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Three-dimensional topological gapless matters with gapless degeneracies protected by a topologi-
cal invariant defined over a closed manifold in momentum space have attracted considerable interest
in various fields ranging from condensed matter materials to ultracold atomic gases. As a highly
controllable and disorder free system, ultracold atomic gases provide a versatile platform to simulate
topological gapless matters. Here, the current progress in studies of topological gapless phenomena
in three-dimensional cold atom systems is summarized in the review. It is mainly focused on Weyl
points, structured (type-II) Weyl points, Dirac points, nodal rings and Weyl exceptional rings in
cold atoms. Since interactions in cold atoms can be controlled via Feshbach resonances, the progress
in both superfluids for attractive interactions and non-interacting cold atom gases is reviewed.
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I. INTRODUCTION

In 1928, P. Dirac proposed the Dirac equation to de-
scribe particles with Lorentz invariance1. Shortly after-
ward, H. Weyl found that, for massless particles, the

equation can be written as two separate equations cor-
responding to the left or right chirality or handedness2.
The fermions described by these two equations are called
Weyl fermions. Initially, neutrinos were thought to be
Weyl fermions, but they were found to have masses and
thus not Weyl fermions. So far, there are no other
elementary particles in particle physics that are Weyl
fermions.

In condensed matter systems including cold atoms,
particles do not necessarily endorse the law dictated by
the Dirac equation due to their low energy compared
with their static masses. However, the existence of band
structures due to crystalline symmetries or atom laser
interactions can dress the particles, leading to their dy-
namics governed by the Weyl equation. This indeed oc-
curs when a band structure exhibits a doubly degenerate
point with linear dispersions along all three dimensions
in the vicinity of the point. Around such a point (called
Weyl node or Weyl point), the dynamics is dictated by
the Weyl Hamiltonian. One celebrated example in two
dimensions (2D) is graphene where a doubly degenerate
point appears3,4. In fact, as early as in 1937, such a de-
generacy with linear dispersions was predicted in electric
band structures in a three-dimensional (3D) solid-state
material5.

Half a century later, Volovik predicted that the Weyl
point can appear in quasiparticle spectra of the 3He A
superfluid phase6,7. It was not until in 2011 that Wan
and coworkers discovered the topological consequence of
materials with Weyl points: Fermi arcs that consist of
surface states connecting two Weyl points with opposite
chirality8. The appearance of Fermi arcs is due to the
topological property of Weyl points: Weyl points can be
viewed as the monopole of Berry curvatures in momen-
tum space so that the first Chern number defined as the
integral of Berry curvatures over a closed surface in mo-
mentum space enclosing the point is quantized. From
this perspective, the closed surface can be regarded as
a Chern insulator, leading to chiral surface states in an
open geometry; these surface states give rise to a Fermi
arc connecting two Weyl points. So far, studies of Weyl
points have seen a rapid advance in various fields, such
as solid-state materials8–16, cold atoms17–38, optical sys-
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tems39, acoustic systems40 and mechanical systems41.
Remarkably, Weyl points have recently been experimen-
tally observed in solid-state materials42,43 and optical
crystals44–46.

In contrast to particle physics where the Lorentz in-
variance is required, in condensed matter systems, this
symmetry is not necessarily respected. As a result, new
fermions can appear. In 2014, Xu and coworkers found
a new topological superfluid termed gapless topological
Fulde-Ferrell superfluids; these superfluids possess gap-
less structures besides a touching point20. Shortly af-
terward, Xu and coworkers proposed an effective model
to characterize it and named the new Weyl point struc-
tured Weyl points26. Such Weyl points were also found in
solid-state materials and named type-II Weyl points47,48.
For a traditional Weyl point (also called type-I Weyl
point), the Fermi surface is a point with zero density
of states when it lies at the point. However, for a struc-
tured (type-II) Weyl point, the Fermi surface incorpo-
rates two open or closed surfaces touching at the point,
leading to finite density of states. Because of the sharp
change of the topology of the Fermi surface, the tran-
sition from the traditional (type-I) Weyl point to the
structured (type-II) Weyl point corresponds to the Lif-
shitz transition. Besides, a number of other different
properties of structured (type-II) Weyl points were an-
ticipated, such as anisotropic chiral anomaly47,49,50, un-
usual magneto-response49,50, novel quantum oscillation
due to the momentum space Klein tunneling51, and novel
anomalous Hall effects26,52. Such new Weyl points have
recently been experimentally observed in solid-state ma-
terials53–61 and optical crystals62,63.

In addition to the point, 3D band structures can
exhibit nodal lines (or rings) with degeneracies form-
ing a line (or a ring)64(see also review65 and references
therein). For instance, a nodal line (or ring) can be de-
veloped from Dirac points in graphene by generalizing
them to 3D. Such a gapless structure is protected by the
winding number for a system with chiral symmetry64 or
the quantized Berry phase for a system with PT sym-
metry66. Moreover, other nodal lines, such as a nodal
line acting as a vortex ring with a maximal topological
anomalous Hall effect67, nodal-link and nodal-knot gap-
less structures68–71, are proposed in band structures of
different models.

Topological gapless matters can not only appear in
closed systems described by a Hermitian Hamiltonian,
but can also emerge in open systems with particle gain
and loss described by a non-Hermitian Hamiltonian. Re-
cently, the technology advance72–85 has instigated inten-
sive studies of topological phases in non-Hermitian sys-
tems ranging from 1D to 3D systems86–110. In the con-
text of 3D gapless matters with particle gain and loss,
Xu and coworkers introduce a non-Hermitian term in a
Weyl Hamiltonian and found that a Weyl point morphs
into a Weyl exceptional ring consisting of exceptional
points93. In contrast to the nodal ring with a quantized
Berry phase and a zero Chern number, the Weyl excep-

tional ring possesses both a quantized Berry phase and
a quantized (nonzero) Chern number. Remarkably, the
Weyl exceptional ring has recently been experimentally
observed in an optical waveguide array85. Additionally,
when a non-Hermitian term is introduced in a nodal-line
semimetal, a nodal ring develops into two exceptional
rings characterized by the Berry phase108,109. Moreover,
exceptional links and twisted Fermi ribbons were also
found in non-Hermitian systems103.

Compared with solid-state materials, cold atoms pro-
vide a clean and highly controllable platform to simulate
Hamiltonians. In the context of topology, there has been
remarkable progress made in cold atoms in both topolog-
ical insulators and topological gapless matters111,112. For
topological insulators, the Zak phase was observed in a
1D dimerized optical lattice113, and the Haldane model,
the Chern band and the Harper Hamiltonian were exper-
imentally realized in cold atoms114–120. Long-sought af-
ter Thouless pump and the 4D quantum Hall effect were
also experimentally observed with cold atoms121–123. For
topological gapless phenomena, the honeycomb lattices
were engineered using laser beams and the Dirac cone
was observed by Landau-Zener tunneling124,125. The 2D
Dirac point was also realized in the Harper Hamiltonian
with the flux per plaquette being 1/2 using laser-assisted
tunneling114,115. Such a point was also implemented in
the hyperfine level space of atoms as the 2D spin-orbit
coupling119,126–128. Furthermore, the second Chern num-
ber of the Yang monopole has recently been observed in
cold atoms129.

For topological gapless matters in 3D cold atom sys-
tems, remarkable experimental and theoretical progress
has been made. In particular, the Weyl nodal line has
recently been implemented in the 173Yb Fermi gas130. In
theory, there has been a number of systems discovered
to host topological gapless bands. Specifically, in super-
fluids, the Weyl points were found to exist in the quasi-
particle energy spectrum of spin-orbit coupled BCS and
Fulde-Ferrell superfluids17,20,26,131 owing to the effective
p-wave pairing similar to the 3He A phase. The gap-
less topological Fulde-Ferrell superfluids with structured
Weyl points20,26,131 were also found. Since the dominant
pairing is the px + ipy pairing for the attractive dipole-
dipole interacted atoms, the Weyl points can also emerge
in the quasiparticle energy spectrum of such superflu-
ids22. When the one-dimensional (1D) spin-orbit cou-
pling is considered, Weyl nodal rings132 and structured
Weyl (type-II) nodal rings26 were found in the Fermi su-
perfluids. Recent experimental realization of 1D and 2D
spin-orbit coupling in cold atoms119,120,126,127,130,133–145

(see review146–148) has laid the foundation for the ex-
perimental observation of Weyl points and nodal rings
in superfluids. Furthermore, Weyl fermion quasiparticles
were shown to emerge in a 3D system of polar particles in
magnetic fields30 and in a topological density wave phase
in cold atomic Rydberg-dressed atomic fermions24. Sim-
ilar to the fermionic excitations, Weyl points and nodal
rings were also shown to emerge in Bogoliubov excita-
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tions of bosonic superfluid and Mott insulator phases
when bosonic atoms are loaded into a Weyl semimetal
or nodal ring optical lattice149–151.

Since non-interacting systems are easy to understand
and control, another direction in cold atoms is to inves-
tigate the experimental scheme for realizing topological
gapless bands in non-interacting systems. This is achiev-
able as interactions can be readily tuned by Feshbach
resonances in cold atoms152. One can also study the ef-
fects of interactions on gapless bands when the attrac-
tive or repulsive interactions are turned on. To date,
there have been a number of proposals for realizing Weyl
points and nodal rings. In 2012, Anderson and coworkers
reported an experimental scheme to realize the 3D Weyl
spin-orbit coupling by coupling four hyperfine levels of
atoms with Raman laser beams153. This scheme can ac-
tually achieve a single Weyl point in the continuous space
without lattices. In 2015, based on their experimental re-
alization of a Dirac point in a 2D Harper Hamiltonian,
Dubček and coworkers found an experimental scheme to
realize a Weyl semimetal in a sublattice pseudospin space
with laser-assisted tunnelling154. A year later, based on
an experimental realization of the Chern band119, Xu
and Duan proposed an experimental setup for realizing
a Weyl metal29. In this scheme, both traditional (type-
I) and structured (type-II) Weyl points can be realized
and their transition can be readily tuned by controlling a
two-photon detuning. Since the Weyl point is achieved in
the hyperfine level space, the scheme also realizes the 3D
Weyl spin-orbit coupling. Very recently, an experimental
scheme to realize a 3D Dirac semimetal in cold atoms has
been proposed38. There are also experimental schemes
for achieving the Dirac and Weyl nodal ring semimetal
with cold atoms155,156. Other approaches for construct-
ing Weyl semimetals with cold atoms include stacking
2D lattice layers with checkerboard-patterned staggered
fluxes18, stacking one-dimensional Aubry-Andre-Harper
models23, and shaking a face-centered-cubic optical lat-
tice34.

As a highly controllable system, cold atoms allows us
to achieve the manipulation of the location and number
of Weyl points. Such a manipulation changes the anoma-
lous Hall response accordingly. Despite the existence of
an inevitable non-adiabatic process when a Hamiltonian
parameter is slowly modified, the equilibrated Hall re-
sponse can be achieved by applying a suitable electric
field initially in a coherent dynamics38. In addition,
cold atoms can be utilized to realize the dynamical Weyl
points and dynamical 4D Weyl nodal rings where one
parameter is taken as time36. Such dynamical gapless
phenomena lead to continuous tunable Thouless pump-
ing in higher dimensions.

There are many excellent reviews157–176 on the topic
mainly related to topological gapless matters in solid-
state materials. A review mainly focused on topological
insulators in cold atoms112 has appeared recently. In this
review, we summarize the basic concepts of Weyl points,
Dirac points, nodal rings and Weyl exceptional rings, and

their presence in quasiparticle spectra of Fermi superflu-
ids and in single particle spectra of non-interacting Fermi
gases. Specifically, in Sec. 2, we introduce the concepts
of Weyl points, Dirac points, nodal rings and Weyl ex-
ceptional rings. In Sec. 3, we describe Weyl points and
nodal rings in Fermi superfluids. In Sec. 4, we summa-
rize theoretical proposals for realizing these topological
gapless matters in Fermi gases. In Sec. 5, we briefly
summarize other topological gapless phenomena in cold
atoms. Finally, a conclusion and perspective is given.

II. GAPLESS POINTS AND RINGS

In this section, we review several typical topological
gapless matters in 3D including Weyl points, structured
(type-II) Weyl points, Dirac points, type-II Dirac points,
nodal rings, structured (type-II) nodal rings, and Weyl
exceptional rings.

A. Weyl points

In a C2 space, let us consider the following Hamilto-
nian in momentum space

HW = ε0(k)σ0 + vk · σ (1)

with the Pauli matrices σν (ν = x, y, z), the 2 × 2 iden-
tity matrix σ0, the momentum kν and the real param-
eter v and ε0(k), which may be a function of momen-
tum k. The eigenenergy is E±(k) = ε0(k) ± vk with

k =
√
k2
x + k2

y + k2
z , showing that a double degeneracy

occurs at k = 0. In particle physics, ε0(k) vanishes and
v = c where c is the light velocity in vacuum, required by
the Lorentz symmetry. Apparently, the degenerate point
is stable against any perturbation because all 2 × 2 ma-
trices can be generated by σ0, σx, σy and σz and adding
any one can at most change the location of the degener-
ate point instead of gapping it. The dispersion is linear
around all directions and the slope indicates the group
velocity. The Weyl fermoins are chiral massless Dirac
fermions whose velocities are parallel or anti-parallel to
their spins. In addition, the Weyl point can be regarded
as a monopole of Berry curvatures [see Fig. 1] in momen-
tum space given by

Ω±(k) = ∓ k

2k3
, (2)

where

Ω±(k) = i〈∇u±(k)| × |∇u±(k)〉 (3)

is the Berry curvature with |u±(k)〉 being the upper
and lower eigenstate of the Weyl Hamiltonian so that
HW |u±(k)〉 = E±(k)|u±(k)〉. The topology of the Weyl
point is characterized by the integral of the Berry curva-
ture over a closed surface S in momentum space enclosing
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FIG. 1. (Color online) Schematics of the Berry curvature
Ω∓(k) in (a) and (b), respectively. The arrows on the axes
show their orientation.

the point, i.e.,

C± =
1

2π

∮
S

dS ·Ω±(k), (4)

where the Chern number C± is defined and hence C± =
∓1, implying that the system is a topological insulator
on this closed surface.

In a continuous space without lattices, a single Weyl
point can appear in band structures. This may occur in
cold atom systems, where optical lattices are naturally
absent. In fact, Anderson and coworkers proposed an
experimental scheme in ultracold atomic gases to realize
a single Weyl point153. Since the C2 space corresponds
to the hyperfine level space, the Weyl point also corre-
sponds to the 3D Weyl spin-orbit coupling. In contrast,
in the presence of lattices, which is generally the case in
solid materials, Weyl points have to appear in pairs so
that their total Chern number vanishes. Otherwise, let
us choose a closed surface wrapping all Weyl points (the
Chern number on this surface is nonzero) and continu-
ously enlarge the surface so that it shrinks to a small
sphere as the surface travels across Brillouin boundaries.
On the infinitesimally small sphere, the Berry curvature
does not diverge as the system on the sphere is always
gapped and the gap does not vanish when the sphere
becomes smaller. In this case, the integral of Berry cur-
vatures on the sphere vanishes. However, this cannot
happen, since the system on the surface is always gapped
due to the absence of other gapless points and the Chern
number on this surface should remain unchanged.

Alternatively, we may regard a Weyl point as the phase
transition point between a Chern insulator and a topo-
logically trivial insulator in momentum space in terms of
a parameter, say kz. In the parameter region for kz where
the insulator is topological, there are chiral edge states in
the presence of edges along other directions perpendicu-
lar to the z axis. Because these edge states appear only
in topological insulator region for kz, but does not in the
topologically trivial insulator region, we obtain the Fermi
surface consisting of chiral edge modes, which connects
a pair of Weyl points with opposite charges, if the Fermi
surface is located at the Weyl point; these surface states
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FIG. 2. (Color online) Energy bands with respect to ky
(kx = kz = 0) for a traditional (type-I) Weyl point (a) and a
structured (type-II) Weyl point (b). Profiles of band occupa-
tion in the kx = 0 plane for a traditional (type-I) Weyl point
(c) with a point Fermi surface (denoted by a green circle)
and a structured (type-II) Weyl point (d) with an open Fermi
surface (denoted by two green lines). In (a-b), ± label the
eigenvalues of

∑
i kiσi/k, i.e., the helicity. In (c-d), ± repre-

sent the occupied band with the corresponding helicities. In
the red region, no bands are occupied. Adapted from Ref.
[26].

form the Fermi arc, which is not closed on a surface. In
superfluids or superconductors, the surface states corre-
spond to the chiral Majorana modes177.

In general, the existence of Weyl points does not re-
quire any symmetry. But materials usually have some
symmetries which may have some constraints on Weyl
semimetals. For instance, if a system possesses both
time-reversal T (i.e., T H(k)T −1 = H(−k)) and inver-
sion symmetry P (i.e., PH(k)P−1 = H(−k)) or the PT
symmetry ΘPT = PT (i.e., ΘPTH(k)Θ−1

PT = H(k)), the
band is guaranteed to be doubly degenerate when Θ2

PT =
−1. This arises from the fact that if |u(k)〉 is an eigen-
state with energy being Ek, ΘPT|u(k)〉 is the other dis-
tinct eigenstate with the same energy, since if they corre-
spond to the identical state, i.e., ΘPT|u(k)〉 = eiλ|u(k)〉,
then (ΘPT)2|u(k)〉 = |u(k)〉 = (−1)|u(k)〉, which is im-
possible. In this case, a touching point, if exists, has to
be a fourfold degenerate point, which, as will be shown
later, is a Dirac point with a vanishing Chern number
rather than a Weyl point with a nonzero Chern num-
ber. On the other hand, a band is generally not degen-
erate if Θ2

PT = 1. Yet, in this case, we have Ωn(k) = 0
if both time-reversal and inversion symmetries are pre-
served. Overall, to achieve a Weyl point in band struc-
tures, one has to break either time-reversal or inversion
symmetry or both. With only time-reversal symmetry,
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we have Ωn(−k) = −Ωn(k) and hence if there is a Weyl
point at k = kW with the Chern number being C on a
closed surface enclosing it, there must exist another Weyl
point at k = −kW with the same Chern number C178.
This indicates that there must be at least two pairs of
Weyl points in a time-reversal Weyl semimetal. With
only inversion symmetry, we have Ωn(−k) = Ωn(k) and
then if there exist a Weyl point at k = kW , there must
exist another one at k = −kW with the opposite Chern
number8,10. In this case, we can have a pair of Weyl
points in the system. When a system has neither time-
reversal and inversion symmetry nor PT symmetry, a pair
of Weyl points can also appear. Many cold atom systems
belong to this category, such as in the spin-orbit coupled
superfluids17,20,26.

In particle physics, ε0(k) cannot appear due to the
Lorentz symmetry. However, in condensed matter sys-
tems including ultracold atomic gases, the symmetry is
not necessarily respected as the energy of a particle is
much smaller than their static masses. As a consequence,
this term can emerge. If this term is momentum depen-
dent, e.g.,

HSWP = −αkyσ0 + k · σ, (5)

with the eigenenergy being E = −αky ± k. Clearly, the
Weyl cone is tilted when 0 < |α| < 1. This tilt has
also been studied in the graphene179. More interestingly,
when |α| > 1, the Fermi surface becomes open (as shown
in Fig. 2(b)) and the density of states is finite instead
of zero for the traditional Weyl point26,47. This new
phenomenon was initially discovered in the quasiparticle
spectrum of the gapless topological Fulde-Ferrell super-
fluids in spin-orbit coupled gases with attractive interac-
tions20. Later, the effective Hamiltonian was proposed
to describe it, and the new Weyl point was coined struc-
tured Weyl points26. In superfluids, since a structured
Weyl point is located at zero energy, the other has to be
at the same energy due to the intrinsic particle-hole sym-
metry. These new fermions were also predicted in band
structures of solid-state materials, which are normally lo-
cated at distinct energies, and were named type-II Weyl
points47. Despite the presence of the tilt term, the topol-
ogy of systems with structured (type-II) Weyl points is
still fully determined by the latter terms, leading to the
same Fermi arc connecting two Weyl points.

Above we mainly focus on the Weyl point with the
Chern number C = ±1. In fact, it can be readily general-
ized to a degenerate point with higher Chern numbers12,
which is described by the following Hamiltonian

HMW =

(
kz kn⊥e

−inφ

c.c. −kz

)
(6)

with n being a positive integer, k⊥ =
√
k2
x + k2

y, kx =

k⊥ cos(φ) and ky = k⊥ sin(φ). The eigenenergy is E± =

±
√
k2
z + k2n

⊥ . The Berry curvatures corresponding to the

two bands are Ω±(k) = ∓nk
2n−1
⊥

2E3
+

(e⊥ + nkz
k⊥

ez) and their

integral over a closed surface wrapping the degenerate
point gives the Chern number ∓n. Additionally, the dis-
persion is no longer linear along kx and ky directions
when n > 1. For instance, when n = 2, the dispersions
along these directions are quadratic. These degenerate
points are called multiple Weyl points and, specifically,
double Weyl points when n = 212. Multiple Weyl points
with topological charges being 2 and 3 have recently been
experimentally observed in photonic crystals45. For dou-
ble Weyl points, tight-binding Hamiltonians in a 3D cu-
bic optical lattice was constructed32,33 and an experimen-
tal scheme based on the laser-assisted tunneling with cold
atoms was put forward33.

B. Dirac points

A Dirac point in 3D refers to a fourfold degeneracy
with the zero Chern number, i.e., a Dirac point consists
of two Weyl points with the opposite topological charges
located at the same momentum. It is described by the
Hamiltonian

HD = vτzk · σ, (7)

where τz is also a Pauli matrix. τ and σ may refer to
the orbital and spin degrees of freedom. Since the Dirac
point corresponds to a massless Dirac fermion dictated
by the Dirac equation, it is fundamentally important.

In comparison with the Weyl point that is stable
against any small perturbations, a Dirac point is unstable
against perturbations. The reason is that a Dirac point is
depicted by a 4×4 Hamiltonian, which to be totally deter-
mined requires 16 matrices. Since only three matrices are
used here, other matrices, e.g., τx, may open a gap if ex-
ist. Therefore, in solid materials, symmetries are required
to exclude these additional terms that can open a gap.
For a system with both time-reversal and inversion sym-
metry so that Θ2

PT = −1, both valence and conductance
bands are doubly degenerate and Ωn1

(k) = −Ωn2
(k) cor-

responding to two degenerate bands labeled by n1 and n2.
When these bands have a degeneracy with linear disper-
sions along all three directions, it must be a Dirac point
with vanishing Chern numbers. However, even with these
symmetries, the Dirac points are still not guaranteed to
exist. They can either appear accidentally, for example,
as a critical point through the normal insulator to Z2

topological insulator, or appear due to space symmetries,
such as additional uniaxial rotational symmetry180.

In cold atom systems, the philosophy is different. Here,
a Hamiltonian is simulated by exquisitely controlling
laser beams. From this perspective, to implement a Dirac
point, one needs to conceive a concrete continuous Hamil-
tonian and analyze the symmetry of the Hamiltonian to
see whether a Dirac point can appear or not, instead
of writing down a Hamiltonian through analyzing a sys-
tem’s symmetry. Xu and Hu recently proposed a Hamil-
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tonian38

HC =
p2

2m
−

∑
ν=x,y,z

Vν cos2(rνπ/a) +mzσz + VSO, (8)

with the mass of atoms m, the momen-
tum operator p, VSO = Myσx − Mxσy de-
picting the nondiagonal optical lattices with
Mx = ΩSO sin(rxπ/a) cos(ryπ/a) cos(rzπ/a) and
My = ΩSO sin(ryπ/a) cos(rxπ/a) cos(rzπ/a). An experi-
mental realization setup in cold atoms is also proposed.
When mz = 0, this Hamiltonian respects both time-
reversal and inversion symmetry, the energy band is
doubly degenerate. Interestingly, the band structure
exhibits two Dirac points at (kx, ky, kz) = (0, π,±π/2).
With nonzero mz, the time-reversal symmetry is broken
and each Dirac point will split into two Weyl points.

A Dirac point can also become type-II. Its type-II
counterpart has two forms: both points (as a Dirac point
can be viewed as consisting of two Weyl points) are type-
II, and one is type-I and the other type-II. The former
happens when we add a term −αkyσ0 wiht |α| > 1 into
the Hamiltonian. The latter hybridized structure appears
when we include a term(

−αkyσ0 0
0 0

)
or

(
0 0
0 −αkyσ0

)
(9)

with |α| > 1. Type II Dirac points have been theoreti-
cally predicted and experimentally observed in solid ma-
terials181–186.

C. Nodal rings

Before we elaborate on the Nodal ring in 3D, let us
first discuss the Dirac point in 2D. It is important to note
that for the Dirac equation in 2D, since the γ matrices
are 2 × 2, there are no Weyl fermions. Similar to Weyl
points in 3D, a Dirac point in 2D also exhibits the linear
dispersion along all two directions and can be described
by

H2D = ε0(k) + kxσx + kyσy. (10)

A celebrated system hosting Dirac points is the graphene
with a honeycomb lattice structure3,4. In contrast to the
Weyl point which is stable against perturbations, the 2D
Dirac point is unstable. For example, the presence of a
small mσz term can open a gap. Therefore, similar to
the 3D Dirac point, a symmetry is required to protect
it. One may consider two types of symmetries protecting
a 2D Dirac point: chiral symmetry and PT symmetry.
For the former, one can define the Z topological invari-
ant: the winding number to characterize the degenerate
point. For instance, for the Hamiltonian (10) with the
chiral symmetry, i.e., σzH(k)σz = −H(k), both σz and
ε0 term are not allowed in the Hamiltonian (10) so that
the gap cannot be opened. There, the winding number

W can be defined as the number of times that (kx, ky)
wraps around the origin while it varies along a path en-
closing the degenerate point in momentum space. Note
that the corresponding Berry phase (or Zak phase along
the path) is γ(C) = Wπ. However, the chiral symmetry
is generally not an exact symmetry of band structures.
In addition, breaking the chiral symmetry may not gap
the point inevitably. For example, in the Hamiltonian
(10), while ε0(k) breaks the chiral symmetry, it cannot
open a gap. With ε0(k), while the winding number is
not well defined, the Berry phase is still well defined and
quantized. In fact, we can consider another symmetry,
that is, the PT symmetry66,187 with Θ2

PT = 1. Under
this symmetry, we can define a Z2 topological invariant
(instead of Z)66,187 ω(C) = eiγ(C) = ±1 corresponding
to a quantized Berry phase along a closed path in mo-
mentum space. Here, the PT symmetry ensures that
ω(C) = ±1. For the Hamiltonian (10), ΘPT = σxK such
that Θ−1

PTH(k)ΘPT = H(k). It is easily seen that ε0 is
allowed while σz is forbidden, preventing the gap from
being opened.

Let us extend the Dirac point in 2D to 3D such that
the degenerate point develops into a line or a closed ring.
Specifically, let us consider a simple toy model described
by the Hamiltonian,

HWN = ε0(k) + kxσx + (k2 −m2)σy, (11)

where k2 = k2
x + k2

y + k2
z and m denotes a nonzero

mass term. The eigenenergy is Ek = ε0(k) ±√
k2
x + (k2 −m2)2, leading to a degenerate ring appear-

ing at kx = 0 and k2
y+k2

z = m2. Although the degenerate
ring cannot be described by the Dirac equation or Weyl
equation in 3D, we may follow the convention to call it
Weyl nodal ring given that it is doubly degenerate. To
see the connection of the Weyl nodal ring to the Dirac
point in 2D, let us fix |kz| < |m| and obtain two gap-
less points located at kDx = 0 and kDy = ±m0 with

m0 =
√
m2 − k2

z . In the vicinity of these points, the
Hamiltonian is given by H = ε0(k) + kxσx ± 2m0δkyσy
to the first order, where δky is measured with respect to
ky = ±m0; evidently, this Hamiltonian depicts the 2D
Dirac points.

Analogous to the 2D Dirac point, the Weyl nodal ring
is unstable and a small perturbation of σz can open a gap
for the degeneracy. Hence symmetry is required to pro-
tect them, ensuring the absence of σz in the Hamiltonian
(11). Likewise, let us consider two symmetries: chiral
symmetry and PT symmetry. The chiral symmetry ex-
cludes ε0 and σz terms and the winding number can be
defined over a closed trajectory enclosing the ring. As we
have noted, the chiral symmetry is generally not an exact
symmetry because ε0 is generally nonzero. In this case,
we may consider the PT symmetry, which ensures that
σz cannot exist while ε0 can. In this case, a Z2 topolog-
ical invariant ω(C) = eiγ(C) = ±1 can be defined over a
closed path enclosing the ring to characterize it66.

To see whether surface states appear on the boundaries
in the Weyl nodal system, let us consider a semi-infinite
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system located at x > 0 and the open boundary is im-
posed at x = 0. The system can be described by the
effective Hamiltonian in the real space along the x direc-
tion

H = −i∂xσx + (−∂2
x +M)σy. (12)

Solving the time independent Schrödinger equation gives
us a zero energy solution ψ = φ(x)| ↑〉 with φ(x) ∼
e−λ+x − e−λ−x with λ± = 1

2 (1±
√

1 + 4M) and M < 0;
the solution is locally localized around x = 0 and thus
corresponds to the surface state188. For the Hamilto-
nian (11), M = k2

y + k2
z −m2

0 and, hence, there appear

zero energy surface states, when k2
y + k2

z < m2
0. Since

these surface states have zero energy, they provide an-
other platform to study strongly correlated physics, such
as high-temperature superconductivity189. In the pres-
ence of ε0(ky, kz), the energy dispersions of these surface
states become ε0(ky, kz), showing that the flat band ob-
tains dispersion and becomes drumhead structure. In su-
perfluids or superconductors, the surface states are Ma-
jorana zero modes.

The degenerate ring may be fourfold degenerate, which
is described by the Hamiltonian

HDN = kxσx + (k2 −m2)τzσy. (13)

This Hamiltonian possesses both τz (i.e., τzHτz = H)
and chiral symmetries (i.e., σzHσz = −H). Hence the
ring can be characterized by a pair of winding numbers
(W+,W−) defined in the subspaces corresponding to τz =
±1 over a closed path enclosing the gapless points on
the ring. For the Hamiltonian (13), the pair of winding
numbers is (1,−1). Similar to a 3D Dirac point with a
pair of Chern numbers being ±(1,−1), the nodal ring is
called Dirac nodal ring.

In solid-state materials, the energy spectrum is gener-
ally very complicated and a nodal ring is generally not
located at the same energy. In cold atom systems, Xu and
Zhang proposed a Hamiltonian with its experimental re-
alization scheme155, illustrating the presence of Weyl and
Dirac nodal rings that almost lie at the same energy. This
Hamiltonian in the real space is

HCN =
p2

2m
−

∑
ν=x,y,z

Vν cos2(rνπ/aν) + hzσz − VSOσy,

(14)
with VSO = ΩSO sin(rxπ/ax) cos(ryπ/ay) cos(rzπ/az)
and Vν and ΩSO characterizing the strength of optical
lattices. The Hamiltonian in momentum space of its
tight-binding counterpart is given as

HCN (k) = −htτx + hzσz + dxτyσy, (15)

where ht = 2
∑
ν tν=x,y,z cos(kνa) and dx =

2tSO sin(kxax) with tν and tSO denoting the tunneling
strength. It is easily seen that there is a Dirac nodal
ring when hz = 0, which splits into two Weyl nodal rings
when hz 6= 0.

In the presence of ε0(k) that is momentum dependent,
for instance, ε0(k) = −αkxσ0, the Hamiltonian (11) leads
to a structured nodal ring26 (also called type-II nodal
ring) when |α| > 1. Such a ring can occur in both quasi-
particle spectra of superfluids26 and band structures of
solid materials190,191; it has recently been experimentally
realized192.

D. Weyl exceptional rings

When particle gain and loss, which are generally
present in natural systems, are introduced, a system
can be described by a non-Hermitian Hamiltonian193–196.
Such a Hamiltonian generically exhibits complex eigen-
values unless the PT symmetry197 holds, and the imagi-
nary part of such complex eigenvalues is associated with
either decay or growth. In non-Hermitian systems, there
exist a special “degenerate” point, called exceptional
point, where two eigenstates coalesce and the Hamilto-
nian becomes defective.

Xu and coworkers introduced a non-Hermitian term
in the Weyl Hamiltonian, which is described by the toy
model

HWER = iγσz + k · σ, (16)

with iγσz denoting the non-Hermitian term93. Here, only
the simplest iγσz is included. One may also incorporate
other terms such as iγxσx and iγyσy, but the Hamil-
tonian can always be transformed into the form of the
Hamiltonian (16).

The eigenvalues of the Hamiltonian are Eθ(k) =√
k2 − γ2 + 2ikzγ =

√
A(k)eiθ/2, where A(k) =√

(k2 − γ2)2 + 4k2
zγ

2 with k2 = k2
x + k2

y + k2
z , and θ is

defined by cos θ = (k2−γ2)/A(k) and sin θ = 2kzγ/A(k).
Since eiθ/2 obtains a minus sign upon θ → θ + 2π, θ can
be used to denote two energy bands. Without γ, there is
a Weyl point at k = 0 and θ can take only two nonequiv-
alent discrete values: 0 and 2π, corresponding to the two
bands. With γ, the single touching point develops into
a ring in the kz = 0 plane characterized by k = |γ|; on
this ring consisting of exceptional points where two eigen-
states coalesce into a single one, both real and imaginary
parts of energy vanish [see Fig. 3]. In this case, θ can
take continuous values from 0 to 4π and a state in one
band ends up with another state in the other band if θ
travels 2π across branch points that the exceptional ring
plays the role of.

To characterize the topology of the Weyl exceptional
ring, we need to find a closed surface in momentum space
enclosing the ring; on the surface, a topological invariant
can be defined by states |un(k)〉, where n and k denote
the band index and momentum. However, for the Weyl
exceptional ring, the energy is multi-valued and we need
to make sure that the energy is continuous on the closed
surface. In complex analysis, we can use the Riemann
surface, a two-dimensional manifold which wraps around
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FIG. 3. (Color online) Real (a) and imaginary parts (b) of energy spectra in the (kx, ky) plane for kz = 0 . Real (c) and
imaginary parts (d) of the Riemann surface with respect to ky and kz for kx = 0. The color indicates the strength of θ mod 4π.
Reproduced from Ref. [93].

the complex plane infinite (noncompact) or finite (com-
pact) number of times, to describe a multi-valued func-
tion [see Fig. 3(c) and (d) for the Riemann surface of
Eθ for kx = 0 , on which the energy is single-valued
and the surface connects the different bands]. We, there-
fore, define the states on the closed surface living on the
Riemann surface, which connects different bands. For
instance, consider a state at k0 with θ0, we can obtain
any other states on the surface S by starting from this
state and travelling on momentum space surface S while
keeping Eθ(k) on the Riemann surface.

The topology of a Weyl exceptional ring can be char-
acterized by both the Chern number and Berry phase.
For the former, there are two approaches to define the
Chern number. One is based on the integral of spin vec-
tor fields198, that is,

N3 =
1

4π

∮
S

dθ ·
(
∂dθ
∂u1
× ∂dθ
∂u2

)
du1du2. (17)

N3 describes the number of times that the spin field
dθ = −

∑
ν=x,y,z〈σν〉eν wraps around a closed sur-

face S parametrized by (u1,u2) in momentum space as
defined above. Here, 〈σν〉 ≡ 〈uθ(k)|σν |uθ(k)〉 with
|uθ(k)〉 being the normalized right eigenstate of H(k)
[i.e., H(k)|uθ(k)〉 = Eθ(k)|uθ(k)〉 and 〈uθ(k)|uθ(k)〉 =
1], and eν is the unit vector along the ν direction.

Another approach to define the first Chern number is
based on the Berry curvature that is,

CRR2 =
1

2π

∮
S

Ωθ
RR(k) · dS, (18)

CLR2 =
1

2π

∮
S

Ωθ
LR(k) · dS. (19)

Here we consider two types of the Berry curvature defined
by the right eigvenstate and the left and right ones. For
the former, ΩRR

θ (k) = i〈∇kuθ(k)| × |∇kuθ(k)〉. For the

latter, ΩLR
θ (k) = i〈∇kũθ(k)| × |∇kuθ(k)〉 = − k̃

2E3
θ(k)

with k̃ = kxex + kyey + (kz + iγ)ez where 〈ũθ(k)| is
the normalized left eigenstate of H [i.e., 〈ũθ(k)|H(k) =
〈ũθ(k)|Eθ(k) and 〈ũθ(k)|uθ(k)〉 = 1]. While the local
Berry curvatures are distinct for these two definitions,

the Chern number obtained by their integral is equal,
that is, N3 = CRR2 = CLR2 = ±1 when the surface S
wraps the Weyl exceptional ring and CRR2 = CLR2 = 0
otherwise.

To understand the physical meaning underlying the
Berry curvature, let us consider a wave packet described
by the center coordinate rc and kc in the real space
and momentum space, respectively. The dynamics of the
wave packet under an external gradient force F is gov-
erned by the following the semiclassical equation (see the
supplemental material in Ref. [93] for derivation),

ṙc = ∂kcĒ(kc)− k̇c ×Ωθ(kc), (20)

~k̇c = F, (21)

where Ē(kc) = Re[Eθ(kc)] + Āθ(kc) · k̇c, Āθ(kc) ≡
Re[Aθ(kc) − Ãθ(kc)] with the Berry connection de-

fined as Aθ(k) = i〈uθ(k)|∂kuθ(k)〉 and Ãθ(k) =
i〈ũθ(k)|∂kuθ(k)〉. Here we suppose that the dynamics
of a system is determined by the right state. It is easily
seen that the Berry curvature contributes a transverse
anomalous velocity, which plays the same role as in the
conventional semiclassical equation in a closed system199.
Different from the closed system, the gradient field mod-
ifies the energy spectrum due to the difference between
left and right eigenstates in a non-Hermitian system. In-
side the Weyl exceptional ring in the kz = 0 plane, the
real part of dispersion vanishes, leading to a zero group
velocity of a wave packet if F is absent.

Besides the Chern number on a closed surface, we
can characterize the Weyl exceptional ring by the Berry
phase, defined by

C1 =

∮
2L
i〈ũθ(k)|∂kuθ(k)〉 · dk. (22)

Compared to the Berry phase defined in the nodal ring
system, where a state can return by travelling across the
ring once29,64,156, in the Weyl exceptional ring, one needs
the trajectory 2L to travel across the ring twice along
the Riemann surface so that the state ends up with the
original state after the entire path [see Fig. 3(c) and (d)].
This definition gives the quantized Berry phase C1 =
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±π, which is in agreement with the result for a single
exceptional point193.

The Weyl exceptional ring possesses both a nonzero
quantized Chern number and a nonzero quantized Berry
phase. This is in stark contrast to the Weyl nodal line,
which exhibits a quantized Berry phase but a zero Chern
number. When the non-Hermitian term is included in
the multiple Weyl point Hamiltonian (6), a more com-
plex structure was found102. To realize a Weyl excep-
tional ring, there are proposals with cold atoms93 and
with photonic systems102. It was also shown that such a
exceptional ring may exist in a disordered type-II Weyl
semimetal97. Recently, a Weyl exceptional ring has been
engineered and observed in an optical waveguide array85.

III. GAPLESS POINTS AND RINGS IN
SUPERFLUIDS

In 1987, Volovik predicted that Weyl points can ex-
ist in quasiparticle spectra of He3 A superfluid phase.
Compared with the strongly correlated system, cold atom
systems provide a flexible and controllable platform with
simple and weak interactions. In this section, we review
the Weyl points, structured Weyl points, nodal rings, and
structured nodal rings in quasiparticle spectra of spin-
orbit coupled superfluids and dipolar superfluids in cold
atoms.

A. Weyl points and structured Weyl points

1. Spin-orbit coupled superfluids

In cold atoms, both 1D and 2D spin-orbit coupling has
been experimentally realized using Raman laser beams
(see review for details146–148). Let us first consider the
Fermi gases with 2D Rashba-type spin-orbit coupling and
an attractive s-wave contact interaction, where the Weyl
points were found17. The system is described by the
following many-body Hamiltonian

HS =

∫
drΨ̂†(r)Hs(p̂)Ψ̂(r)−

U

∫
drΨ̂†↑(r)Ψ̂†↓(r)Ψ̂↓(r)Ψ̂↑(r). (23)

Here Hs(p̂) = εp̂ − µ+α(σ× p̂) · ẑ/~ is the single parti-

cle Hamiltonian with εp̂ = p̂2

2m , m being the atom mass,
µ being the chemical potential and α characterizing the
spin-orbit coupling strength; U describes the strength
of attractive interactions; Ψ̂(r) = [Ψ̂↑(r), Ψ̂↓(r)]T with

Ψ̂†ν(r) [Ψ̂ν(r)] being the fermionic atom creation (anni-
hilation) operator. Using the mean field approximation,
we obtain the 4×4 Bogoliubov-de Gennes (BdG) Hamil-
tonian

HBdG1 = Hs(p̂→ k)τz + ∆0τx + hzσz, (24)

where σν and τν (ν = x, y, z) are the Pauli matrices, act-
ing on the spin and Nambu spaces, respectively, ∆0 =
−U〈Ψ̂↓(r)Ψ̂↑(r)〉 is the order parameter arising from the
pairing instability because of attractive interactions, and
hz denotes the strength of the out-of-plane Zeeman field.
The system possesses an intrinsic particle-hole symmetry,
i.e., Ξ−1HBdG1(k)Ξ = −HBdG1(−k) with Ξ = σyτyK
and K being the complex conjugation (Ξ2 = 1), implying
that if there exist an eigenstate |un(k)〉 with energy be-
ing En(k), there exist another eigenstate Ξ|un(k)〉 whose
energy is −En(k).

The quasiparticle spectrum is given by

Eλ±(k) = λ

√
Λ2
k + α2k2

⊥ + h2
z ± 2

√
h2
zΛ

2
k + α2k2

⊥ξ
2
k,

(25)

with Λ2
k = ξ2

k + |∆0|2, ξk = εk − µ, k⊥ =
√
k2
x + k2

y, and

λ = ± indicating the particle (+) and hole branches (−)
respectively. Clearly, without the spin-orbit coupling and
the Zeeman field (α = hz = 0), Eλk,± = λ|Λk|, which is
the quasiparticle spectrum of a typical BCS superfluid.
To see whether a gap closing point appears, let us com-
pute the product of the two branches of energies, which
gives

(E+
+(k)E+

−(k))2 =
(
h2
z + α2k2

⊥ − Λ2
k

)2
+ 4α2k2

⊥|∆0|2.
(26)

Evidently, when kx = ky = 0 and ξ2
k + |∆0|2 = h2

z,
the gap closes. This occurs when hz ≥ |∆0| for µ >

0. If |∆0| < hz <
√
µ2 + |∆0|2, there are four gap-

less points at kz = kc = ±
√

2m
~2 (µ+

√
h2
z − |∆0|2)

and kz = kc = ±
√

2m
~2 (µ−

√
h2
z − |∆0|2); if hz >√

µ2 + |∆0|2, there are two points at kz = kc =

±
√

2m
~2 (µ+

√
h2
z − |∆0|2)17,21.

Near the zero energy point k = kW with kW =
(0, 0, kc), the energy can be expanded with respect to
δkx, δky and δkz to the first order,

E±− = ± (vx|δkx|+ vy|δky|+ vz|δkz|) +O(δk2), (27)

where δkx, δky and δkz are measured with respect to

k = kW , and vx = vy = α∆0

hz
and vz =

~2|ξkW kc|
m

√
∆2

0+ξ2kW

. The

spectrum is linear along all three directions, indicating
that these gapless points are Weyl points. The anisotropy
of the parameters vx = vy and vz appears because the
spin-orbit coupling only exist in the (x, y) plane. We
note that the linear part of the dispersion along the z
direction vanishes at the transition point where kc = 0
or ξKW

= 0, suggesting the absence of Dirac points that
feature the linear dispersion.

In the presence of an in-plane Zeeman field hxσx, the
Cooper pairs pick up a finite center-of-mass momen-
tum200,201 since the Zeeman field makes the Fermi surface
asymmetric along the y direction202, i.e., the order pa-
rameter takes the form of ∆(r) = ∆0e

iQyy with ~Qy de-
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FIG. 4. (Color online) (a) Quasiparticle energy spectra near a
Weyl point for a fixed kz. The inset plots the energy contours
for E = 0.1EF (red line) and E = −0.1EF (blue line). (b)
Quasiparticle energy spectra in the gapless topological Fulde-
Ferrell phase with respect to ky for a fixed kz under an open
boundary in the x direction. Black and red lines correspond
to the bulk and surface states, respectively. Here, EF and
KF refer to the Fermi energy and Fermi vector, respectively.
Reproduced from Ref. [20].

noting the finite momentum of a Cooper pair (such super-
fluids with a finite center-of-mass momentum of Cooper
pairs is called Fulde-Ferrell superfluids203,204). In this
case, the BdG Hamiltonian becomes

HBdG2 = [εk − µ̄+ α(σ × k) · ẑ] τz + ∆0τx

+ h̄xσx + hzσz + ~2kyQy/2m, (28)

with µ̄ = µ−Q2
y~2/8m and h̄x = hx + αQy/2.

Let us analyze the symmetry of the system. It pos-
sesses a combined symmetry Πy = ΞΘMy = iσyτy, i.e.,
Π−1
y HBdG2Πy = −HBdG2(−ky), where Θ = σyK denotes

the time-reversal operator, and Mν = −iσν , ν = x, y
denote the mirror symmetries, both of which are bro-
ken in the presence of Zeeman fields. At ky = 0,
Π−1
y HBdG2Πy = −HBdG2, indicating that the gapless

points in this plane, if exist, have to be doubly degen-
erate. Numerical calculation further shows that the de-
generate gapless points occur on the line kx = ky = 0.
As a result, Weyl points appear when

h̄2
x + h2

z = (~2k2
z/2m− µ̄)2 + ∆2

0. (29)

From this equation, we obtain the location kW of Weyl
points. Similar to the system with pure hz, when h2

z >
µ̄2 + ∆2

0 − h̄2
x, there are two gapless points and when

∆2
0 − h̄2

x < h2
z < µ̄2 + ∆2

0 − h̄2
x and µ̄ > 0, there are

four zero excitations. The presence of hx decreases both
critical values for hz and when hx = ±∆0−αQy/2, there
are two gapless points at hz = 0. This shows that the
location and number of Weyl points can be controlled by
tuning the Zeeman fields. The linear dispersion along the
kx and ky is shown in Fig. 4 and it is anisotropic along
all three dimensions due to the presence of hx.

In the absence of hx (thus Qy = 0), the
system has an extra symmetry M = ΘMx,
M−1HBdG2M = HBdG2(−ky,±kz) in light of the in-
trinsic symmetry HBdG2 = HBdG2(−kz). We have
(ΠyM)−1HBdG2ΠyM = −HBdG2(ky,±kz) (similar to

the chiral symmetry), which guarantees the double de-
generacy for the zero energy states if exist. However, with
hx, the M symmetry is broken, and the non-degenerate
gapless points can appear when ky 6= 0 (in the ky = 0
plane, the Πy symmetry can still ensure the double de-
generacy). This makes it possible to realize the struc-
tured Weyl point, where there exist gapless points which
are not degenerate. Indeed, when hx is sufficiently large,
a Weyl point develops into a structured Weyl point26

characterized by

HSWP = −αkyσ0 + (ky + γk3
y)σy + kxσx + kzσz. (30)

Compared to the toy model in (5), there appears a higher
order term γk3

y. Its appearance is due to the finite region
in momentum space that the spin-orbit coupling takes
effect in. This means that the quasiparticle spectrum
for large k⊥ in the continuous system without lattices
is almost identical to that without spin-orbit coupling
with two hole bands being occupied, which is impossible
without including the nonlinear term. With this term,
the Fermi surface of the toy model is consistent with
that of the quasiparticle spectrum of the Fulde-Ferrell
superfluids [see Fig. 5]. Fig. 5 also illustrated a very rich
phase diagram of the superfluids.

The structured Weyl point can still be characterized
by the first Chern number defined over a closed surface
with finite energy gap enclosing the structure. However,
it is possible that such a gapped surface does not exist
[see Fig. 5(d) for example]. In this case, we can define the
Chern number over the hole band regardless of whether
it is occupied or not. Actually, we can always define
the Chern number following this method and see that
the Fermi arc appears connecting two doubly degenerate
point of structured Weyl points26,47 [see Fig. 6].

As discussed in the preceding section, a Weyl point can
still be regarded as the topological phase transition point
between topologically nontrivial and trivial insulators in
momentum space. In the spin-orbit coupled superfluid,
the Hamiltonian (28) can be regarded as stacking of 2D
layers in terms of the parameter kz. Each layer corre-
sponds to a Chern insulator with the Chern number de-
fined by

C (kz) =
1

2π

∑
n

∫
dkxdkyΩn(kx, ky), (31)

where n is the index for hole branches, and the Berry
curvature in the z direction can be written as205

Ωn = i
∑
n′ 6=n

[ 〈n|∂kxH|n′〉〈n′|∂kyH|n〉 − (kx ↔ ky)

(Enk − En′k)2

]
(32)

with n′, which is not equal to n, running over the eigen-
states of H. As shown in Fig. 6(a), when −kc < kz < kc
(two Weyl points are located at ±kc), C = 1, implying a
topologically nontrivial phase, and otherwise, C = 0, im-
plying a topologically trivial one. The presence of the
Chern number gives rise to the chiral Majorana edge
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FIG. 5. (Color online) (a) The energy spectrum along ky of a
structured Weyl point described by the Hamiltonian (30) for
kx = kz = 0. (b) Profiles of band occupation in the kx = 0
plane. Fermi surfaces (the zero-energy contours) for a pair
of structured Weyl points in (c) and for a connected struc-
tured Weyl point in (d). Phase diagrams across the BCS-
BEC crossover for a fixed hx in (e) and for a fixed hz in
(f). The inset is the zoomed-in view of the black rectangu-
lar area. WP2: two Weyl points; WP4: four Weyl points;
SWP: structured Weyl point; CSWP: connected structured
Weyl points; DS: disconnected spheres; NS: normal superflu-
ids; NG: normal gases. The phase name with two parts is used
to show the gapless structure for the inner and outer touch-
ing points, respectively, for the superfluids with four touching
points. Adapted from Ref. [26].

bands, which leads to the flat Majorana arc at zero en-
ergy connecting two Weyl points as shown in Fig. 6(b).

When the Weyl point develops into a structured Weyl
point, the definition in Eq.( 31) yields a crossover of the
Chern number from 0 to 1, taking nonquantized val-
ues. The Chern number is not quantized because only
the contribution from the occupied bands is integrated,
i.e., the integral surface is not closed due to the gap-
less structure of a structured Weyl point [see Fig. 5(b)].
In 2D, this effect can manifest as the anomalous Hall
effect in a non-interacting system and as the thermal
Hall effect in superfluids. In an open geometry, chiral
edge states appear. Remarkably, the group velocities are
along the same direction on the opposite surfaces, in con-
trast to the conventional case with opposite direction [see
Fig. 4(b)]. Such a topological gapless phenomenon was

FIG. 6. (Color online) (a) The Chern number in the (kx, ky)
plane for a fixed kz. (b) The density of states with respect to
kz and energy E for ky = 0 with a confinement along the x
direction. The yellow line shows the Fermi arc while the light
blue region represents the bulk states. (c) Integral of Berry
curvatures for the occupied bands in the (kx, ky) plane for a
fixed kz. Viewing kz as a parameter, such an integral shows
the thermal Hall effect in 2D superfluids and the anomalous
Hall effects in 2D non-interacting systems. (d) The density
of states in the (ky, kz) plane for kx = 0 at zero energy for
a connected structured Weyl point, two connected structured
Weyl points. (a-b) are reproduced from Ref. [20]; (c-d) are
adapted from the arXiv version of Ref. [26];

further studied in the 2D spin-orbit coupled Fulde-Ferrell
superfluids206–208. Recently, this 2D topological gapless
phenomenon (termed topological metal) was also found
in a Fulde-Ferrell p+ip superconductor and the nonquan-
tized thermal Hall effects were predicted209.

As we have mentioned, the edge states emerge even
though the system becomes gapless. In this case, we
can define the Chern number by the hole bands instead
of using the occupied bands. From this definition, we
have quantized Chern numbers for the tilted hole and
particle bands and chiral edge mode appears inside their
gap. These surface states lead to the Fermi arc (Majo-
rana zero modes in superfluids) connecting two degen-
erate points even though they have developed into two
structured Weyl points connected together [see Fig. 6(d)].

Such gapless topological Fulde-Ferrell superfluids with
structured Weyl fermions can also exist in the attrac-
tive Fermi gases with the Weyl spin-orbit coupling131.
Since there is no distinction between in-plane and out-of-
plane Zeeman fields, the gapless topological Fulde-Ferrell
phase appears with only one Zeeman field. Furthermore,
spiral Majorana zero modes forwarding on the surfaces
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were found in optical lattices with the Weyl spin-orbit
coupling, where the Weyl points are located at different
energies210.

2. dipolar superfluids

In addition to the spin-orbit coupled superfluids, a 3D
single-component dipolar Fermi gas was proposed to ex-
hibit Weyl points in the quasiparticle spectrum22. Such
a superfluid may be realized in magnetic dipolar atoms
such as 167Er and 161Dy or polar molecules. By applying
an external fast rotating magnetic field, all dipoles are
aligned along the magnetic field direction with the effec-
tive dipole-dipole interactions taking the following form

V (r) =
d2(3 cos2 φ− 1)

2r3
(1− 3 cos2 θ), (33)

with the magnetic dipole moment d, the distance r be-
tween two dipoles, the relative angle θ between r and the
z direction, φ is the angle between the magnetic field and
the z direction. When φ is controlled such that V (r) < 0,
the interaction becomes attractive and the pairing insta-
bility occurs.

This system can be described by the following many-
body Hamiltonian,

HDD=

∫
drΨ̂†(r)(−~2∇2

2m
− µ)Ψ̂(r)−

1

2

∫
dr

∫
dr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r).(34)

Let us define the mean-field order parameter ∆(r− r′) =

〈V (r − r′)Ψ̂(r′)Ψ̂(r)〉. Since the dominant contribution
of the pairing comes from the pairing with orbital an-
gular momentum being 1, let us consider the px + ipy
pairing (which is more stable than px or py phase22) and
the order parameter in momentum space takes the form

∆k = ∆(kρ, kz)e
iφk with kρ =

√
k2
x + k2

y and φk being

the polar angle of the momentum k in the (kx, ky) plane.
Here ∆kρ,kz = −∆−kρ,kz , thus ∆kρ=0,kz = 0. In the mo-
mentum space, the BdG Hamiltonian can be written as

HDD(k) =
1

2

(
ξ(k) ∆(k)

∆(k)∗ −ξ(k)

)
, (35)

where ξ(k) = ~2k2

2m −µ if we do not consider the Hartree-
Fock self-energy, which will not change the physics quali-
tatively. At kρ = 0, ∆ = 0, a degenerate point appears at

kz = ±
√

2mµ/~2. If we simply write ∆k = ∆0(kx+iky),
the linear dispersion is easily seen. Hence, a Weyl point
is achieved in the quasiparticle spectrum of a dipolar su-
perfluid.

FIG. 7. (Color online) (a) The Fermi surface (zero-energy
contour) of a structured Weyl ring. The inset plots the cross
section of a structured Weyl ring. (b) The Fermi surface of
a closed structured Weyl ring for kx > 0. Reproduced from
Ref. [26].

B. Nodal rings

1. Spin-orbit coupled superfluids

Seo and coworkers found that nodal rings can emerge
in quasiparticle spectra of Fermi superfluids with equal
Rashba and Dresshauls spin-orbit coupling132. Consider-
ing this type of spin-orbit coupling, we have the following
BdG Hamiltonian

HBdG = [εk − µ̄+ αkyσx] τz + ∆0τx

+ h̄xσx + hzσz + ~2kyQy/2m, (36)

Similar to the Hamiltonian (28) for the Rashba spin-
orbit coupling, without hx (Qy = 0 when hx = 0),
the system has both the Πy and M symmetry so that
(ΠyM)−1HBdGΠyM = −HBdG. This chiral symmetry
ensures that a gapless point, if exists, is at least doubly
degenerate. Specifically, the quasiparticle spectrum is

Eλ±(k) = λ

√
Λ2
k + α2k2

y + h2
z ± 2

√
h2
zΛ

2
k + α2k2

yξ
2
k,

(37)
leading to

(E+
+(k)E+

−(k))2 =
(
h2
z + α2k2

y − Λ2
k

)2
+ 4α2k2

y|∆0|2.
(38)

Apparently, the nodal rings emerge in the ky = 0 plane
described by ξ2

k + |∆0|2 = h2
z (i.e., k2

x + k2
z = 2m

~2 (µ ±√
h2
z − |∆0|2)), showing that there is one ring when h2

z >
µ2 + |∆0|2, and two rings when |∆0|2 < h2

z < µ2 + |∆0|2
and µ > 0.

With the in-plane Zeeman field hxσx, the 3D su-
perfluids become Fulde-Ferrell type with nonzero Qy

26.
This term breaks the M symmetry, so that the gap-
less point does not have to be doubly degenerate. How-
ever, the system still respects the Πy symmetry, mean-
ing that in the ky = 0 plane any zero energy states
are still at least doubly degenerate. Furthermore, be-
cause of the rotational symmetry with respect to ky
[HBdG = HBdG(k2

x + k2
z , ky)], a degenerate ring can ap-

pear in the ky = 0 plane. Additionally, it is possible for
the non-degenerate gapless points to appear away from
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FIG. 8. (Color online) The density of states of the superfluids
with a Weyl nodal ring in (a) and a structured Weyl nodal
ring in (b) under an open boundary along the y direction.
Adapted from the arXiv version of Ref. [26].

the ky = 0 plane. Indeed, the structured Weyl ring was
found, which is described by the effective Hamiltonian26

HSWR = −αkyσ0 + (ky + γk3
y)σy + (k2 −m2)σz (39)

with nonzero m. See Fig. 7 for the gapless structure. The
ring is protected by the PT symmetry [ΘPT = σzK for
the model (39) and ΘPT = K for the BdG Hamiltonian
(36)] and the Berry phase for a hole band enclosing the
ring has to be 0 or π.

In an open geometry, Majorana flat bands occur not
only in the case with hx = 0 for traditional nodal rings,
but also in the case with hx 6= 0 for structured nodal
rings (see Fig. 8), as the topology is fully determined
by the hole band irrelevant of its occupation. Moreover,
more than two nodal rings were found in the quasiparti-
cle spectrum of Fermi superfluids, when attractive atoms
were loaded into an optical lattice with Weyl nodal rings
in the single particle spectrum155

IV. GAPLESS POINTS AND RINGS IN
NON-INTERACTING ULTRACOLD ATOMIC

GASES

Compared with a superfluid, a non-interacting sys-
tem is easier to control and probe in cold atom systems.
Hence, similar to searching for specific solid-state ma-
terials with topological gapless band structures, in cold
atoms, there has been considerable interest in looking for
experimental schemes to realize these topological gapless
bands in non-interacting cold atom systems. Since the in-
teraction can be readily tuned by Feshbach resonances in
cold atoms152, non-interacting systems can be achieved
there. Further, the effects of interactions can be studied
in the gapless system, when interactions are turned on.
In this section, we summarize a number of experimental
proposals in cold atoms for realization of Weyl points,
structured (type-II) Weyl points, nodal rings and Weyl
exceptional rings.

A. Weyl points

1. Weyl spin-orbit coupling

Spin-orbit coupling, the interaction between spin and
orbital degree of freedom, plays a key role in many topo-
logical phenomena, such as topological insulators211,212,
anomalous and spin Hall effect205, and Majorana zero
modes213, etc. In solid-state materials, electrons nat-
urally experience the spin-orbit coupling as an electron
moves in an internal electric field arising from the atomic
potential and the crystal field. For cold atoms, they
are neutral and do not experience any electric and mag-
netic fields. However, since atoms can interact with laser
beams, one can engineer these gauge fields including the
spin-orbit coupling using laser beams. To date, both 1D
and 2D spin-orbit coupling has been engineered in cold
atoms 119,120,126,127,130,133–145.

Besides the 1D and 2D spin-orbit coupling, an exper-
imental proposal to implement the 3D Weyl spin-orbit
coupling was reported153, which is described by the ef-
fective Hamiltonian

H =
p2

2m
+ λp · σ (40)

with λ being a real parameter and m being the mass
of atoms. Since σ are defined in the hyperfine levels,
λp · σ refers to the 3D Weyl spin-orbit coupling. This
term certainly describes a Weyl point. Notice that there
is only one single Weyl point, which is possible as the
system is in a free space without any lattice.

To realize the 3D Weyl spin-orbit coupling, a 4-level
atom with states |1〉, |2〉, |3〉 and |4〉 coupled by Raman
laser beams is considered; the system is described by the
Hamiltonian

Hal =
∑
jk

Ωjk|j〉〈k|, (41)

where Ωjk = Ω(jk)exp[i(kjk ·r+φjk)] with the transferred
momentum kjk = kj − kk and kj being the wave vector
of laser beams, and φik is the coupling phase. In atom
87Rb, these levels can be chosen as: |1〉 = |F = 2,mF =
0〉, |2〉 = |F = 1,mF = 1〉, |3〉 = |F = 1,mF = 0〉
and |4〉 = |F = 2,mF = 1〉. The coupling strength
Ω(jk) is chosen such that Ω(jk) = Ω(1) for k = j + 1 and
Ω(jk) = Ω(2) for k = j + 2. The momentum vectors are
taken as

kj = κ⊥(ex cosβj − ey sinβj)− κ||(−1)jez, (42)

as shown in Fig. 9(b).
The Hamiltonian can be transformed into a spatial in-

dependent form by the transformation |j〉 → eikj ·r|j〉,
yielding

H =
∑
j

(p− kj)
2

2m
|j〉〈j|+Hal, (43)
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FIG. 9. (Color online) (a) The laser configuration for the 3D
Weyl spin-orbit coupling, where four levels are coupled using
Raman laser beams. (b) The wave vector configuration of
laser beams. (c) The phase is is chosen as Φi =

∑
k 6=i φk,k+1 =

π/2mod2π. Reproduced from Ref. [153].

where the atom-laser coupling

Hal = Ω(1)
4∑
j=1

(
eiφj,j+1 |j + 1〉〈j|+H.c.

)
+Ω(2)

2∑
j=1

(
eiφj,j+2 |j + 2〉〈j|+H.c.

)
(44)

with the indices taking modulo 4.
By choosing a phase φj,j+1 = π/4 and φj,j+2 = (j −

1)π, the Hamiltonian Hal has a symmetry QHalQ
−1 =

Hal(j → j + 2) = Hal. Since Q2 = 1, one can write the
Hamiltonian in block form in the eigenstates of Q, that
is, {|a+〉, |b+〉, |a−〉, |b−〉} with |a±〉 = 1√

2
(|1〉 ± |3〉) and

|b±〉 = 1√
2
(|2〉 ± |4〉). The block Hamiltonian is

H̃al =

(
Ω(2)σz +

√
2Ω(1)σx 0

0 Ω(2)σz +
√

2Ω(1)σy

)
,

(45)
where the upper and lower block matrices correspond to
Q = 1 and Q = −1, respectively. The eigenenergy is

Eal = ±
√
|Ω(2)|2 + 2|Ω(1)|2. Since the ground state is

doubly degenerate, one can obtain an effective Hamilto-
nian by projecting

∑
j p ·Kj |j〉〈j| onto the ground state

subspace of Hal, leading to the effective Hamiltonian (40)
with λ = κ⊥ cos(2θ)/(2m) when κ⊥/κ|| = Ω(2)/(2Ω(1)).

2. Weyl semimetals with laser-assisted tunneling

The scheme introduced in Ref.[153] can realize a metal
phase with a single Weyl point in the spin space with fi-
nite density of states, instead of a semimetal phase with
zero density of states. In 2015, Dubček and coworkers
proposed a distinct experimental scheme to engineer a
Weyl semimetal with ultralcold atomic gases via laser-
assisted tunneling154. The approach is an extension of
their experimental realization of the 2D Harper Hamil-
tonian for the flux per plaquette being 1/2115, that is,

Hα=1/2(k) = −2 [Jy cos(kya)σx +Kx sin(kxa)σy] . (46)

There are two Dirac points in the Hamiltonian. Here, σν
(ν = x, y) are defined in the pseudospin space consisting
of two lattice sites constituting a unit cell since the flux
per plaquette is 1/2 [see Fig. 10(a)]. When the third di-
rection (z direction) is included, if the hopping along this
direction is the same for the two sites, the Hamiltonian
reads

HN (k) =−2 [Jy cos(kya)σx +Kx sin(kxa)σy

+Jz cos(kza)σ0] . (47)

Clearly, there are no Weyl points in this Hamiltonian.
However, if A and B sites have the opposite tunneling
along the z direction as shown in Fig. 10(b-c), the Hamil-
tonian becomes

HW (k) =−2
[
Jy cos(kya)σx +Kx sin(kxa)σy

−Kz cos(kza)σz
]
. (48)

This Hamiltonian exhibits four Weyl points at
(kx, ky, kz) = (0,±π/2a,±π/2a) in the first Brillouin
zone as shown in Fig. 10(d). The Fermi arc appears when
the open boundaries are applied along the (x− y) direc-
tion.

To engineer the Hamiltonian, an experimental setup
with cold atoms was introduced154. In this scheme, iden-
tical sufficiently strong linear gradient potential along
the x and z direction are applied so that the tunnel-
ing is prohibited along these two directions. Mean-
while, two far-detuned Raman laser beams are used to
restore the hopping along these directions. For the reso-
nant case (the frequency difference between the two laser
beams equals the on-site energy tilt between two nearest-
neighbor sites), the Hamiltonian is given by

H3D = −
∑
m,n,.

(Kxe
−iΦm,n,l â†m+1,n,lâm,n,l + (49)

Jyâ
†
m,n+1,lâm,n,l +Kze

−iΦm,n,l â†m,n,l+1âm,n,l +H.c.),
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(a) (b) (c) (d)

FIG. 10. (Color online) The hopping along the (x, y) plane (a), the (x, z) plane (b-c), where dashed and solid lines describe the
hopping with an extra phase being π and 0, respectively. (d) First Brillouin zone with ± denoting the Weyl points. Adapted
from Ref. [154].

where âm,n,l (â†m,n,l) is the annihilation (creation) op-

erator on the site (m,n, l), and Φm,n,l = δk · Rm,n,l =
mΦx+nΦy + lΦz are the phases introduced by the laser-
assisted tunneling. Here, δk = k1 − k2 with k1 and k2

being the wave vectors of two Raman laser beams, so the
phase can be controlled by tuning the relative orientation
between two laser beams. If the direction is chosen such
that (Φx,Φy,Φz) = π(1, 1, 2) giving Φm,n,l = (m + n)π
(modulo 2π), the scheme leads to the Hamiltonian (48).
Specifically, the hopping along the x direction is stag-
gered with 1 and −1, respectively [see Fig. 10(a)], leading
to A-B sublattice structure. The hopping along the z di-
rection is Kz and −Kz for A-B sublattices, respectively.

3. Weyl points, structured (type-II) Weyl points and Weyl
spin-orbit coupling in optical lattices

The proposals discussed above realize only the tra-
ditional (type I) Weyl point153,154. In 2016, Xu and
Duan proposed another experimental scheme for real-
izing both traditional (type-I) and structured (type-II)
Weyl points29, based on an experimental setup used for
implementing a 2D spin-orbit coupling in the hyperfine
level space119,214. In this scheme, the Lifshitz phase tran-
sition from traditional (type-I) to structured (type-II)
Weyl points can be readily achieved by controlling a two-
photon detuning. In addition, since the Weyl point is re-
alized in the hyperfine level space, the scheme naturally
realizes the 3D Weyl spin-orbit coupling.

In this proposal, two pairs of Raman laser beams
are employed to produce the Weyl point (or 3D
Weyl spin-orbit coupling). Each pair of Raman
laser beams has a pair of Rabi frequencies [Ω1 =
Ω10 sin(kLxrx)e−ikLzrz/2,Ω2 = Ω20 cos(kLyry)eikLzrz/2]

and [Ω′1 = Ω10 sin(kLyry)e−ikLzrz/2,Ω′2 =

iΩ20 cos(kLxrx)eikLzrz/2], respectively [see Fig. 11(a-c)

for laser configurations]. This gives us the Hamiltonian

H ′ =
p2

2m
+
∑
ν=x,y

Vν sin2(kLνrν) + hzσz + VSO (50)

with the momentum operator p = −i~∇, the mass of
atoms m, the Zeeman field hz and the optical lattice
strength Vν (ν = x, y) with the lattice constant being
aν = π/kLν along the ν direction. Here, VSO character-
izes the laser-induced spin-orbit coupling, that is,

VSO = ΩSO(Mx + iMy)eikLzrz | ↑〉 〈↓|+ H.c. (51)

with Mx = sin(kLxrx) cos(kLyry), My =
sin(kLyry) cos(kLxrx), and ΩSO = Ω∗10Ω20/∆e, where
∆e is the detuning. Applying a unitary transformation
with U = e−ikLzrz/2| ↑〉〈↑ | + eikLzrz/2| ↓〉〈↓ | gives us a
position independent Hamiltonian H = UH ′U−1, that
is,

H =
~2k2

z

2m
+ h̃zσz +H2D, (52)

where kz = pz/~, h̃z = ~2kLzkz/(2m) + hz, and the
Hamiltonian H2D in the (x, y) plane is

H2D =
∑
ν=x,y

[
p2
ν

2m
+ Vν sin2(kLνrν)

]
+ [ΩSO(Mx + iMy)| ↑〉 〈↓|+ H.c.] . (53)

H2D is the Hamiltonian that characterizes a Chern in-
sulator, which is a simple extension of the Hamiltonian
proposed in Ref.[214] and has recently been experimen-
tally implemented120.

The tight-binding Hamiltonian is given by

HTB=
∑
kz

∑
x

[h̃z ĉ
†
kz,x

σz ĉkz,x +
∑
ν=x,y

(−tν ĉ†kz,xĉkz,x+gν

+(−1)jx+jy tSOν ĉ
†
kz,x

σν ĉkz,x+gν + H.c.)] +Hz,(54)

where ĉ†kz,x = ( ĉ†kz,x,↑ ĉ†kz,x,↓ ) with ĉ†kz,x,σ (ĉkz,x,σ) be-

ing the creation (annihilation) operator and x = jxaxex+
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FIG. 11. (Color online) Sketch of laser configurations for realizing the Hamiltonian (50) (a)(b) and a simpler one (a)(c). In the
scheme, the magnetic field is along the y direction and the frequency of the laser beams for Ω1 (Ω2) is the same as the laser
beam for Ω′1 (Ω′2). δ denotes the two-photon detuning. The orientation of linear polarization of laser beams is denoted by the
double arrows. (d) The crystal structure in the (x, y) plane with A and B sites in each unit cell. (e) The first Brillouin zone
in the (x, y) plane and the location of Weyl points denoted by the green and red circles. b1 and b2 denote the reciprocal unit
vectors. (f)(g) Energy spectra around a type-I and structured (type-II) fourfold degenerate point as a function of (ky, kz) for
kxa = 0. (h)(i) Energy spectra as a function of kz for ky = 0 in an open geometry along the x direction, illustrating the surface
states (denoted by the black lines) connecting two Weyl points in the cases with type-I or structured (type-II) Weyl points.
Adapted from Ref. [29].

jyayey, gν = aνeν , Hz =
∑
kz

∑
x

~2k2z
(2m) ĉ

†
kz,x

ĉkz,x, and tν
and tSOν denote the tunneling and spin-orbit coupling
strength along the ν direction, respectively.

To see that the Hamiltonian can host Weyl points, let
us apply the transformation (−1)jx+jy ĉkz,x,↑ → âkz,x,↑
and ĉkz,x,↓ → âkz,x,↓, resulting in a simpler Hamiltonian,

HTB =
∑
kz

∑
x

[
h̃zâ
†
kz,x

σzâkz,x + (
∑
ν=x,y

tν â
†
kz,x

σzâkz,x+gν

−itSOxâ†kz,xσyâkz,x+gx − itSOyâ
†
kz,x

σxâkz,x+gy + H.c.)
]

+Hz(ĉkz,x → âkz,x), (55)

where â†kz,x = ( â†kz,x,↑ â†kz,x,↓ ). The Hamiltonian in
momentum space takes the form

H(k) = dxσy + dyσx + (h̃z + ht)σz +
~2k2

z

2m
, (56)

where ht = 2
∑
ν=x,y tν cos(kνaν), dx = 2tSOx sin(kxax)

and dy = −2tSOy sin(kyay). Clearly, Weyl points ap-

pear when dx = 0, dy = 0 and ht + h̃z = 0. This re-
quires that (kxax, kyay) = (0, 0), (0, π), (π, 0), (π, π). For
tx = ty, at (kxax, kyay) = (0, π), (π, 0) , the two Weyl
points are both located at kW0

z az = −2mπhz/(~2k2
Lz).

When (kxax, kyay) = (0, 0) or (π, π), there appear two
degenerate points at kW±z az = 2mπ(±4t̄ − hz)/(~2k2

Lz)

with t̄ = (tx + ty)/2. Because of the presence of
~2k2z
2m ,

near a Weyl point, e.g., kW0 = (0, π/ay, k
W0
z ),

H(q) ∼ (v0qz + vzqzσz + vxqxσx + vyqyσy), (57)

where vx = 2tSOxax, vy = −2tSOyay, vz = ~2kLz/2m,
v0 = −2hz/kLz, and qν (ν = x, y, z) is measured with re-
spect to kW0. When |hz| > ~2k2

Lz/(4m) (i.e., |v0| > vz),
the Weyl point morphs into a structured one (type-II)
as shown in Fig. 11(g). Since v0 is controlled by tuning
the two-photon detuning δ = 2hz, the Lifshitz transi-
tion between the conventional (type-I) Weyl point and
structured (type-II) Weyl points can be achieved. No-
tice that the transformation enlarges the Brillouin zone.
In the original Hamiltonian with the A-B sublattice [see
Fig. 11(d)], there are actually two Weyl points and one
fourfold degenerate point consisting of two Weyl points
with the same topological charge [see Fig. 11 (e)]. It is
also important to note that the Weyl points correspond to
the Weyl spin-orbit coupling, given that σν (ν = x, y, z)
act on the hyperfine levels.

Under open boundaries along the x direction, there ap-
pear surface states (Fermi arc) inside the gap connecting
the fourfold degenerate point at the center to the other
two Weyl points on two sides [see Fig. 11 (h-i)]. This hap-
pens for both traditional (type-I) and structured (type-
II) Weyl points.

Recently, several other schemes have been proposed
to realize Weyl points and 3D Weyl spin-orbit coupling
via Raman laser beams35,37. Other proposed schemes
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(c)

FIG. 12. (Color online) (a-b) Sketch of laser configurations
for realizing the Hamiltonian (14) with Dirac and Weyl nodal
rings. Each Raman laser beam is generated by the interfer-
ence between two plane wave lasers [see (b)]. (c) The first
Brillouin zone of the system and one Dirac (red ring) and two
Weyl nodal rings (two blue rings) appearing at the kx = 0
plane. Adapted from Ref. [155].

for realizing Weyl points in non-interacting cold atoms
include stacking 2D lattice layers with checkerboard-
patterned staggered fluxes18, stacking one-dimensional
Aubry-Andre-Harper models23, and shaking a face-
centered-cubic optical lattice34. There is also a proposal
for realizing a 3D Dirac semimetal with cold atoms38.

B. Nodal rings and experimental realization

For the nodal rings, Xu and Zhang proposed a model
described by the Hamiltonian (14) and an experimen-
tal setup for their realization with cold atoms155. The
model hosts a Dirac ring when hz = 0 and one or
two Weyl nodal rings when hz 6= 0 [see Fig. 12(c)].
To engineer such a Hamiltonian with cold atoms, two
independent sets of Raman laser beams are proposed
to couple two hyperfine states (see laser configurations
in Fig. 12(a-b)). One pair of Raman laser beams
has the Rabi frequencies Ω1 = Ω10 cos(kRyry)e−ikRzrz/2

and Ω2 = iΩ20 sin(kRxrx)eikRzrz/2, and the other
pair has Ω′1 = Ω′10 cos(kRyry)eikRzrz/2 and Ω′2 =

iΩ′20 sin(kRxrx)e−ikRzrz/2, respectively. These Raman
laser beams produce the spin-dependent lattice with
ΩSO = 2Ω and aν = π/kRν with Ω = |Ω10Ω20

∆e
| in Eq. (14)

when Ω10 = Ω′10 and Ω20 = Ω′20 as well as the spin-
independent lattice along the x and y directions due to
the stark effects. In addition, another stronger optical
lattices along the x direction is required. The Zeeman
field is hz = δ/2, where δ is the two-photon detuning.
This shows that the Zeeman field can be readily tuned
by controlling the two-photon detuning.

Recently, Song and coworkers theoretically proposed
a simpler scheme and experimentally engineered a setup
for observing a nodal line with cold atoms130. Instead
of engineering the σz term by optical lattices, they im-
pose the off-diagonal spin-dependent lattice with an extra
phase along the z direction, which produces a σz term29.
Specifically, the proposed Hamiltonian is given by

H =
p2

2m
− Vx cos2(kLxx)− Vy cos2(kLyy) +[

ΩSO cos(kLxx)ei(kLzz+kLyy)| ↑〉〈↓ |+H.c.
]
. (58)
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FIG. 13. (Color online) (a) Weyl exceptional rings in the
Hamiltonian (60). Real part (b), imaginary part (c) and ab-
solute values (d) of the energy spectrum as a function of kz
for ky = 0 with an open boundary along the x direction.
γ = 0, 0.35J, 0.7J, 0.86J are plotted as blue, green, red and
yellow lines, respectively. Reproduced from Ref. [93].

And the Hamiltonian in momentum space is

H(k) =
p2
z

2m
+

(
pz

~kLz
2m

+ hz − ht
)
σz − dxσy (59)

with ht = 2
∑
ν=x,y tν cos(kνaν). Clearly, the nodal ring

appears as dx = 0 and pz
~kLz
2m + hz − ht = 0. Because of

the presence of
p2z
2m , the nodal ring is not located at the

same energy. Also, due to this term, one can realize the
structured (type-II) nodal ring by tuning the hz. The
Hamiltonian is easy to realize and only requires the cou-
pling of a stationary wave Raman laser beam with Rabi
frequency being Ω0 cos(kLxx) and a plane wave Raman
laser beam with Rabi frequency being Ω′0e

i(kLzz+kLyy),
respectively. Song and coworkers experimentally engi-
neered this model and probed the nodal ring by measur-
ing the average spin polarization over kz for a different
parameter130.

C. Weyl exceptional rings

To realize a Weyl exceptional ring in cold atom sys-
tems, one need to engineer a non-Hermitian term rep-
resenting a particle gain or loss in a system with Weyl
points. For the Weyl metal described by the Hamilto-
nian (54), such a decay term representing an atom loss
−2iγ for spin-down atoms may be produced by applying
a resonant optical beam to drive atoms in the spin-down
state out of a weak trap93, which have been realized in
an experiment with 6Li atom gases80. Another consid-
ered approach is using a radio frequency pulse to excite
atoms in the spin-down level to another irrelevant level
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|3〉 so that an effective decay for spin-down atoms is gen-
erated when atoms in |3〉 experience a loss by applying
an antitrap93.

The resulted Hamiltonian is given by

H =
∑
kz,x

[
(h̃z + iγ)ĉ†kz,xσz ĉkz,x +

∑
ν=x,y

(−Jĉ†kz,xĉkz,x+aeν

+(−1)jx+jyJSOν ĉ
†
kz,x

σν ĉkz,x+aeν +H.c.) + h0

]
,(60)

where γ denotes the decay strength, and h0 = [−iγ +

~2k2
z/(2m)]ĉ†kz,xĉkz,x. For other terms, see the descrip-

tion for the Hamiltonian (54). In momentum space, the
Hamiltonian reads

H(k) = (h̃z + iγ)σz − htτx + τy(−bxσx + byσy), (61)

where without loss of generality the spin-independent
term h0 is neglected. It gives the eigenvalues Eθ±(k) =√
b2± − γ2 + 2ibz±γ =

√
A±(k)eiθ±/2, where A±(k) =√

(b2± − γ2)2 + 4b2z±γ
2 with b2± = b2x+b2y+b2z± and bz± =

±ht+h̃z, and θ± are defined by cos θ± = (b2±−γ2)/A±(k)
and sin θ± = 2bz±γ/A±(k). The four Weyl exceptional
rings appear when bz± = b2±−γ2 = 0, as shown in Fig. 13
(a).

Under open boundary conditions along the x direc-
tion, zero energy surface states are observed even with
the non-Hermitian term [see Fig. 13(b-d)]. While the en-
ergy becomes complex for the non-Hermitian system, for
ky = 0, only the states with zero absolute energy are as-
sociated with the surface states, which connect the Weyl
exceptional ring at the center with the rings on the left
and right sides (h0 has been neglected for clarity). These
states are doubly degenerate and are located on the left
and right surface, respectively. As the decay increases,
the range of the surface states along kz shrinks due to
the structure developed along the kz direction.

V. OTHER TOPOLOGICAL GAPLESS
MATTERS IN COLD ATOMS

Gapless points not only can occur in the two level
space, but also appear in the space with more than two
levels. Recently, 3D high spin fermions with higher Chern
numbers have been predicted215,216. Such fermions are
described by H = k ·S with S being angular momentum
matrices corresponding to high spins. For triply degener-
ate points, Zhu and coworkers217 constructed a 3D tight-
binding model and proposed an experimental scheme to
realize the triply degenerate points in cold atom systems.
Hu and coworkers218 predicted a new triply degenerate
point with different topological charges induced by the
spin-tensor-momentum coupling and reported an exper-
imental scheme for their realization in cold atom optical
lattices. Fulga and coworkers219 reported a proposal for
realizing topologically protected crossings of three energy

bands on a 3D Lieb lattice. Further, Mai and cowork-
ers220 proposed a double triple point emerging in topo-
logical metal bands as a spin-1 generalization of double-
Weyl points.

Moreover, cold atoms can be used to mimic the gap-
less phenomena in higher than three dimensions, such
as Weyl surfaces and Yang monopoles221,222 in five di-
mensions and 4D nodal rings36 in four dimensions. In
particular, recently, Sugawa and coworkers129 reported
their measurement of the second Chern number of the
Yang monopole using the hyperfine levels of atomic Bose-
Einstein condensates.

VI. SUMMARY AND PERSPECTIVES

Over the past decade, cold atoms have witnessed a
rapid development in simulating topological matters. A
number of topological phenomena that have been long-
sought after in solid-state materials and particle physics
have been experimentally realized in cold atoms, such
as the Haldane model116, the Thouless pump121,122, the
4D quantum Hall effect123,223 and the Yang monopole129.
New topological gapless phenomena have also been pre-
dicted in cold atom systems, such as structured (type-
II) Weyl points26 and Weyl exceptional rings93. To
date, there have been a number of experimental propos-
als for realizing Weyl points, structured (type-II) Weyl
points, Dirac points, nodal rings, structured (type-II)
nodal rings, Weyl exceptional rings, triple points and
other 3D gapless phenomena with cold atoms. In partic-
ular, a recent experiment has made a significant break-
through for engineering and observing the nodal line in
cold atoms129.

In addition, there has been remarkable progress in en-
gineering both 1D and 2D spin-orbit coupling in Fermi
gases, which paves the way for observing these 3D gapless
phenomena in qusiparticle spectra of spin-orbit coupled
Fermi superfluids. However, it still remains a significant
challenge for achieving the spin-orbit coupled Fermi su-
perfluids due to the heating issue in alkali atoms while
producing the spin-orbit coupling, which makes the suf-
ficient low temperature required for superfluidity hard
to reach147. Remarkably, Ye and coworkers recently re-
ported the experimental realization of the spin-orbit cou-
pling in an optical clock using a direct optical clock tran-
sition between two electric orbital states in 87Sr atoms,
instead of using the Raman coupling which leads to heat-
ing. Since this platform is not plagued by the heating is-
sue, it may be promising for achieving spin-orbit coupled
superfluids.

For non-interacting systems, the challenge does not
generally lie in heating. Another more significant chal-
lenge (for both non-interacting systems and superfluids)
arises. That is how to measure the Weyl points and nodal
rings. Generically, one can measure the spectrum using
momentum-resolved radio-frequency spectroscopy, simi-
lar to the ARPES in solid states. However, in 3D, such a
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measurement involves stacking the information of differ-
ent layers while making time-of-flight measurement; such
stacking would smear out the single layer information and
raise a significant challenge for reconstructing the spec-
trum. Certainly, for a specific system, one may design
some special technique to reconstruct the information,
for example, in the experimental observation of a nodal
line, the average spin polarization over kz for a different
parameter can reflect the polarization for different kz.
Another possible choice is to measure the Fermi arc for
Weyl semimetals and drumhead surface states for Weyl
nodal semimetals by loading atoms into a box potential.
For an ideal semimetal, since only Fermi arc or flat sur-
face states contribute nonzero density of states at zero
energy, this allows us to obtain the spectrum of surface

states without the bulk effects. For a Weyl semimetal,
one may also consider measuring the topological anoma-
lous Hall effect38.
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Soljačić, and H. Buljan, Phys. Rev. Lett. 114, 225301
(2015).

26 Y. Xu, F. Zhang, and C. Zhang, Phys. Rev. Lett. 115,
265304 (2015).

27 W.-Y. He, S. Zhang, and K. T. Law, Phys. Rev. A 94,
013606 (2016).

28 Y.-Q. Wang and X.-J. Liu, Phys. Rev. A 94, 031603(R)
(2016).

29 Y. Xu and L.-M. Duan, Phys. Rev. A 94, 053619 (2016).
30 S. V. Syzranov, M. L. Wall, B. Zhu, V. Gurarie and A.

M. Rey, Nat. Commun., 7, 13543 (2016).
31 L. Lepori, I. C. Fulga, A. Trombettoni, M. Burrello, Phys.

Rev. B 94, 085107 (2016).
32 L. Lepori, I. C. Fulga, A. Trombettoni, and M. Burrello,

Phys. Rev. A 94, 053633 (2016).
33 X.-Y. Mai, D.-W. Zhang, Z. Li, and S.-L. Zhu, Phys. Rev.

A 95, 063616 (2017).
34 L.-J. Lang, S.-L. Zhang, K. T. Law, and Q. Zhou, Phys.

Rev. B 96, 035145 (2017).
35 B.-Z. Wang, Y.-H. Lu, W. Sun, S. Chen, Y. J. Deng, and

X.-J. Liu, Phys. Rev. A 97, 011605(R) (2018).
36 Y.-B. Yang, L.-M. Duan, and Y. Xu, Phys. Rev. B 98,

165128 (2018).
37 X. F. Zhou, X.-W. Luo, G. Chen, S. T. Jia and C. Zhang,

arXiv:1804.09282(2018).
38 Y. Xu and Y. Hu, arXiv:1807.09732 (2018).
39 L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljac̆ić, Nat.

photon. 7, 294 (2013).
40 M. Xiao, W.-J. Chen, W.-Y. He, and C. T. Chan, Nat.

Phys. 11, 920 (2015).
41 D. Z. Rocklin, B. G. Chen, M. Falk, V. Vitelli, and T. C.

Lubensky, Phys. Rev. Lett. 116, 135503 (2016).
42 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao,

J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen,
Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5,
031013 (2015).

43 S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S.
M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A.
Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z.
Hasan, Science 349, 613 (2015).

mailto:yongxuphy@tsinghua.edu.cn
http://arxiv.org/abs/1804.09282
http://arxiv.org/abs/1807.09732


20

44 L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos,
and M. Soljačić, Science 349, 622 (2015).

45 W.-J. Chen, M. Xiao, and C. T. Chan, Nat. Commun. 7,
13038 (2016).

46 B. Yang, Q. H. Guo, B. Tremain, R. J. Liu, L. E. Barr,
Q. H. Yan, W. L. Gao, H. C. Liu, Y. J. Xiang, J. Chen,
C. Fang, A. Hibbins, L. Lu, and S. Zhang, Science 359,
1013 (2018).

47 A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer,
X. Dai, and B. A. Bernevig, Nature 527, 495 (2015).

48 E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and
M. Udagawa, Phys. Rev. Lett. 114, 016806 (2015).

49 Z. Yu, Y. Yao, and S. A. Yang, Phys. Rev. Lett. 117,
077202 (2016).

50 M. Udagawa and E. J. Bergholtz, Phys. Rev. Lett. 117,
086401 (2016).

51 T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Phys.
Rev. Lett. 116, 236401 (2016).

52 A. A. Zyuzin and R. P. Tiwari, JETP Lett. 103, 717
(2016).

53 K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang,
M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A.
Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H.
Zhang, X. Chen, and S. Zhou, Nat. Phys. 12, 1105 (2016).

54 L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M. T.
Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N.
Trivedi, and A. Kaminski, Nat. Mater. 15, 1155 (2016).

55 A. Liang, et al., arXiv:1604.01706 (2016).
56 A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò,
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Soljačić, and H. Buljan, Phys. Rev. Lett. 114, 225301
(2015).

155 Y. Xu and C. Zhang, Phys. Rev. A 93, 063606 (2016).
156 D.-W. Zhang, Y. X. Zhao, R.-B. Liu, Z.-Y. Xue, S.-L.

Zhu, and Z. D. Wang, Phys. Rev. A 93, 043617 (2016).
157 A. M. Turner and A. Vishwanath, Topol. Insul. 6, 293

(2013).
158 P. Hosur and X. Qi, C.R. Phys. 14, 857 (2013).
159 O. Vafek, and A. Vishwanath, Annu. Rev. Condens. Mat-

ter Phys. 5, 83 (2014).
160 D. E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014).
161 T. Wehling, A. M. B. Schaffer, and A. V. Balatsky, Adv.

Phys. 63, 1 (2014).
162 W. W. Krempa, G. Chen, Y. B. Kim, and L. Balents,

Annu. Rev. Condens. Matter Phys. 5, 57 (2014).
163 A. Burkov, J. Phys. Condens. Matter 27, 113201 (2015).
164 A. P. Schnyder and P. M. R. Brydon,J. Phys. Condens.

Matter 27, 243201 (2015).
165 M. Z. Hasan, S. Y. Xu, and G. Bian, Phys. Scr. 164,

014001 (2015).
166 E. Witten, La Rivista del Nuovo Cimento 39, 313 (2016).
167 H. Weng, X. Dai, and Z. Fang,J. Phys. Condens. Matter

28, 303001 (2016).
168 A. Bansil, H. Lin, and T. Das,Rev. Mod. Phys. 88, 021004

(2016).

http://arxiv.org/abs/1805.09632
http://arxiv.org/abs/1806.06566
http://arxiv.org/abs/1808.06162
http://arxiv.org/abs/1810.09231
http://arxiv.org/abs/1901.08060
http://arxiv.org/abs/1810.09228
http://arxiv.org/abs/1808.07428


22

169 A. A. Burkov, Nat. Mater. 15, 1145 (2016).
170 S. Jia, S. Y. Xu, and M. Z. Hasan, Nat. Mater. 15, 1140

(2016).
171 B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys.

8, 337 (2017).
172 M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang,

Annu. Rev. Condens. Matter Phys. 8, 289 (2017).
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