
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 86, 040301(R) (2012)

Perfect discrimination of no-signalling channels via quantum superposition of causal structures
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A no-signalling channel transforming quantum systems in Alice’s and Bob’s local laboratories is compatible
with two different causal structures: (A � B) Alice’s output causally precedes Bob’s input and (B � A) Bob’s
output causally precedes Alice’s input. Here I prove that two no-signalling channels that are not perfectly
distinguishable in any ordinary quantum circuit can become perfectly distinguishable through the quantum
superposition of circuits with different causal structures.
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Distinguishing between two objects is one of the most fun-
damental tasks in information theory. In quantum information,
an instance of the problem is the discrimination between two
quantum channels [1–12]. In this scenario one has access to a
black box implementing a transformation of quantum systems,
which is promised to be either C0 or C1, and the goal is to
identify such a transformation with maximum probability of
success using a given number of queries to the black box.

Many surprising features of quantum channel discrimina-
tion have been discovered so far. For example, two unitary
channels that are not perfectly distinguishable with a single
query become perfectly distinguishable when a finite number
of queries is allowed [1,2]. Other remarkable phenomena arise
when the two channels C0 and C1 have a bipartite structure, as
in the following diagram:

A

Ci

A

B B

i = 0, 1

which represents a quantum channel (i.e., a completely positive
trace preserving map) sending quantum states on the Hilbert
space A ⊗ B to quantum states on the Hilbert space A′ ⊗ B ′.
We can imagine that the channels C0 and C1 transform quantum
states provided by two users, Alice and Bob. If the state of
Alice’s output A′ does not depend on the state of Bob’s input
B, then we say that C0 and C1 are no-signalling from Bob to
Alice (B-no-signalling, for short). Eggeling, Schlingemann,
and Werner [13] showed that every B-no-signalling channel
C can be realized as the concatenation of a channel A on
Alice’s side followed by a channel B on Bob’s side, with
some information transferred from Alice to Bob via a quantum
memory M , as in the diagram

A

C
A

B B
=

A

A
A B

B
B

M
(1)

In other words, if a channel does not signal from Bob to
Alice, then it is compatible with a causal structure where
Alice’s output precedes Bob’s input, denoted by A � B. In
this structure the black box provides Alice’s output before
Bob supplies his input, as illustrated in the right-hand side of
Eq. (1). To discriminate between two B-no-signalling channels
we can then use a sequential strategy [7], where the channel
Ci (either with i = 0 or with i = 1) is inserted in a quantum
circuit with causal structure A � B, thus producing the output

state ρ
seq
i given by

ρseq
i

R

B
:=

Ψ
R

W
R

A

Ai

A B

Bi

B

Mi

(2)

Here R and R′ are suitable ancillary systems, Mi is the
quantum memory needed for the realization of channel Ci , � is
a pure state on R ⊗ A, and W(ρ) = WρW †, W †W = IR⊗A′ is
an isometry sending states on R ⊗ A′ to states on R′ ⊗ B [14].

Reference [7] showed that sequential strategies offer an
advantage over parallel strategies, where the channel Ci is
applied on one side of an entangled input state � ∈ A ⊗ B ⊗
R, producing the output state ρ

par
i given by

ρpar
i

R

B
:= Ψ

A

Ci

A

B B

R

(3)

In particular, Ref. [7] exhibited two B-no-signalling channels
that can be perfectly distinguished by a sequential strategy,
whereas every parallel strategy has a nonzero probability
of error. Later, Harrow et al. [12] demonstrated the same
phenomenon in the absence of a quantum memory, i.e., for
two channels C0 and C1 of the product form Ci = Ai ⊗ Bi ,
with Ai (Bi) transforming states on A (B) into states on
A′ (B ′). Channels of this form are a particular example of
no-signalling channels [15,16], namely, channels that are both
B-no-signalling and A-no-signalling [17].

In principle, no-signalling channels can be used in two
different causal structures: A � B (the black box processes
Alice’s input first and Bob’s input later) and B � A (the
black box processes Bob’s input first and Alice’s input later).
Usually, when there are two possible alternatives, in quantum
theory one can conceive a superposition of them. Can we
apply this idea also to the choice of causal order? Recently,
Ref. [18] introduced the notion of quantum superposition of
causal structures, arguing that this new primitive could be
achieved in a quantum network where the connections among
devices are controlled by the quantum state of a control qubit.
A no-signalling channel inserted into such a network would
be in a quantum superposition of being used in a circuit with
causal structure A � B and of being used in a circuit with
causal structure B � A.
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Such a network can be thought of as a toy model for a
quantum gravity scenario where the causal structure is not
defined a priori, a scenario originally considered by Hardy
[19], who posed the question as to whether indefinite causal
structure can be used as a computational resource.

This paper gives a positive answer to Hardy’s question,
showing that the superposition of causal structures enables
completely new schemes for quantum channel discrimination.
The advantage of such schemes is demonstrated by exhibiting
a concrete example of two no-signalling channels that cannot
be perfectly distinguished by any sequential strategy using
a single query to the black box, but become perfectly
distinguishable through a quantum superposition of sequential
strategies with different causal structures [18]. The example
involves two-qubit channels C0 and C1, with C0 consisting of
two von Neumann measurements on the same random basis,
and C1 consisting of two rotations of π around a random pair
of orthogonal axes in the Bloch sphere. More generally, the
superposition of causal structures presented here allows for
a single-query, zero-error discrimination between an arbitrary
pair of qubit channels with commuting Kraus operators and an
arbitrary pair of qubit channels with anticommuting Kraus
operators. These results contribute to the exploration of a
new research avenue that aims at demonstrating new physical
phenomena and power-ups to information processing arising
from the application of quantum theory in the lack of a definite
causal structure [18–20].

Before presenting the result, let us make precise what
we mean by quantum superposition of causal structures. We
can start from the simplest case, where the channels C0 and
C1 are of the product form Ci = Ai ⊗ Bi , i = 0,1. First, let
us write down the Kraus forms Ai(ρ) = ∑

k AikρA
†
ik and

Bi(ρ) = ∑
l BilρB

†
il . For each value of k and l, a sequential

circuit with causal structure A � B [like the circuit in Eq. (2)]
yields the (unnormalized) pure state

|�ikl〉 = (Bil ⊗ IR′)W (Aik ⊗ IR)|�〉. (4)

Whereas a sequential circuit with causal structure B � A

yields

|�̃ikl〉 = (Aik ⊗ IR̃′ )W̃ (Bil ⊗ IR̃)|�̃〉, (5)

where R̃ and R̃′ are suitable ancillary systems, �̃ ∈ B ⊗ R̃ is a
pure state, and W̃ is an isometry from B ′ ⊗ R̃ to A ⊗ R̃′. Note
that by suitably choosing the ancillary systems R,R′,R̃,R̃′ we
can assume without loss of generality that the input and output
systems of the two circuits are the same, i.e., A ⊗ R � B ⊗ R̃

and B ⊗ R′ � A ⊗ R̃′. Suppose now that we have at our
disposal a coherent mechanism that chooses the first circuit
when the state of a control qubit is |0〉, and the second when
the state is |1〉. Such a mechanism could be implemented in
a quantum network where the connections among devices are
not predetermined, but instead can be controlled by the state of
some quantum system, as in the quantum switch of Ref. [18].
If the control qubit is prepared in the state |ψ〉 = α|0〉 + β|1〉,
then the output of the network is α|�ikl〉|0〉 + β|�′

ikl〉|1〉.
Taking the corresponding density matrix and summing over

all possible Kraus elements we then get the output state

ρ
sup
i := |α|2(Bi ⊗ IR′)W(Ai ⊗ IR)(|�〉〈�|) ⊗ |0〉〈0|

+ |β|2(Ai ⊗ IR′)W̃(Bi ⊗ IR)(|�̃〉〈�̃|) ⊗ |1〉〈1|
+αβ∗ ∑

k,l

|�ikl〉〈�̃ikl| ⊗ |0〉〈1|

+α∗β
∑
k,l

|�̃ikl〉〈�ikl| ⊗ |1〉〈0|, (6)

with W̃(ρ) = W̃ρW̃ †. The first two terms in Eq. (6) are the
classical ones, corresponding to the random choice of two
possible circuits with causal structures A � B and B � A.
The off-diagonal terms have no classical interpretation: they
represent the quantum interference between the two different
causal structures. Note that the state in Eq. (6) does not depend
on the particular Kraus representation chosen for the channels
Ai and Bi : had we chosen another Kraus representation,
after summation we would have obtained the same result.
Equation (6) can be extended by linearity to the case of
generic no-signalling channels by writing the Kraus form
Ci(ρ) = ∑

m CimρC
†
im and expanding the Kraus operators as

Cim = ∑
k Aimk ⊗ Bimk .

The availability of a network implementing the quantum
superposition of causal structures can be interpreted as a new
information-theoretic primitive that takes as input a query to
a generic no-signalling channel Ci and produces as output
one query to the channel defined by Csup

i (ρ) := ρ
sup
i , where

ρ
sup
i is the state defined in Eq. (6) and ρ is the projector on

the state α|�〉|0〉 + β|�̃〉|1〉. We will now show that having
access to this primitive can reduce by a factor of 2 the
number of queries needed for the discrimination of a pair
of no-signalling channels. In our example, all systems are
qubits: A � A′ � B � B ′ � C2. Channel C0 consists of two
von Neumann measurements on the same random basis

C0 :=
∫

dUM(A)
U ⊗ M(B)

U , (7)

where dU is the normalized Haar measure on SU(2)
and MU is the single-qubit channel given by MU (ρ) :=
〈0|U †ρU |0〉U |0〉〈0|U † + 〈1|U †ρU |1〉U |1〉〈1|U †, {|0〉,|1〉}
being the computational basis. Channel C1 consists of two
rotations of π around a pair of random orthogonal axes in the
Bloch sphere:

C1 :=
∫

dVX (A)
V ⊗ Y (B)

V , (8)

where XV (ρ) := (V XV †)ρ(V XV †) and YV (ρ) :=
(V YV †)ρ(V YV †), X and Y being the Pauli matrices
representing rotations of π around the x and y axes,
respectively.

Suppose that an experimenter has access to the bipartite
black box and is asked to discriminate between C0 or C1

using a single query. The discrimination between C0 and C1 is
equivalent to the discrimination between two product channels
C0,U := A0,U ⊗ B0,U and C1,V := A1,V ⊗ B1,V , with A0,U ≡
B0,U := MU and A1,V := XV and B1,V := YV , where the
unitaries U and V are completely unknown. To achieve perfect
discrimination between C0,U and C1,V one can take a quantum
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superposition of the following two circuits:

ϕ Ai,Ui Bi,Ui

ϕ Bi,Ui Ai,Ui

(9)

where ϕ is a fixed pure state and U0 := U and U1 := V . The
key idea is that the Kraus operators of C0 and C1 behave very
differently when we switch the ordering from A � B to B �
A: the Kraus operators of A0,U and B0,U commute for every
U (they are projectors on the same basis vectors), whereas
the Kraus operators of A1,V and B1,V anticommute for every
V . The difference between commutation and anticommutation
cannot be detected by any ordinary circuit using a single query
to the black boxes, but becomes visible in the interference
terms when we superpose the two circuits (a) and (b) with
amplitudes α = β = 1√

2
: Using Eqs. (4)–(6) with R � R′ �

R̃ � R̃′ � C, � = �̃ = ϕ, and W = W̃ = I , we obtain the
output states

ρ
sup
0 = MU (|ϕ〉〈ϕ|) ⊗ |+〉〈+|,

ρ
sup
1 = ZV (|ϕ〉〈ϕ|) ⊗ |−〉〈−|,

where ZV is the unitary channel ZV (ρ) := (V ZV †)ρ(V ZV †),
Z being the Pauli matrix Z := −iXY , and |±〉 := (|0〉 ±
|1〉)/√2. By measuring the control qubit on the basis |+〉,|−〉
the experimenter can perfectly distinguish between C0 and
C1, no matter what the unknown unitaries U and V are.
More generally, the above scheme allows one to distinguish an
arbitrary pair (A0,B0) of channels with commuting Kraus op-
erators A0iB0j = B0jA0i ∀ i,j from an arbitrary pair (A1,B1)
of channels with anticommuting Kraus operators A0iB0j =
−B0jA0i ∀ i,j .

We now show that no quantum circuit with a fixed causal
structure can perfectly distinguish between C0 and C1 with a
single query. The proof requires the formalism of quantum
combs [22,23] (see also the framework of quantum strategies
by Gutoski and Watrous [24]), which describes the most
general sequential strategies. This formalism makes extensive
use of the Choi isomorphism [25] between a channel C
transforming states on H and the positive operator C on
H ⊗ H defined by C := (C ⊗ I)(|I 〉〉〈〈I |), where I is the
identity map and |I 〉〉 is the maximally entangled vector
|I 〉〉 := ∑

n |n〉|n〉 ∈ H ⊗ H , {|n〉} being a fixed orthonormal
basis for H . In general, we will use the “double ket”
notation |�〉〉 := (� ⊗ I )|I 〉〉, where � is any operator on
H . Defining H1 := A, H2 := A′, H3 := B, H4 = B ′, the
Choi operator of the channel Ci , i = 0,1 is the operator on
H4 ⊗ H3 ⊗ H2 ⊗ H1 given by

Ci :=
∫

dU (U ⊗ U∗ ⊗ U ⊗ U∗)(
i), (10)

where 
0 = ∑
m,n=0,1 |m〉〈m| ⊗ |m〉〈m| ⊗ |n〉〈n| ⊗ |n〉〈n|,


1 = |Y 〉〉〈〈Y | ⊗ |X〉〉〈〈X|, and U (U∗) is the unitary channel
defined by U(ρ) := UρU † (U∗(ρ) := U ∗ρUT ), U ∗ (UT )
denoting the complex conjugate (the transpose) of the
matrix U .

Let us consider discrimination strategies with causal struc-
ture A � B. The discrimination is represented by a binary
quantum tester {T0,T1}, consisting of two positive operators

T0 and T1 on H4 ⊗ H3 ⊗ H2 ⊗ H1 that give the probabilities
of the measurement outcomes according to the generalized
Born rule p(i|Cj ) = Tr[TiCj ] [7]. The normalization of the
tester is given by the condition T0 + T1 = I4 ⊗ �, where � is
a positive operator on H3 ⊗ H2 ⊗ H1 satisfying the relation

Tr3[�] = I2 ⊗ ρ, Tr[ρ] = 1, (11)

Tr3 denoting the partial trace over H3 and ρ being a quantum
state on H1 (see Ref. [7] for more details). Now, it is clear
from Eq. (10) that the outcome probabilities are not affected if
we replace each Ti , i = 0,1 with its average T ′

i := ∫
dU (U ⊗

U∗ ⊗ U ⊗ U∗)(Ti). Since the average commutes with all the
unitaries U ⊗ U ∗ ⊗ U ⊗ U ∗, we can assume without loss of
generality the commutation relation

[�,U ∗ ⊗ U ⊗ U ∗] = 0 ∀ U ∈ SU(2). (12)

From Ref. [7], we know that distinguishing between the
two channels C0 and C1 with the tester {T0,T1} is equivalent
to distinguishing between the two states �0 and �1 given
by �i := (I4 ⊗ �

1
2 )Ci(I4 ⊗ �

1
2 ), i = 0,1. Hence, C0 and C1

are perfectly distinguishable if and only if �0 and �1 have
orthogonal support, that is, Tr[�0�1] = 0. Note that we
have Tr[�0�1] = Tr[C̃0(I4 ⊗ �̃)C̃1(I4 ⊗ �̃)], having defined
C̃i := (I ⊗ Y ⊗ I ⊗ Y )Ci(I ⊗ Y ⊗ I ⊗ Y ) for i = 1,2, and
�̃ := (Y ⊗ I ⊗ Y ) � (Y ⊗ I ⊗ Y ).

We now prove that the condition Tr[�0�1] = 0 cannot be
satisfied. First note that by definition �̃ must satisfy Eq. (11)
for some density matrix ρ. Moreover, from Eq. (12) and from
the relation U ∗ = YUY, ∀ U ∈ SU(2) it follows that �̃ must
satisfy the commutation relation [�̃,U ⊗ U ⊗ U ] = 0, ∀ U ∈
SU(2). Hence, by the Schur lemmas �̃ must be a combination
of projectors onto the irreducible subspaces of U ⊗ U ⊗ U .
The latter are easily obtained by coupling the three angular
momenta: we have the subspace L 3

2
corresponding to j = 3

2

and two subspaces L (1)
1
2

and L (0)
1
2

corresponding to j = 1
2 ,

which are spanned by the vectors {�(1)
0 ,�

(1)
1 } and {�(0)

0 ,�
(0)
1 },

respectively,

∣∣�(1)
0

〉
:= 1√

6
(|0〉1|Y 〉〉2,3 + |Y 〉〉1,3|0〉2),

∣∣�(1)
1

〉
:= 1√

6
(|1〉1|Y 〉〉2,3 + |Y 〉〉1,3|1〉2),

∣∣�(0)
0

〉
:= |Y 〉〉1,2|0〉3√

2
,

∣∣�(0)
1

〉
:= |Y 〉〉1,2|1〉3√

2
.

The most general expression for a positive operator �̃

commuting with U ⊗ U ⊗ U is then

�̃ = aP 3
2
+

∑
m,n=0,1

bmnT
mn
1
2

, (13)

where a � 0, P 3
2

is the projector onto L 3
2
, (bmn) is a positive

two-by-two matrix, and T mn
1
2

:= ∑
k=0,1 |�(m)

k 〉〈�(n)
k |. Let us

analyze now the normalization (11). First, note that the
state ρ in Eq. (11) must be the invariant state ρ = I/2
due to the symmetry [�̃,U ⊗ U ⊗ U ] = 0, which implies
[ρ,U ] = 0. On the other hand, taking the partial trace we
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obtain Tr3[P 3
2
] = 4

3P1, Tr3[T 11
1
2

] = 2
3P1, Tr3[T 00

1
2

] = 2P0, and

Tr3[T 01
1
2

] = Tr[T 10
1
2

] = 0.

Hence, Eq. (11) with ρ = I/2 implies ( 4a+2b11
3 )P1 +

2b00P0 = I⊗I
2 , which is equivalent to the relations 2a +

b11 = 3
4 and b00 = 1

4 . On the other hand, direct calculation
shows that the overlap Tr[�0�1] is zero if and only if
a = b11 = b01 = 0 [26]. Since this condition is incompatible
with the normalization condition 2a + b11 = 3

4 , we proved
that no circuit with causal structure A � B can perfectly
discriminate between C0 and C1 with a single query. Moreover,
since the Choi operators C0 and C1 are invariant under the
exchange (A,A′) ↔ (B,B ′), the same derivation can be used
to prove that perfect discrimination cannot be achieved with
a single query by any circuit with causal structure B � A. In
conclusion, perfect discrimination in a circuit with fixed causal
structure requires at least two queries. This number is actually
sufficient, because with two queries the quantum superposition
of causal structures can be simulated in an ordinary circuit
using controlled swap operations [18].

Iterating the result for N different pairs of no-signalling
channels {C(n)

in
|in ∈ {0,1},n = 1, . . . ,N} it is easy to see that

superposing two causal structures for each pair allows us to
distinguish with probability 1 among 2N channels using one
query to the black box

⊗N
n=1 C

(n)
in

. Without the superposition of
causal structures, the probability of successfully distinguishing
all pairs of channels with a single query would go to zero
exponentially fast in N . This fact can be proven using the
product rule of Ref. [27], which shows that the maximum
probability p(N)

succ of distinguishing correctly all the N channels
is equal to the product of the probabilities of distinguishing
each channel separately, that is, p(N)

succ = [p(1)
succ]N → 0.

Before concluding, it is worth highlighting a remarkable
feature of our result: perfect discrimination is achieved by
superposing two strategies that, considered separately, are very
inefficient. It is easy to show that the probability of success

of the strategies (a) and (b) in Eq. (9) is p(a)
succ = p(b)

succ = 2
3 , a

value that can be easily beaten even by parallel strategies. For
example, applying the unknown channel Ci , i = 0,1 on one
side of a maximally entangled state, thus obtaining the Choi
state ρChoi

i = Ci/4, i = 0,1, yields the much higher success
probability pChoi

succ = 11
12 . Quite paradoxically, it is exactly by

superposing two suboptimal strategies that one can achieve
perfect discrimination. This feature suggests an analogy with
Parrondo’s paradox in classical game theory [21], where the al-
ternate choice of two losing games yields a winning game (i.e.,
a game where the optimal strategy yields a winning probability
larger than 1/2). In the quantum example the counterintuitive
feature is even more striking: the probability of winning the
discrimination game jumps to psucc = 1 thanks to the quantum
superposition of the losing strategies (a) and (b).

In conclusion, we demonstrated that the quantum super-
position of causal structures is a new primitive that offers
an advantage over causally ordered quantum circuits in the
problem of quantum channel discrimination. Such a result
is similar in spirit to that of Oreshkov, Costa, and Brukner
[20], who showed the advantage of noncausal strategies in
a nonlocal (Bell-inequality-type) game. These results, along
with the quantum switch of Ref. [18], are starting to unveil
some deep relationship between quantum theory, causal order,
and space-time, and more developments in this direction are
expected to come in the near future.
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