2V rp

η
max

m
|e(a(ih)

m )|Cmax).

Denoting the last two terms as etot, we see that etot = Θ(V ).
Using ĝπ̂(γ∗

T ) ≤ ĝπ̂(γ∗), we get:

gπ(γ∗
T ) ≤ gπ(γ∗) + 2etot. (60)

Using the polyhedral property (26), we conclude that:

|γ∗
T − γ∗| ≤ 2etot/β. (61)

Finally using the fact that max(|e(πh)|, |e(a(ih)
m |) ≤ log(V )√

N(T )

proves the bound for |γ∗
T − γ∗|. The bound for |γ̂∗ − γ∗| can

be similarly proven. �
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