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Abstract— This paper considers time-average optimization,
where a decision vector is chosen every time step within a
(possibly nonconvex) set, and the goal is to minimize a convex
function of the time averages subject to convex constraints on
these averages. Such problems have applications in networking
and operations research, where decisions can be constrained
to discrete sets and time averages can represent bit rates,
power expenditures, and so on. These problems can be solved
by Lyapunov optimization. This paper shows that a simple
drift-based algorithm, related to a classical dual subgradient
algorithm, converges to an ǫ-optimal solution within O(1/ǫ2)
time steps. However, when the problem has a unique vector
of Lagrange multipliers, the algorithm is shown to have a
transient phase and a steady state phase. By restarting the time
averages after the transient phase, the total convergence time
is improved to O(1/ǫ) under a locally-polyhedral assumption,
and to O(1/ǫ1.5) under a locally-smooth assumption.

I. INTRODUCTION

Convex optimization is often used to optimally control
communication networks and distributed multi-agent systems
(see [1] and references therein). This framework utilizes
both convexity properties of an objective function and a
feasible decision set. However, various systems have inherent
discrete (and hence nonconvex) decision sets. For example,
a packet switch system makes a binary (0/1) decision about
connecting a given link. Further, a wireless system might
constrain transmission rates to a finite set corresponding to
a fixed set of coding options. This discreteness restrains the
application of convex optimization.

Let I and J be positive integers. This paper considers
time-average optimization where decision vectors x(t) =
(x1(t), . . . , xI(t)) are chosen sequentially over time slots
t ∈ {0, 1, 2, . . .} to solve the following problem:

Minimize f(x̄) (1)

Subject to gj(x̄) ≤ 0 j ∈ {1, . . . , J}
x(t) ∈ X t ∈ {0, 1, 2, . . . }

Here X is a closed and bounded subset of R
I (possibly

nonconvex and discrete), X is its convex hull, f : X →
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R and gj : X → R are convex functions, and x̄ =

limT→∞
1
T

∑T−1
t=0 x(t) is an average of decisions made.

This time-average optimization reflects a scenario where
an objective is in the time-average sense. For example, users
receive average bit-rates. It is possible to consider the average
of function values using the same technique as in [2].

Formulation (1) has an optimal solution which can be
converted (by averaging) to the following:

Minimize f(x) (2)

Subject to gj(x) ≤ 0 j ∈ {1, . . . , J}
x ∈ X .

However, an optimal solution to formulation (2) may not be
in the nonconvex decision set X . Nevertheless, problems (1)
and (2) have the same optimal value.

Although there have been several techniques utilizing
time-averaged solutions [3], [4], [5], those works are limited
to convex formulations. This paper is inspired by the Lya-
punov optimization technique [2] which solves stochastic and
time-averaged optimization problems. This paper removes
the stochastic characteristic and focuses on the connection
between the technique and a general convex optimization.
This allows a convergence time analysis of a drift-plus-
penalty algorithm that solves problem (1). Further, this paper
shows that faster convergence can be achieved by starting
time averages after a suitable transient period.

Another area of literature focuses on convergence time
of first-order algorithms to an ǫ-optimal solution to a convex
problem, including problem (2). For unconstrained optimiza-
tion, the optimal first-order method has O(1/

√
ǫ) conver-

gence time [6], [7], while gradient (without strong convexity
of objective function) and subgradient methods take O(1/ǫ)
and O(1/ǫ2) respectively [8], [4], [5]. Two O(1/ǫ) first-order
methods for constrained optimization are developed in [9],
[10], but the results rely on special convex formulations. A
second-order method for constrained optimization [11] has a
fast convergence rate but relies on special a convex formula-
tion. All of these results rely on convexity assumptions that
do not hold in formulation (1).

This paper develops an algorithm for the formulation (1)
and analyzes its convergence time. The algorithm is shown
to have O(1/ǫ2) convergence time for general problems.
However, inspired by results in [12], under a uniqueness
assumption on Lagrange multipliers the algorithm is shown
to enter two phases: a transient phase and a steady state
phase. Convergence time can be significantly improved by
restarting the time averages after the transient phase. Specif-
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ically, when a dual function satisfies a locally-polyhedral
assumption, the modified algorithm has O(1/ǫ) convergence
time (including the time spent in the transient phase), which
equals the best known convergence time for constrained
convex optimization via first-order methods. On the other
hand, when the dual function satisfies a locally-smooth
assumption, the algorithm has O(1/ǫ1.5) convergence time.
Furthermore, simulations show that these fast convergence
times are robust even without the uniqueness assumption.
We conjecture that our results hold even when the uniqueness
assumption is removed.

The paper is organized as follows. Section II constructs
an algorithm to solve the time-average problem. The general
O(1/ǫ2) convergence time result is proven in Section III.
Section IV explores faster convergence times of O(1/ǫ) and
O(1/ǫ1.5) under the unique Lagrange multiplier assumption.
Example problems are given in Section V, including cases
when the uniqueness condition fails. In all cases, the method
of restarting time averages later than time 0 is shown to
significantly improve convergence.

II. TIME-AVERAGE OPTIMIZATION

In order to solve problem (1), an auxiliary problem with a
similar solution is formulated. Then Lyapunov optimization
[2] is applied on this auxiliary problem.

A. The extended set Y
Let Y be a closed, bounded, and convex subset of R

I

that contains X . Assume the functions f(x), gj(x) for
j ∈ {1, . . . , J} extend as real-valued convex functions over
x ∈ Y . The set Y can be defined as X itself. However,
choosing Y as a larger set helps to ensure a Slater condition
is satisfied (defined below). Further, choosing Y to have a
simple structure helps to simplify the resulting optimization.
For example, set Y might be chosen as a closed and bounded
hyper-rectangle that contains X in its interior.

B. Lipschitz continuity and Slater condition

In addition to assuming that f(x) and gj(x) are convex
over x ∈ Y , assume they are Lipschitz continuous, so that
there is a constant M > 0 such that for all x, y ∈ Y:

|f(x)− f(y)| ≤ M‖x− y‖ (3)

|gj(x)− gj(y)| ≤ M‖x− y‖ (4)

where ‖x‖ =
√

x2
1 + · · ·+ x2

I is the Euclidean norm.
Further, assume that there exists a vector x̂ ∈ X that

satisfies gj(x̂) < 0 for all j ∈ {1, . . . , J}, and is such that
x̂ is in the interior of set Y . This is a Slater condition that,
among other things, ensures the constraints are feasible for
the problem of interest.

C. Auxiliary Problem

For functions a(x(t)) of a vector x(t), let notation a(x) =
limT→∞

1
T

∑T−1
t=0 a(x(t)) represent an average of function

values. An auxiliary formulation of problem (1) is

Minimize f(y) (5)

Subject to gj(y) ≤ 0 j ∈ {1, . . . , J}
xi = yi i ∈ {1, . . . , I}
x(t) ∈ X , y(t) ∈ Y t ∈ {0, 1, 2, . . . }.

The auxiliary vector y(t) is introduced so it can be chosen
in the convexified set X ⊆ Y . Constraint xi = yi ensures
that vectors x(t) and y(t) have the same time averages. For
ease of notation, let g(y) = (g1(y), . . . , gJ (y)) denote a J-
dimensional column vector of functions gj(y).

Recall that problems (1) and (2) share the same optimal
objective cost. Let f (opt) denote that optimal cost. The
following theorem is proven via Jensen’s inequality in [2]:

Theorem 1: The optimal objective function value in prob-
lem (5) is also f (opt). Further, if {x∗(t), y∗(t)}∞t=0 is an
optimal solution to problem (5), then {x∗(t)}∞t=0 is an
optimal solution to problem (1).

D. Lyapunov optimization

Problem (5) can be solved by the Lyapunov optimization
technique [2]. Define Wj(t) and Zi(t) as virtual queues of
constraints gj(y) ≤ 0 and xi = yi, with the update equations:

Wj(t+ 1) = [Wj(t) + gj(y(t))]+ j ∈ {1, . . . , J} (6)

Zi(t+ 1) = Zi(t) + xi(t)− yi(t) i ∈ {1, . . . , I}, (7)

where the operator [·]+ is a projection to a corre-
sponding non-negative orthant. For ease of notation, let
W (t),(W1(t), . . . ,WJ (t)) and Z(t),(Z1(t), . . . , ZI(t)) be
vectors of Wj(t)’s and Zi(t)’s respectively, and let notation
A⊤ denote the transpose of vector A.

Define a Lyapunov function as:

L(t),
1

2
‖W (t)‖2 + 1

2
‖Z(t)‖2

Define the Lyapunov drift as ∆(t),L(t+ 1)− L(t).
Lemma 1: For every t, the Lyapunov drift is bounded by

∆(t) ≤ C3 +W (t)⊤g(y(t)) + Z(t)⊤[x(t)− y(t)],

where C3 = (C2
1 + C2

2 )/2 and C1, supy∈Y ‖g(y)‖ and
C2, supx∈X ,y∈Y ‖x− y‖ are bounded values, as X and Y
are bounded.

Proof: Equation (6) gives ‖W (t+ 1)‖2 ≤
‖Wj(t) + gj(y(t))‖2 and ‖W (t+ 1)‖2 − ‖W (t)‖2 ≤
2W (t)⊤g(y(t)) + ‖g(y(t))‖2. Similarly, equation (7)
gives ‖Z(t+ 1)‖2 − ‖Z(t)‖2 = 2Z(t)⊤[x(t)− y(t)] +
‖x(t)− y(t)‖2. Summing the last two relations
and using the definitions of C1 and C2 yields
2∆(t) ≤ 2W (t)⊤g(y(t)) + 2Z(t)⊤[x(t)− y(t)] +C2

1 +C2
2 ,

which proves the lemma.
Let V > 0 be a real number (used as a parameter in

the Lyapunov optimization technique). The drift-plus-penalty
expression is defined by ∆(t)+V f(y(t)). Applying Lemma
1, the drift-plus-penalty expression is bounded, for all t, by

∆(t) + V f(y(t)) ≤ C3 +W (t)⊤g(y(t))

+ Z(t)⊤[x(t)− y(t)] + V f(y(t)). (8)
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E. Drift-plus-penalty algorithm

A Lyapunov optimization algorithm, at every iteration,
minimizes the right-hand-side of inequality (8) with respect
to x(t) ∈ X and y(t) ∈ Y and updates the virtual queues
W (t) and Z(t) with equations (6) and (7). Let W0 and Z0 be
the initialized values of W (0) and Z(0). Then, the algorithm
is summarized in Algorithm 1.

Initialize W (0) = W0, Z(0) = Z0.
for t = 0, 1, 2, . . . do

x(t) = argminx∈X Z(t)⊤x
y(t) = argminy∈Y [V f(y) +W (t)⊤g(y)− Z(t)⊤y]
W (t+ 1) = [W (t) + g(y(t))]+
Z(t+ 1) = Z(t) + x(t)− y(t)

end
Algorithm 1: Drift-plus-penalty algorithm solving (5).

Algorithm 1 generates sequence {x(t), y(t)}∞t=0, which is
an O(ǫ)-optimal solution to the auxiliary problem (5) by
setting V = 1/ǫ [2]. For an O(ǫ)-optimal solution to the
time-average problem (1), decision x(t) made by Algorithm
1 is implemented every iteration t, which coincides with
Theorem 1.

F. Relation to dual subgradient algorithm

It is interesting to note that the drift-plus-penalty algorithm
is identical to a classic dual subgradient method [13] with
a fixed stepsize 1/V , with the exception that it takes a time
average of x(t) values. This was noted in [14], [12] for
related problems. To see this for the problem of this paper,
consider the following convex program, called the embedded
formulation of the time-average problem (5):

Minimize f(y) (9)

Subject to gj(y) ≤ 0 j ∈ {1, . . . , J}
xi = yi i ∈ {1, . . . , I}
x ∈ X , y ∈ Y.

This problem is convex. It is not difficult to show that the
above problem has an optimal value f (opt) that is the same
as that of problems (1)–(2), (5).

Now consider the dual of embedded formulation (9). Let
vectors w and z be dual variables of the first and second
constraints in problem (9), where the feasible set of (w, z)
is denoted by Π = R

J
+×R

I . A Lagrangian has the following
expression:

Λ(x, y, w, z) = f(y) + w⊤g(y) + z⊤(x− y).

Define:

x∗(z) = arginf
x∈X

z⊤x

y∗(w, z) = arginf
y∈Y

[f(y) + w⊤g(y)− z⊤y].

Notice that x∗(z) may have multiple candidates including
extreme point solutions, since z⊤x is a linear function.

We restrict x∗(z) to any of these extreme solutions, which
implies x∗(z) ∈ X . Then the dual function is defined as

d(w, z) = inf
x∈X ,y∈Y

Λ(x, y, w, z) (10)

= f(y∗(w, z)) + w⊤g(y∗(w, z)) + z⊤[x∗(z)− y∗(w, z)],

and its subgradient [13] with respect to w and z is:

∂wd(w, z) = g(y∗(w, z)), ∂zd(w, z) = x∗(z)− y∗(w, z).

Finally, the dual formulation of embedded problem (9) is

Maximize d(w, z) (11)

Subject to (w, z) ∈ Π.

Let the optimal value of problem (11) be d∗. Since problem
(9) is convex, the duality gap is zero, and d∗ = f (opt).
Problem (11) can be treated by a dual subgradient method
[13] with a fixed stepsize 1/V . This leads to Algorithm 2
summarized in the figure below, called the dual subgradient
algorithm.

Initialize w(0) = W0/V, z(0) = Z0/V .
for t = 0, 1, 2, . . . do

x(t) = arginfx∈X z(t)⊤x (with x(t) ∈ X )
y(t) = arginfy∈Y [f(y) + w(t)⊤g(y)− z(t)⊤y]
w(t+ 1) =

[

w(t) + 1
V
g(y(t))

]

+

z(t+ 1) = z(t) + 1
V
[x(t)− y(t)]

end
Algorithm 2: Dual subgradient algorithm solving (11).

Fix initial conditions w(0) = W (0)/V , z(0) = Z(0)/V .
Then for all slots τ ∈ {0, 1, 2, . . .}, Algorithms 1 and 2
always choose the same primal variables x(τ), y(τ), and
their dual (virtual queue) variables are related by:

w(τ) = W (τ)/V, z(τ) = Z(τ)/V (12)

To see this, assume (12) holds for all τ ∈ {0, 1, . . . , t} for
some time t ≥ 0. Then:

arginf
x∈X

z(t)⊤x = arginf
x∈X

z(t)⊤x = arginf
x∈X

Z(t)⊤x,

and

arginf
y∈Y

[f(y) + w(t)⊤g(y)− z(t)⊤y]

= arginf
y∈Y

[f(y) +
1

V
W (t)⊤g(y)− 1

V
Z(t)⊤y]

= arginf
y∈Y

[V f(y) +W (t)⊤g(y)− Z(t)⊤y].

So, the vectors x(t), y(t) are the same on slot t under both
algorithms, as the tie breaking rules are also the same under
both algorithms. Then, it is easy to see the update equations
for W (t+1), Z(t+1) in Algorithm 1 and w(t+1), z(t+1) in
Algorithm 2 preserve the relationship w(t+1) = W (t+1)/V
and z(t+ 1) = Z(t+ 1)/V .

Traditionally, the dual subgradient algorithm of [13] is
intended to produce primal vector estimates that converge to
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a desired result. However, this requires additional assump-
tions. Indeed, for our problem, the primal vectors x(t) and
y(t) do not converge to anything near a solution in many
cases, such as when the f(x) and gj(x) functions are linear
or piecewise linear. However, drift-plus-penalty theory of
Lyapunov optimization can be used to ensure that the time
averages of x(t) and y(t) converge as desired. Observing
the relationship between Algorithms 1 and 2 enables one to
integrate both duality and time-averaging concepts.

For the remainder of this paper, we use the notation w(t)
and z(t) from Algorithm 2, with the update rule for w(t +
1) and z(t + 1) given there. For ease of notation, define
λ(t),(w(t), z(t)) as a concatenation of these vectors, and
define h(t),(g(y(t)), x(t)−y(t)) as the concatenation vector
of the constraint functions.

Using this with w(t) = W (t)/V and z(t) = Z(t)/V
gives:

L(t) =
V 2

2
‖λ(t)‖2.

Dividing the drift-plus-penalty inequality (8) by V and using
this change of variables yields:

V

2

[

‖λ(t+ 1)‖2 − ‖λ(t)‖2
]

+ f(y(t))

≤ C3

V
+ w(t)⊤g(y(t)) + z(t)⊤[x(t)− y(t)] + f(y(t))

=
C3

V
+ d(λ(t)) (13)

where the final inequality uses the definition of the dual
function d(λ(t)) = d(w(t), z(t)) and the fact that Algorithm
2 chooses x(t), y(t) to minimize the expression

w(t)⊤g(y(t)) + z(t)⊤[x(t)− y(t)] + f(y(t)). (14)

G. Properties of the dual function

Because the dual function d(λ(t)) is the minimum of the
expression (14) over x(t) ∈ X (with x(t) ∈ X ) and y(t) ∈
Y , it satisfies:

d(λ(t)) ≤ w(t)⊤g(y) + z(t)⊤[x− y] + f(y) (15)

for all (x, y) ∈ X ×Y . Thus, the dual function d(λ) has the
following basic properties:1

• d(λ) ≤ f (opt) for all λ ∈ Π.
• If the Slater condition holds, then there are real numbers

F > 0, η > 0 such that:

d(λ) ≤ F − η‖λ‖ for all λ ∈ Π.

• If the Slater condition holds, then there is an optimal
value λ∗ ∈ Π, called a Lagrange multiplier vector [13],
that maximizes d(λ). Specifically, d(λ∗) = f (opt).

1The first property follows by substituting the optimal solution
(x(opt), x(opt)) into the right-hand-side of (15), where x(opt) ∈ X is a
solution to problem (9). The second property can be shown by substituting
(x̂ + ê, x̂) into the right-hand-side of (15), where the ith-component of ê,
êi is a small negative value when zi(t) is positive; otherwise, ei is a small
positive value. The third property is standard for Lagrange multiplier theory.

The first two properties can be substituted into the mod-
ified drift-plus-penalty inequality (13) to ensure that, under
Algorithm 2, the following inequalities hold for all time slots
t ∈ {0, 1, 2, . . . }:

V

2

[

‖λ(t+ 1)‖2 − ‖λ(t)‖2
]

+ f(y(t)) ≤ C3

V
+ f (opt) (16)

V

2

[

‖λ(t+ 1)‖2 − ‖λ(t)‖2
]

+ f(y(t)) ≤ C3

V
+ F

− η‖λ(t)‖ (17)

III. GENERAL CONVERGENCE RESULT

Three useful lemmas are proved before the main theorem
in this section. Define the average of variables {a(t)}T−1

t=0 as

ā(T ),
1

T

T−1
∑

t=0

a(t).

Lemma 2: Let {x(t), y(t), w(t), z(t)}∞t=0 be a sequence
generated by Algorithm 2. For T > 0, we have

gj(ȳ(T )) ≤
V

T
|wj(T )− wj(0)| j ∈ {1, . . . , J} (18)

x̄i(T )− ȳi(T ) =
V

T
[zi(T )− zi(0)] i ∈ {1, . . . , I} (19)

Proof: For the first part, the update equation of w(t)
in Algorithm 2 implies, for every j, that

wj(t+ 1) = [wj(t) +
1

V
gj(y(t))]+ ≥ wj(t) +

1

V
gj(y(t)),

and wj(t + 1) − wj(t) ≥ 1
V
gj(y(t)). Summing from t =

0, . . . , T − 1, we have wj(T )− wj(0) ≥ 1
V

∑T−1
t=0 gj(y(t)).

Dividing by T and using Jensen’s inequality and convexity
of gj(·) gives

gj(ȳ(T )) ≤
V

T
[wj(T )− wj(0)],

which proves the upper bound (18).
The proof of equality (19) is similar and is omitted for

brevity.
Lemma 3: Let {x(t), y(t), w(t), z(t)}∞t=0 be a sequence

generated by Algorithm 2. For T > 0, it follows that

f(ȳ(T ))−f (opt) ≤ V

2T

[

‖λ(0)‖2 − ‖λ(T )‖2
]

+
C3

V
. (20)

Proof: Relation (16) can be rewritten as

f(y(t))− f (opt) ≤ C3

V
+

V

2

[

‖λ(t)‖2 − ‖λ(t+ 1)‖2
]

.

Summing from t = 0, . . . , T − 1 and dividing by T give:

1

T

T−1
∑

t=0

f(y(t))− f (opt) ≤ C3

V
+

V

2

[

‖λ(0)‖2 − ‖λ(T )‖2
]

.

Using Jensen’s inequality and the convexity of f(·) proves
the lemma.

Lemma 4: When V ≥ 1, wj(0) = zi(0) = 0 for all i
and j, then under Algorithm 2, the Slater condition implies
there is a constant D > 0 (independent of V ) such that
wj(t) ≤ D and zi(t) ≤ D for all t and for all i ∈ {1, . . . , I},
j ∈ {1, . . . , J}.
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Proof: From (17) and V ≥ 1, if ‖λ(t)‖ ≥ (C3 + F −
f (min))/η where f (min) = infy∈Y f(y), then we have

V

2

[

‖λ(t+ 1)‖2 − ‖λ(t)‖2
]

≤ C3

V
+ F − f(y(t))− η‖λ(t)‖

≤ 0.

But ‖λ(t+ 1)− λ(t)‖2 = (‖W (t+ 1)−W (t)‖/V )2 +
(‖Z(t+ 1)− Z(t)‖/V )2 ≤ (‖g(y(t))‖/V )2 +
(‖x(t)− y(x)‖/V )2 ≤ 2C3/V

2, and ‖λ(t+ 1)− λ(t)‖ ≤√
2C3/V for all t. This implies that ‖λ(t)‖ ≤

(C3 + F − f (min))/η +
√
2C3/V for all t. Since V ≥ 1,

letting D,(C3 + F − f (min))/η +
√
2C3 proves the lemma.

Lemmas 2 and 3 provide bounds on ȳ(T ). The next result
translates these to bounds on x̄(T ).

Theorem 2: Let {x(t), w(t), z(t)}∞t=0 be a sequence gen-
erated by Algorithm 2. For T > 0, we have

f(x̄(T ))− f (opt) ≤ V

2T

[

‖λ(0)‖2 − ‖λ(T )‖2
]

+
C3

V

+
VM

T
‖z(T )− z(0)‖ (21)

gj(x̄(T )) ≤
V

T
|wj(T )− wj(0)|+

VM

T
‖z(T )− z(0)‖

j ∈ {1, . . . , J}, (22)

where M is the Lipschitz constant from (3)–(4).
Proof: We have from the Lipschitz property (3):

f(x̄(T ))− f (opt) ≤ [f(ȳ(T ))− f (opt)] +M‖ȳ(T )− x̄(T )‖.
The first term on the right side above satisfies (20). The
second term can be bounded above by M V

T
‖z(T )− z(0)‖

using (19). This proves the first part of the theorem.
For the second part, we have from (4):

gj(x̄(T )) ≤ gj(ȳ(T )) +M‖ȳ(T )− x̄(T )‖
The first term on the right side above satisfies (18). The
second term can be upper bounded by M V

T
‖z(T )− z(0)‖

using (19). This proves the second part of the theorem.
Theorem 2 with Lemma 4 can be interpreted as follows.

When V ≥ 1, the deviation from optimality (21) is bounded
above by O(V/T + 1/V ), and the constraint violation is
bounded above by O(V/T ). To have both bounds be within
O(ǫ), we set V = 1/ǫ and T = 1/ǫ2. Thus the convergence
time of Algorithm 2 is O(1/ǫ2). The next section categorizes
states of Algorithm 2 as transient phase and steady state
phase and analyzes convergence times accordingly.

IV. CONVERGENCE OF TRANSIENT AND
STEADY STATE PHASES

Algorithm 2 has two phases: transient phase and steady
state phase. Conceptually, the system reaches the steady state
phase when a vector of dual variables comes within a specific
distance from the optimal Lagrange multipliers of dual prob-
lem (11). The transient phase is the time before this occurs.
With this idea, we analyze convergence time in two cases of
dual function (10) satisfying locally-polyhedral and locally-
smooth properties under the following mild assumption.

Locally polyhedron Locally smooth

Fig. 1. Illustration of locally-polyhedral and locally-smooth functions

Assumption 1: The dual formulation (11) has a unique
Lagrange multiplier denoted by λ∗,(w∗, z∗).

This assumption is assumed throughout Section IV, and
replaces the Slater assumption (which is no longer needed).
Note that this is a mild assumption when practical systems
are considered, e.g., [12], [15]. In addition, simulations in
Section V suggest that the algorithm derived in this section
still has desirable performance without this uniqueness as-
sumption.

We first provide a general result that will be used later.
Lemma 5: Let {λ(t)}∞t=0 be a sequence generated by

Algorithm 2. The following relation holds:

‖λ(t+ 1)− λ∗‖2 ≤ ‖λ(t)− λ∗‖2 + 2

V
[d(λ(t))− d(λ∗)]

+
2C3

V 2
, t ∈ {0, 1, 2, . . .}. (23)

Proof: Recall that λ(t) = (w(t), z(t)), h(t) =
(g(y(t)), x(t)− y(t)). From the non-expansive property, we
have that

‖λ(t+ 1)− λ∗‖2

=
∥

∥

∥

(

[

w(t) + 1
V
g(y(t))

]

+
, z(t) + 1

V
[x(t)− y(t)]

)

− λ∗
∥

∥

∥

2

≤
∥

∥

(

w(t) + 1
V
g(y(t)), z(t) + 1

V
[x(t)− y(t)]

)

− λ∗∥
∥

2

= ‖λ(t)− λ∗‖2 + 1
V 2 ‖h(t)‖2 + 2

V
[λ(t)− λ∗]⊤h(t)

≤ ‖λ(t)− λ∗‖2 + 2C3

V 2 + 2
V
[d(λ(t))− d(λ∗)], (24)

where the last inequality uses the definition of C3 and the
concavity of the dual function (10), i.e, d(λ1) ≤ d(λ2) +
∂d(λ2)

⊤[λ1−λ2] for any λ1, λ2 ∈ Π, and ∂d(λ(t)) = h(t).

A. Locally-Polyhedral Dual Function

Throughout Section IV-A, the dual function (10) is as-
sumed to have a locally-polyhedral property, introduced in
[12], as stated in Assumption 2. A dual function with this
property is illustrated in Figure 1. The property holds when
f and gj for every j are either linear or piece-wise linear.

Assumption 2: There exists an Lp > 0 such that the dual
function (10) satisfies

d(λ∗) ≥ d(λ) + Lp‖λ− λ∗‖ for all λ ∈ Π (25)

where λ∗ is the unique Lagrange multiplier.
Concavity of dual function (10) ensures that if this prop-

erty holds locally about λ∗, it also holds globally for all
λ ∈ Π (see Figure 1).

The behavior of the generated dual variables with dual
function satisfying the locally-polyhedral assumption can be
described as follows. Define Bp(V ),max

{

Lp

2V , 2C3

V Lp

}

.
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Lemma 6: Under Assumptions 1 and 2, whenever
‖λ(t)− λ∗‖ > Bp(V ), it follows that

‖λ(t+ 1)− λ∗‖ − ‖λ(t)− λ∗‖ < − Lp

2V
. (26)

Proof: From Lemma 5, suppose the following condition
holds

2C3

V 2
+

2

V
[d(λ(t))−d(λ∗)] < −Lp

V
‖λ(t)− λ∗‖+

L2
p

4V 2
, (27)

then inequality (23) becomes

‖λ(t+ 1)− λ‖2 < ‖λ(t)− λ∗‖2 − Lp

V
‖λ(t)− λ∗‖+

L2
p

4V 2

=

[

‖λ(t)− λ∗‖ − Lp

2V

]2

.

Moreover, if ‖λ(t)− λ∗‖ ≥ Lp

2V , then inequality (26) holds.
It requires to show that condition (27) holds when

‖λ(t)− λ∗‖ > 2C3

V Lp
. However, condition (27) holds when

d(λ(t))− d(λ∗) < −C3

V
− Lp

2
‖λ(t)− λ∗‖.

By the locally-polyhedral property (25), if
−Lp‖λ(t)− λ∗‖ < −C3

V
− Lp

2 ‖λ(t)− λ∗‖, then the
above inequality holds. This means that condition (27) holds
when ‖λ(t)− λ∗‖ > 2C3

V Lp
. This proves the lemma.

Lemma 6 implies that, if the distance between λ(t) and
λ∗ is at least Bp(V ), the successor λ(t + 1) will be closer
to λ∗. This suggests the existence of a convergence set, in
which a subsequence of {λ(t)}∞t=0 resides. The steady state
of Algorithm 2 is also defined from this set. This convergence
set is defined as

Rp(V ) =

{

λ ∈ Π : ‖λ− λ∗‖ ≤ Bp(V ) +

√
2C3

V

}

. (28)

Let Tp be the first iteration that a generated dual variable
enters this set:

Tp = arginf
t≥0

{λ(t) ∈ Rp(V )}. (29)

Intuitively, Tp is the end of the transient phase and is the
beginning of the steady state phase. It is easy to see that Tp

is at most O(V ) from (26).
Then we have that dual variables generated after Tp never

leave region Rp(V ).
Lemma 7: Under Assumptions 1 and 2, the generated dual

variables from Algorithm 2 satisfy λ(t) ∈ Rp(V ) for all
t ≥ Tp.

Proof: We prove the lemma by induction. First
we note that λ(Tp) ∈ Rp(V ) by its definition. Sup-
pose that λ(t) ∈ Rp(V ). Then two cases are considered.
i) If ‖λ(t)− λ∗‖ > Bp(V ), it follows from (26) that
‖λ(t+ 1)− λ∗‖ < ‖λ(t)− λ∗‖− Lp

2V < Bp(V )+
√
2C3

V
. ii) If

‖λ(t)− λ∗‖ ≤ Bp(V ), it follows from the triangle inequality
that ‖λ(t+ 1)− λ∗‖ ≤ ‖λ(t+ 1)− λ(t)‖+ ‖λ(t)− λ∗‖ ≤√

2C3

V
+Bp(V ). Hence, λ(t+1) ∈ Rp(V ) in both cases. This

proves the lemma by induction.

Finally, a convergence result is ready to be stated. Let
aTp(T ) = 1

T

∑Tp+T−1
t=Tp

a(t) be an average of sequence

{a(t)}Tp+T−1
t=Tp

that starts from Tp.
Theorem 3: Under Assumptions 1 and 2, for T > 0, let

{x(t), w(t)}∞t=Tp
be a subsequence generated by Algorithm

2, where Tp is defined in (29). The following bounds hold:

f(xTp(T ))− f (opt) ≤ C3

V
+

2VM

T

[√
2C3

V
+Bp(V )

]

+
V

2T

{[√
2C3

V
+Bp(V )

]2

+4‖λ∗‖
[√

2C3

V
+Bp(V )

]}

(30)
gj(xTp(T )) ≤

2V (1 +M)

T

[√
2C3

V
+Bp(V )

]

,

j ∈ {1, . . . , J}. (31)
Proof: The first part of the theorem follows from (21)

with the average starting from Tp that

f(xTp(T ))− f (opt) ≤ C3

V
+

V

2T

[

‖λ(Tp)‖2 − ‖λ(Tp + T )‖2
]

+
VM

T
‖z(Tp + T )− z(Tp)‖. (32)

For any λ ∈ Π, it holds that: ‖λ‖2 = ‖λ− λ∗‖2+‖λ∗‖2+
2[λ−λ∗]⊤λ∗. The second term on the right-hand-side of (32)
can be upper bounded by applying this equality.

‖λ(Tp)‖2 − ‖λ(Tp + T )‖2

= ‖λ(Tp)− λ∗‖2 + 2[λ(Tp)− λ∗]⊤λ∗

− ‖λ(Tp + T )− λ∗‖2 − 2[λ(Tp + T )− λ∗]⊤λ∗

≤ ‖λ(Tp)− λ∗‖2 + 2‖λ(Tp)− λ(Tp + T )‖‖λ∗‖ (33)

From Lemma 7, the first term of (33) is bounded by
‖λ(Tp)− λ∗‖2 ≤ [

√
2C3/V + Bp(V )]2. From triangle in-

equality and Lemma 7, the last term of (33) is bounded by

‖λ(Tp + T )− λ(Tp)‖ ≤ ‖λ(Tp + T )− λ∗‖+ ‖λ∗ − λ(Tp)‖

≤ 2

[

√

2C3/V +Bp(V )

]

. (34)

Therefore, inequality (33) is bounded from above by
[
√
2C3/V + Bp(V )]2 + 4‖λ∗‖[

√
2C3/V + Bp(V )]. Sub-

stituting this bound into (32) and using the fact
that ‖z(Tp + T )− z(Tp)‖ ≤ ‖λ(Tp + T )− λ(Tp)‖ ≤
2[
√
2C3/V +Bp(V )] proves the first part of the theorem.

The last part follows from (22) that

gj(xTp(T )) ≤
V

T
|wj(Tp + T )− wj(Tp)|

+
VM

T
‖z(Tp + T )− z(Tp)‖.

Since |wj(Tp + T )− wj(Tp)| and ‖z(Tp + T )− z(Tp)‖ are
bounded above by ‖λ(Tp + T )− λ(Tp)‖, the above inequal-
ity is upper bounded by

gj(xTp(T )) ≤
V (1 +M)

T
‖λ(Tp + T )− λ(Tp)‖

≤ 2V (1 +M)

T

[√
2C3

V
+Bp(V )

]

,
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where the last inequality uses relation (34). This proves the
last part of the theorem.

Theorem 3 can be interpreted as follows. The devia-
tion from the optimality value (30) is bounded above by
O(1/V + 1/T ). The constraint violation (31) is bounded
above by O(1/T ). To have both bounds be within O(ǫ), we
set V = 1/ǫ and T = 1/ǫ, and the convergence time of
Algorithm 2 is O(1/ǫ). Note that both bounds consider the
average starting after reaching the steady state at time Tp,
and this transient time Tp is at most O(1/ǫ).

B. Locally-Smooth Dual Function

Throughout Section IV-B, the dual function (10) is as-
sumed to have a locally-smooth property, introduced in [12],
as stated in Assumption 3 and illustrated in Figure 1.

Assumption 3: Let λ∗ be the unique Largrange multiplier,
there exist S > 0 and Ls > 0 such that whenever λ ∈ Π and
‖λ− λ∗‖ ≤ S, dual function (10) satisfies

d(λ∗) ≥ d(λ) + Ls‖λ− λ∗‖2. (35)

Also, there exists Ds > 0 such that whenever λ ∈ Π and
d(λ∗)− d(λ) ≤ Ds, dual variable satisfies ‖λ− λ∗‖ ≤ S.

The following lemma bounds the time to get near the
Lagrange multiplier.

Lemma 8: Let {λ(t)}∞t=0 be the sequence generated by
Algorithm 2. Under Assumption 1, for any δ > 0, the
following holds

d(λ∗)− max
0≤t≤Eδ(V )

d(λ(t)) ≤ C3

V
+

δ

2
, (36)

where Eδ(V ),
⌊

V ‖λ(0)−λ∗‖2

δ

⌋

.
Proof: A case when a dual function is convex is proven

in [13].
From Lemma 8, when δ = Ds and V > 2C3/Ds, we

have d(λ∗)−d(λ(τ)) ≤ Ds for some 0 ≤ τ ≤ Eδ(V ). Then
from Assumption 3, we have ‖λ(τ)− λ∗‖ ≤ S. Thus, by the
definition of Eδ(V ), it takes at most O(V ) to arrive where
the locally-smooth assumption holds.

Then we show the behavior of dual variables
satisfying the locally-smooth assumption. We define
Bs(V ),max

{

1
V 1.5 ,

√
V+

√
V+4LsC3V
2LsV

}

.
Lemma 9: Under Assumptions 1 and 3, for sufficiently

large V that Bs(V ) < S, whenever Bs(V ) < ‖λ(t)− λ∗‖ <
S, it follows that

‖λ(t+ 1)− λ∗‖ − ‖λ(t)− λ∗‖ < − 1

V 1.5
. (37)

Proof: The proof is omitted due to space limit.

Lemma 9 suggests the existence of a convergence set. The
steady state of Algorithm 2 is also defined from this set as

Rs(V ) =

{

λ ∈ Π : ‖λ− λ∗‖ ≤ Bs(V ) +

√
2C3

V

}

. (38)

Let Ts denote the first iteration that a generated dual variables
arrives at the convergence set:

Ts = arginf
t≥0

{λ(t) ∈ Rs(V )}. (39)

TABLE I

CONVERGENCE TIMES

General Polyhedron Smooth

Transient state 0 O(1/ǫ) O(1/ǫ1.5)
Steady state O(1/ǫ2) O(1/ǫ) O(1/ǫ1.5)

It is easy to see that, Ts is at most O(V +V 1.5) from Lemma
8 and (37). Thus, the transient time is at most O(V 1.5). Next
we show that, once the sequence of dual variables enters
Rs(V ), it never leaves the set.

Lemma 10: Under Assumptions 1 and 3, for sufficiently
large V that Bs(V )+

√
2C3

V
< S, the generated dual variables

from Algorithm 2 satisfy λ(t) ∈ Rs(V ) for all t ≥ Ts.
Proof: The proof is omitted due to space limit.

Now a convergence of a steady state is ready to be stated.
Theorem 4: Under Assumptions 1 and 3, for sufficiently

large V that Bs(V ) +
√
2C3

V
< S, for T > 0, let

{x(t), w(t)}∞t=Ts
be a subsequence generated by Algorithm

2, where Ts is defined in (39). The following bounds hold:

f(xTs(T ))− f (opt) ≤ O(1/V ) +O(
√
V /T ) (40)

gj(xTs(T )) ≤ O(
√
V /T ) j ∈ {1, . . . , J} (41)

Proof: The proof is omitted due to space limit.

Theorem 4 can be interpreted as follows. The deviation
from the optimality (40) is bounded above by O(1/V +√
V /T ). The constraint violation (41) is bounded above by

O(
√
V /T ). To have both bounds be within O(ǫ), we set

V = 1/ǫ and T = 1/ǫ1.5, and the convergence time of
Algorithm 2 is O(1/ǫ1.5). Note that both bounds consider
the average starting after reaching the steady state at time
Ts, and this transient time Ts is at most O(1/ǫ1.5).

C. Summary of Convergence Results

The results in Theorems 2, 3, and 4 (denoted by General,
Polyhedron, and Smooth) are summarized in Table I. Note
that the general convergence time is considered to be in the
steady state from the beginning.

V. SAMPLE PROBLEMS

This section illustrates the convergence times of the time-
average Algorithm 2 under locally-polyhedral and locally-
smooth assumptions. A considered formulation is

Minimize f(x̄) (42)

Subject to 2x̄1 + x̄2 ≥ 1.5, x̄1 + 2x̄2 ≥ 1.5

x1(t), x2(t) ∈ {0, 1, 2, 3}, t ∈ {0, 1, 2, . . . }
where function f will be given for different cases.

A. Staggered Time Averages

In order to take advantage of the improved convergence
rates, computing time averages must be started after the tran-
sient phase. To achieve this performance without determining
the exact end time of the transient phase, time averages
can be restarted over successive frames whose frame lengths
increase geometrically. For example, if one triggers a restart
at times 2k for integers k, then a restart is guaranteed to
occur within a factor of 2 of the time of the actual end of
the transient phase.
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Fig. 2. Iterations solving problem (42) with f(x) = 1.5x1 + x2
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Fig. 3. Iterations solving problem (42) with f(x) = x2
1 + x2

2

B. Results

Under locally-polyhedral assumption, let f(x) = 1.5x1 +
x2 be the objective function of problem (42). In this setting,
the optimal value is 1.25 where x̄1 = x̄2 = 0.5. Figure
2 shows the values of objective and constraint functions of
time-averaged solutions. It is easy to see the faster conver-
gence time O(1/ǫ) from the polyhedral result (Tp = 2048)
compared to a general result with convergence time O(1/ǫ2).

Under locally-smooth assumption, let f(x) = x2
1 + x2

2 be
the objective function of problem (42). Note that the optimal
value of this problem is 0.5 where x̄1 = x̄2 = 0.5. Figure
3 shows the values of objective and constraint functions of
time-averaged solutions. The smooth result starts the average
from (Ts =)8192th iterations. It is easy to see that the
general result converges slower than the smooth result. This
illustrates the difference between O(1/ǫ2) and O(1/ǫ1.5).

Figure 4 illustrates the convergence time of a problem,
defined in the figure’s caption, without the uniqueness as-
sumption. The Comparison of Figures 4 and 2 shows that
there is no difference in the order of convergence time.

VI. CONCLUSION

We consider the time-average optimization problem with
a nonconvex (possibly discrete) decision set. We show that
the problem has a corresponding (one-shot) convex optimiza-
tion formulation. This connects the Lyapunov optimization
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Fig. 4. Iterations solving problem (42) with f(x) = 1.5x1 + x2 and an
additional constraint x̄1 + x̄2 ≥ 1

technique and convex optimization theory. Using convex
analysis we prove a general convergence time O(1/ǫ2) of the
algorithm that solves the time-average optimization. Under
the uniqueness assumption, we prove that faster convergence
times O(1/ǫ) and O(1/ǫ1.5) can be achieved when the
average is performed in the steady state of the algorithm.
Then we illustrate by an example that faster convergence
time still holds without the uniqueness assumption.
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