Note

On the complexity of non-unique probe selection

Yongxi Cheng ${ }^{\text {a,* }}$, Ker-I Ko ${ }^{\text {b }}$, Weili Wu ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Computer Science, Tsinghua University, Beijing 100084, China
${ }^{\mathrm{b}}$ Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA
${ }^{\text {c }}$ Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA

Received 3 June 2007; received in revised form 1 October 2007; accepted 6 October 2007

Communicated by D.-Z. Du

Abstract

We investigate the computational complexity of some basic problems regarding non-unique probe selection using separable matrices. In particular, we prove that the minimal \bar{d}-separable matrix problem is $D P$-complete, and the \bar{d}-separable submatrix with reserved rows problem, which is a generalization of the decision version of the minimum \bar{d}-separable submatrix problem, is Σ_{2}^{P}-complete. © 2007 Elsevier B.V. All rights reserved.

Keywords: Non-unique probe selection; Separable matrices; $D P$-complete; Σ_{2}^{P}-complete

1. Introduction

Given a collection of n targets and a sample S containing at most d of these targets, and a collection of m probes each of which hybridizes to a subset of the given targets, we want to select a subset of probes such that we can identify all targets in S by observing the hybridization reactions between the selected probes and S. For each probe p, there is a hybridization reaction between p and S if S contains at least one target that hybridizes with p; otherwise there is no hybridization reaction. The above probe selection problem has been extensively studied recently $[5,1,9,10,13]$ due to its important applications, particularly in molecular biology. For example, one application of this identification problem is in identifying viruses (targets) from a blood sample. We establish the presence or absence of the viruses by observing the hybridization reactions between the blood sample and some probes; here, each probe is a short oligonucleotide of size 8-25 that can hybridize with one or more of the viruses.

A probe is called unique if it hybridizes with only one target; otherwise it is called non-unique. Identifying targets using unique probes is straightforward. However, in situations where the targets have a high degree of similarity, for instance when identifying closely related virus subtypes, finding unique probes for all targets is difficult. In [11], Schliep, Torney and Rahmann proposed a group testing method using non-unique probes to identify targets in a given

[^0]sample. Since each non-unique probe can hybridize with more than one target, the identification problem becomes more complicated. One important issue is how to select a subset from the given non-unique probes so that we can decode the hybridization results, i.e., determine the presence or absence of targets in the sample S. Also, the number of selected probes is exactly the number of hybridization experiments required, so we hope to select as few probes as possible to reduce the experimental cost. In $[11,6]$, two heuristics using greedy and linear programming based techniques respectively are proposed for choosing a suitable subset of non-unique probes. In this paper, we investigate the computational complexity of some basic problems in non-unique probe selection, in the context of the theory of $N P$-completeness (see Chapter 10 in [2-4]).

2. Preliminaries

The non-unique probe selection problem can be formulated as follows. We are given a collection of n targets $t_{1}, t_{2}, \ldots, t_{n}$, and a collection of m non-unique probes $p_{1}, p_{2}, \ldots, p_{m}$. A sample S is known to contain at most d of the n targets. The probe-target hybridizations can be represented by an $m \times n 0-1$ matrix $M . M_{i, j}=1$ indicates that probe p_{i} hybridizes with target t_{j}, and $M_{i, j}=0$ indicates otherwise. The subset of probes selected corresponds to a subset of rows in M, which forms a submatrix H of M with the same number of columns. The results for hybridization between the selected probes and S also can be represented as a $0-1$ vector $V . V_{i}=1$ indicates that there is a hybridization reaction between p_{i} and S, i.e., p_{i} hybridizes with at least one target in S, and $V_{i}=0$ indicates otherwise. If there is no error in the hybridization experiments, then V is equal to the union of the columns of H that correspond to the targets in S. Here, the union of a subset of columns is simply the Boolean sum of these column vectors. In order to identify all targets in S, the submatrix H should satisfy that all unions of up to d columns in H are different; in other words H should be \bar{d}-separable. Also, as mentioned above, we hope to minimize the number of rows in H.

A matrix H is said to be \bar{d}-separable if all unions of up to d columns in H are different. However, the following equivalent definition is more useful in our proofs. Let H be a $t \times n$ Boolean matrix. For each $i \in\{1,2, \ldots, t\}$, define $H_{i}=\left\{j \mid 1 \leq j \leq n, H_{i, j}=1\right\}$. For any subset S of $\{1,2, \ldots, n\}$ and any $i \in\{1,2, \ldots, t\}$, we write $H_{i}(S)=1$ if $H_{i} \cap S \neq \emptyset$, and $H_{i}(S)=0$ otherwise. We say two sets $S_{1}, S_{2} \subseteq\{1,2, \ldots, n\}$ can be separated by H if there exists an integer $i, 1 \leq i \leq t$, such that $H_{i}\left(S_{1}\right) \neq H_{i}\left(S_{2}\right)$. We say H is \bar{d}-separable if for any two different subsets S_{1}, S_{2} of $\{1,2, \ldots, n\}$, with $\left|S_{1}\right| \leq d$ and $\left|S_{2}\right| \leq d, S_{1}$ and S_{2} can be separated by H.

3. Complexity of the minimal \bar{d}-separable matrix

In non-unique probe selection, one natural problem of interest is determining whether a submatrix H chosen is \bar{d}-separable and minimal. By minimal we mean that the removal of any row from H will make it no longer \bar{d}-separable. The problem can be formulated as follows.

Min-Separability (Minimal Separability): Given a $t \times n$ Boolean matrix H and an integer $d \leq n$, determine whether it is true that (a) H is \bar{d}-separable, and (b) for any submatrix Q of H of size $(t-1) \times n, Q$ is not \bar{d}-separable.
For a given binary matrix H and a positive integer d, the problem of determining whether H is \bar{d}-separable is known to be coNP-complete ([2], Theorem 10.2.1). In this section, we will show that Min-Separability is $D P$-complete. The class $D P$ is the collection of sets A which are the intersection of a set $X \in N P$ and a set $Y \in c o N P$. The notion of $D P$-completeness has been used to characterize the complexity of the "exact-solution" version of many $N P$-complete problems. For instance, the exact traveling salesman problem, which asks, for a given edge-weighted complete graph G and a constant K, whether the minimum weight of a traveling salesman tour of the graph G is equal to K, is $D P$-complete (see [7], Theorem 17.2). In addition, the "critical" versions of some $N P$-complete problems are also known to be $D P$-complete. For instance, the following problem is the critical version of the 3 -satisfiability problem, and has been shown to be $D P$-complete by Papadimitriou and Wolfe [8]:

Min-3-UnSAT: Given a 3-CNF Boolean formula φ which consists of clauses $C_{1}, C_{2}, \ldots, C_{m}$, determine whether it is true that (a) φ is not satisfiable, and (b) for any $j, 1 \leq j \leq m$, the formula φ_{j} that consists of all clauses $C_{\ell}, \ell \in\{1,2, \ldots, m\}-\{j\}$, is satisfiable.

Although most exact-solution versions of $N P$-complete problems have been shown to be $D P$-complete, many critical versions are not known to be $D P$-complete. The problem Min-Separability may be viewed as a critical version of the \bar{d}-separability problem. We will prove it to be $D P$-complete by constructing a reduction from Min-3-UnSat.

Theorem 1. Min-Separability is DP-complete.

Proof. Recall that $D P=\{X \cap Y \mid X \in N P, Y \in \operatorname{coNP}\}$. A problem A is $D P$-complete if $A \in D P$ and, for all $B \in D P$, $B \leq_{m}^{P} A$. For convenience, we write, for any $t \times n$ matrix H, \widetilde{H}_{j} to denote the $(t-1) \times n$ submatrix of H with the j th row removed.

First, to see that Min-Separability $\in D P$, let $X=\{(H, d) \mid H$ is a $t \times n$ Boolean matrix, $1 \leq d \leq n$, $(\forall j, 1 \leq j \leq t) \widetilde{H}_{j}$ is not \bar{d}-separable $\}$, and $Y=\{(H, d) \mid H$ is a $t \times n$ Boolean matrix, $1 \leq d \leq n, H$ is \bar{d} separable\}. It is clear that Min-Separability $=X \cap Y$. It is also not hard to see that $X \in N P$ and $Y \in \operatorname{coNP}$. In particular, to see that $X \in N P$, we note that $(H, d) \in X$ if and only if there exist $2 t$ subsets $S_{j, 1}, S_{j, 2}$ of $\{1,2, \ldots, n\}$, for $j \in\{1,2, \ldots, t\}$, such that, for each $j, H_{k}\left(S_{j, 1}\right)=H_{k}\left(S_{j, 2}\right)$ for all $k \in\{1,2, \ldots, t\}-\{j\}$.

Next, we describe a reduction from Min-3-Unsat to Min-Separability. Let φ be a 3-CNF Boolean formula which consists of m clauses $C_{1}, C_{2}, \ldots, C_{m}$, over n variables $x_{1}, x_{2}, \ldots, x_{n}$. For each $j \in\{1,2, \ldots, m\}$, let φ_{j} denote the Boolean formula that consists of all clauses C_{ℓ} for $\ell \in\{1,2, \ldots, m\}-\{j\}$. From φ, we will construct a $(3 n+m+1) \times(2 n+2)$ Boolean matrix H, and define $d=n+1$. For convenience, we denote the columns of H by $X=\left\{x_{i}, \bar{x}_{i} \mid 1 \leq i \leq n\right\} \cup\{y, z\}$; and denote the rows of H by $T=\left\{x_{i}, \bar{x}_{i}, u_{i} \mid 1 \leq i \leq n\right\} \cup\{y\} \cup\left\{C_{j} \mid 1 \leq j \leq m\right\}$. We define H by defining each row of H :
(1) For each $1 \leq i \leq n$, let $H_{x_{i}}=\left\{x_{i}\right\}, H_{\bar{x}_{i}}=\left\{\bar{x}_{i}\right\}$, and $H_{u_{i}}=\left\{x_{i}, \bar{x}_{i}, z\right\}$.
(2) $H_{y}=\{y\}$.
(3) For each $1 \leq j \leq m$, let $H_{C_{j}}=\left\{x_{i} \mid x_{i} \in C_{j}\right\} \cup\left\{\bar{x}_{i} \mid \bar{x}_{i} \in C_{j}\right\} \cup\{y, z\}$ (so that $\left|H_{C_{j}}\right|=5$).

To prove the correctness of the reduction, we first verify that, if φ is not satisfiable, then H is \bar{d}-separable. To see this, let S_{1} and S_{2} be two subsets of X, each of size $\leq n+1$.

Case 1. $S_{1}-\{z\} \neq S_{2}-\{z\}$. Then, there exists $v \in X-\{z\}$ such that $v \in S_{1} \Delta S_{2}$. Then, $H_{v}\left(S_{1}\right) \neq H_{v}\left(S_{2}\right)$.
Case 2. $S_{1}-\{z\}=S_{2}-\{z\}$. Then, it must be true that $S_{1} \Delta S_{2}=\{z\}$. Without loss of generality, assume $S_{2}=S_{1} \cup\{z\}$. Note that $\left|S_{2}\right| \leq n+1$ implies $\left|S_{1}\right| \leq n$.

Subcase 2.1. There exists an integer i such that $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right| \neq 1$. First, if $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=0$ for some i, then $H_{u_{i}}\left(S_{1}\right)=0$ and $H_{u_{i}}\left(S_{2}\right)=1$ (because $z \in S_{2}$). Next, if $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=2$ for some i, then we must have $\left|S_{1} \cap\left\{x_{k}, \bar{x}_{k}\right\}\right|=0$ for some k, because $\left|S_{1}\right| \leq n$. Then, again $H_{u_{k}}\left(S_{1}\right)=0 \neq 1=H_{u_{k}}\left(S_{2}\right)$.

Subcase 2.2. $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=1$ for all $i \in\{1,2, \ldots, n\}$. We note that, in this case, $y \notin S_{1}$. Define a Boolean assignment $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow\{$ TRUE, FALSE $\}$ by $\tau\left(x_{i}\right)=$ TRUE if and only if $x_{i} \in S_{1}$. Since φ is not satisfiable, there exists a clause C_{j} that is not satisfied by τ. This means that $C_{j} \cap S_{1}=\emptyset$, and so $H_{C_{j}}\left(S_{1}\right)=0$. However, $H_{C_{j}}\left(S_{2}\right)=1$ since $z \in S_{2}$.

The above completes the proof that H is \bar{d}-separable.
Next, we show that if φ_{j} is satisfiable for all $j=1,2, \ldots, m$, then \widetilde{H}_{v} is not \bar{d}-separable for all $v \in T$. First, for $v \in X-\{z\}$, let $S_{1}=\{z\}$ and $S_{2}=\{v, z\}$. Then, we can see that for all rows $w \in X-\{z, v\}, H_{w}\left(S_{1}\right)=0=H_{w}\left(S_{2}\right)$. Also, for all other rows $w \in T-X, H_{w}\left(S_{1}\right)=H_{w}\left(S_{2}\right)=1$ since $z \in H_{w}$. So, S_{1} and S_{2} are not separable by \widetilde{H}_{v}.

Next, consider the case $v=u_{i}$ for some $i \in\{1,2, \ldots, n\}$. Let $S_{1}=\left\{x_{k} \mid 1 \leq k \leq n, k_{\sim} \neq i\right\} \cup\{y\}$ and $S_{2}=S_{1} \cup\{z\}$. It is clear that $\left|S_{1}\right|=n$ and $\left|S_{2}\right|=n+1$. We claim that S_{1} and S_{2} are not separable by $\widetilde{H}_{u_{i}}$.

To prove the claim, we note that the rows $H_{x_{k}}, H_{\bar{x}_{k}}$, for $1 \leq k \leq n$, and row H_{y} cannot separate S_{1} from S_{2}, since $S_{1}-\{z\}=S_{2}-\{z\}$. Also, rows $H_{u_{k}}\left(S_{1}\right)=H_{u_{k}}\left(S_{2}\right)=1$, for all $k \in\{1,2, \ldots, n\}-\{i\}$, because $\left|S_{1} \cap\left\{x_{k}, \bar{x}_{k}\right\}\right|=1$ if $k \neq i$. In addition, for any $j=1,2, \ldots, m$, we have $H_{C_{j}}\left(S_{1}\right)=1=H_{C_{j}}\left(S_{2}\right)$, since $y \in S_{1}$. It follows that $\widetilde{H}_{u_{i}}$ cannot separate S_{1} from S_{2}.

Finally, consider the case $v=C_{j}$ for some $j \in\{1,2, \ldots, m\}$. We note that φ_{j} is satisfiable. So, there is a Boolean assignment $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow$ \{TRUE, FALSE $\}$ satisfying all clauses C_{ℓ}, except C_{j}. Define $S_{1}=\left\{x_{i} \mid \tau\left(x_{i}\right)=\right.$ TRUE $\} \cup\left\{\bar{x}_{i} \mid \tau\left(x_{i}\right)=\right.$ FALSE $\}$, and $S_{2}=S_{1} \cup\{z\}$. Then, like with the argument for the case $v=u_{i}$, we can verify that $H_{w}\left(S_{1}\right)=H_{w}\left(S_{2}\right)$ for $w \in X-\{z\}$, and for $w \in\left\{u_{i} \mid 1 \leq i \leq n\right\}$. In addition, for any clause C_{ℓ}, with $\ell \neq j, C_{\ell}$ is satisfied by τ. It follows that $C_{\ell} \cap S_{1} \neq \emptyset$ and $H_{C_{\ell}}\left(S_{1}\right)=1=H_{C_{\ell}}\left(S_{2}\right)$. This completes the proof that \widetilde{H}_{v} is not \bar{d}-separable, for all $v \in T$.

Conversely, we show that if $\varphi \notin \operatorname{Min}-3$-Unsat, then $(H, n+1) \notin$ Min-Separability. First, we consider the case where φ is a satisfiable formula. Let $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow$ \{TRUE, FALSE $\}$ be a Boolean assignment satisfying φ. Define $S_{1}=\left\{x_{i} \mid \tau\left(x_{i}\right)=\operatorname{TRUE}\right\} \cup\left\{\bar{x}_{i} \mid \tau\left(x_{i}\right)=\right.$ FALSE $\}$, and $S_{2}=S_{1} \cup\{z\}$. Then, like in the earlier proof, we can verify that H cannot separate S_{1} from S_{2}. In particular, $H_{C_{j}}\left(S_{1}\right)=1$ for all $j \in\{1,2, \ldots, m\}$, because τ satisfies C_{j} and so $C_{j} \cap S_{1} \neq \emptyset$. Thus, $(H, n+1) \notin \operatorname{Min}-$ Separability.

Next, assume that there exists an integer $j \in\{1,2, \ldots, m\}$ such that φ_{j} is not satisfiable. We claim that $\widetilde{H}_{C_{j}}$ is \bar{d}-separable. The proof of the claim is similar to the proof for the statement that if φ is not satisfiable then H is \bar{d}-separable.

Case 1. $S_{1}-\{z\} \neq S_{2}-\{z\}$. Then, there exists $v \in X-\{z\}$ such that $v \in S_{1} \Delta S_{2}$. So, $H_{v}\left(S_{1}\right) \neq H_{v}\left(S_{2}\right)$.
Case 2. $S_{1}-\{z\}=S_{2}-\{z\}$. Then, it must be true that $S_{1} \Delta S_{2}=\{z\}$, and we may assume $S_{2}=S_{1} \cup\{z\}$. We must have $\left|S_{2}\right| \leq n+1$ and $\left|S_{1}\right| \leq n$.

Subcase 2.1. There exists an integer i such that $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right| \neq 1$. Like in the earlier proof, if $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=0$ for some $i=1,2, \ldots, n$, then we can use $H_{u_{i}}$ to separate S_{1} from S_{2}. If $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=2$ for some $i=1,2, \ldots, n$, then $\left|S_{1} \cap\left\{x_{k}, \bar{x}_{k}\right\}\right|=0$ for some k, and again $H_{u_{k}}$ separates S_{1} from S_{2}.

Subcase 2.2. $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=1$ for all $i \in\{1,2, \ldots, n\}$. Then, since $\left|S_{1}\right| \leq n, y \notin S_{1}$. Define a Boolean assignment $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow\{$ TRUE, FALSE $\}$ by $\tau\left(x_{i}\right)=$ TRUE if and only if $x_{i} \in S_{1}$. Since φ_{j} is not satisfiable, there exists a clause $C_{\ell}, \ell \neq j$, such that $\tau\left(C_{\ell}\right)=$ FALSE. This means that $C_{\ell} \cap S_{1}=\emptyset$, and so $H_{C_{\ell}}\left(S_{1}\right)=0$. However, $H_{C_{\ell}}\left(S_{2}\right)=1$ since $z \in S_{2}$. So, $H_{C_{\ell}}$ separates S_{1} from S_{2}. This completes the proof that $\widetilde{H}_{C_{j}}$ is \bar{d}-separable, and hence $(H, n+1) \notin \operatorname{Min}-$ Separability.

4. Minimum \bar{d}-separable submatrix

A more important problem in non-unique probe selection is finding a minimum subset of probes that can identify up to d targets in a given sample. In the matrix representation, the problem can be formulated as the following: Given a binary matrix M and a positive integer d, find a minimum \bar{d}-separable submatrix of M with the same number of columns (problem Min- \bar{d}-SS in [2], Chapter 10).

For $d=1$, MIN- \bar{d}-SS has been proved to be $N P$-hard ([2], Theorem 10.3.2), by modifying a reduction used in the proof of the $N P$-completeness of the problem Minimum-Test-Sets in [4]. For a fixed $d>1$, Min- \bar{d}-SS is believed to be $N P$-hard; however up to now no formal proof has been known. We consider the decision version of Min- \bar{d}-SS.
\bar{d}-SS (\bar{d}-Separable Submatrix): Given a $t \times n$ Boolean matrix M and two integers $d, k>0$, determine whether there is a $k \times n$ submatrix H of M that is \bar{d}-separable.
Recall that Σ_{2}^{P} is the complexity class of problems that are solvable in nondeterministic polynomial time with the help of an $N P$-complete set as an oracle. For instance, the following problem SAT_{2} is Σ_{2}^{P}-complete ([3], Theorem 3.13): Given a Boolean formula φ over two disjoint sets X and Y of variables, determine whether there exists an assignment to variables in X so that the resulting formula (over variables in Y) is a tautology. It is easy to see that \bar{d}-SS is in Σ_{2}^{P}. We conjecture that it is actually Σ_{2}^{P}-complete. Here, we consider a similar problem that is a little more general than \bar{d}-SS, and prove that it is Σ_{2}^{P}-complete.
\bar{d}-SSRR (\bar{d}-Separable Submatrix with Reserved Rows): Given a $t \times n$ Boolean matrix M and three integers $d>0, s, k \geq 0$, determine whether there is a \bar{d}-separable $(s+k) \times n$ submatrix H of M that contains the first s rows of M and k rows from the remaining $t-s$ bottom rows of M.

Let φ be a Boolean formula; an implicant of φ is a conjunction C of literals that implies φ. The following problem is proved to be Σ_{2}^{P}-complete by Umans [12].

Shortest Implicant Core: Given a DNF formula $\varphi=T_{1}+T_{2}+\cdots+T_{m}$, and an integer p, determine whether φ has an implicant C that consists of p literals from the last term T_{m}.

By a reduction from Shortest Implicant Core, we can obtain the following result.
Theorem 2. \bar{d}-SSRR is Σ_{2}^{P}-complete.

Proof. The problem \bar{d}-SSRR can be solved by a nondeterministic machine that guesses an $(s+k) \times n$ submatrix H of M which contains the first s rows of M, and then determines whether H is \bar{d}-separable. We note that the problem of determining whether a given matrix H is \bar{d}-separable is in coNP. Thus, \bar{d}-SSRR $\in \Sigma_{2}^{P}$.

Next, we prove that \bar{d}-SSRR is Σ_{2}^{P}-complete by constructing a polynomial-time reduction from SHORTEST Implicant Core to it. To define the reduction, let (φ, p) be an instance of the problem Shortest Implicant CORE, i.e., let $\varphi=T_{1}+T_{2}+\cdots+T_{m}$ be a DNF formula over n variables $x_{1}, x_{2}, \ldots, x_{n}$, and let p be an integer >0. We note that each term $T_{j}, 1 \leq j \leq m$, of φ is a conjunction of some literals. We also write T_{j} to denote the set of these literals. Assume that the last term T_{m} of φ has q literals $\ell_{1}, \ell_{2}, \ldots, \ell_{q}$. We define a $(3 n+m+q) \times(2 n+1)$ Boolean matrix M as follows:
(1) Let the $2 n+1$ columns of M be $X=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}, z\right\}$, and the $3 n+m+q$ rows of M be $T=\left\{x_{i}, \bar{x}_{i}, u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{t_{j} \mid 1 \leq j \leq m\right\} \cup\left\{c_{j} \mid 1 \leq j \leq q\right\}$.
(2) For $i=1,2, \ldots, n, M_{x_{i}}=\left\{x_{i}\right\}, M_{\bar{x}_{i}}=\left\{\bar{x}_{i}\right\}$, and $M_{u_{i}}=\left\{x_{i}, \bar{x}_{i}, z\right\}$.
(3) For $j=1,2, \ldots, m, M_{t_{j}}=\left\{x_{i} \mid \bar{x}_{i} \in T_{j}\right\} \cup\left\{\bar{x}_{i} \mid x_{i} \in T_{j}\right\} \cup\{z\}$. (Note that $M_{t_{j}} \cap T_{j}=\emptyset$.)
(4) The bottom q rows of M are $M_{c_{j}}=\left\{\ell_{j}, z\right\}$, for $j=1,2, \ldots, q$.

We let $d=n+1, s=3 n+m, k=p$, and consider the instance (M, d, s, k) for the problem \bar{d}-SSRR.
First assume that φ has an implicant C of size p that is a subset of T_{m}. Let H be the submatrix of M that consists of the first $s=3 n+m$ rows plus the $k=p$ rows $M_{c_{j}}$ for which $\ell_{j} \in C$. We claim that H is \bar{d}-separable. That is, for any subsets S_{1} and S_{2} of $\left\{x_{1}, \overline{x_{2}}, \ldots, x_{n}, \bar{x}_{n}, z\right\}$ of size $\leq d$, there exists a row in H that separates them.

Case 1. $S_{1}-\{z\} \neq S_{2}-\{z\}$. Then, there exists $v \in X-\{z\}$ such that $v \in S_{1} \Delta S_{2}$. Then, $M_{v}\left(S_{1}\right) \neq M_{v}\left(S_{2}\right)$, and so H separates S_{1} from S_{2}.

Case 2. $S_{1}-\{z\}=S_{2}-\{z\}$. Then, it must be true that $S_{1} \Delta S_{2}=\{z\}$. Without loss of generality, assume $S_{2}=S_{1} \cup\{z\}$. Note that $\left|S_{2}\right| \leq n+1$ implies $\left|S_{1}\right| \leq n$.

Subcase 2.1. There exists an integer i such that $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right| \neq 1$. First, if $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=0$ for some i, then $M_{u_{i}}\left(S_{1}\right)=0$ and $M_{u_{i}}\left(S_{2}\right)=1$ (because $z \in S_{2}$). Next, if $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=2$ for some i, then we must have $\left|S_{1} \cap\left\{x_{k}, \bar{x}_{k}\right\}\right|=0$ for some k, because $\left|S_{1}\right| \leq n$. Then, again $M_{u_{k}}\left(S_{1}\right)=0 \neq 1=M_{u_{k}}\left(S_{2}\right)$. It follows that H separates S_{1} from S_{2}.

Subcase 2.2. $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=1$ for all $i \in\{1,2, \ldots, n\}$. Define a Boolean assignment $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow$ \{TRUE, FALSE\} by $\tau\left(x_{i}\right)=$ TRUE if and only if $x_{i} \in S_{1}$. We further divide this into two subcases:

Subcase 2.2.1. τ satisfies the conjunction C. Since C is an implicant of $\varphi=T_{1}+T_{2}+\cdots+T_{m}, \tau$ must satisfy some $T_{j}, 1 \leq j \leq m$. Thus, we have $T_{j} \subseteq S_{1}$: for any $x_{i} \in T_{j}, \tau\left(x_{i}\right)=$ TRUE and so $x_{i} \in S_{1}$; and for any $\bar{x}_{i} \in T_{j}$, $\tau\left(x_{i}\right)=$ FALSE and so $\bar{x}_{i} \in S_{1}$. It follows that $M_{t_{j}}\left(S_{1}\right)=0$ since $M_{t_{j}} \cap T_{j}=\emptyset$. On the other hand, $M_{t_{j}}\left(S_{2}\right)=1$ since $z \in M_{t_{j}} \cap S_{2}$. So, $M_{t_{j}}$, and hence H, separates S_{1} from S_{2}.

Subcase 2.2.2. τ does not satisfy C. Then, for some literal $\ell_{j} \in C, \tau\left(\ell_{j}\right)=0$. Thus, $\ell_{j} \notin S_{1}$, and $M_{c_{j}}\left(S_{1}\right)=0$. On the other hand, $M_{c_{j}}\left(S_{2}\right)=1$ since $z \in M_{c_{j}}$. Thus, $M_{c_{j}}$, which is a row in H, separates S_{1} from S_{2}.

Conversely, assume that H is a $(3 n+m+k) \times(2 n+1)$ submatrix of M that contains the first $3 n+m$ rows of M and is \bar{d}-separable. Let C be the conjunction of literals ℓ_{j} for which $M_{c_{j}}$ is a row in H. Then, obviously, $|C|=k$. We claim that C is an implicant of φ.

Let $\tau:\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow\{$ TRUE, FALSE $\}$ be a Boolean assignment that satisfies C. We need to show that τ satisfies φ. Let $S_{1}=\left\{x_{i} \mid \tau\left(x_{i}\right)=\right.$ TRUE $\} \cup\left\{\bar{x}_{i} \mid \tau\left(x_{i}\right)=\right.$ FALSE $\}$ and $S_{2}=S_{1} \cup\{z\}$. Then, S_{1} and S_{2} can be separated by some row in H. Since $S_{2}=S_{1} \cup\{z\}$, we know that they are not separable by a row $M_{x_{i}}$ or $M_{\bar{x}_{i}}$, for any $i=1,2, \ldots, n$. In addition, since $\left|S_{1} \cap\left\{x_{i}, \bar{x}_{i}\right\}\right|=1$ for all $i=1,2, \ldots, n$, we know that they cannot be separated by row $M_{u_{i}}$, for any $i=1,2, \ldots, n$. Furthermore, we note that for any literal $\ell_{j} \in C, \tau\left(\ell_{j}\right)=1$ and so $\ell_{j} \in S_{1}$ and $M_{c_{j}}\left(S_{1}\right)=M_{c_{j}}\left(S_{2}\right)=1$. Thus, S_{1} and S_{2} cannot be separated by any row $M_{c_{j}}$ of H.

Therefore, S_{1} and S_{2} must be separable by a row $M_{t_{j}}$, for some $j=1,2, \ldots, m$. That is, $M_{t_{j}}\left(S_{1}\right)=0 \neq 1=$ $M_{t_{j}}\left(S_{2}\right)$. Since $M_{t_{j}}$ contains the complements of the literals in T_{j}, we see that $T_{j} \subseteq S_{1}$. It follows that τ satisfies the term T_{j}, and hence φ.

5. Conclusion

In the previous sections, we investigated the computational complexity of problems related to non-unique probe selection. We have shown that the problem of verifying the minimality of a \bar{d}-separable matrix is $D P$-complete, and
hence is intractable, unless $D P=P$. For the problem of finding a minimum \bar{d}-separable submatrix, we conjecture that it is Σ_{2}^{P}-complete and, hence, is even more difficult than the minimal \bar{d}-separability problem. To support this conjecture, we showed that the problem \bar{d}-SSRR, which is a little more general than the minimum \bar{d}-separable submatrix problem, is Σ_{2}^{P}-complete. The complexity of the original problem Min $-\bar{d}$-SS remains open.

Acknowledgements

The first author was supported in part by the National Natural Science Foundation of China under grant No. 60553001 and the National Basic Research Program of China under grant No. 2007CB807900, 2007CB807901. The work of the second author was partially supported by the National Science Foundation under grant No. 0430124.

References

[1] J. Borneman, M. Chrobak, G. Della Vedova, A. Figueroa, T. Jiang, Probe selection algorithms with applications in the analysis of microbial communities, Bioinformatics 17 (Suppl.) (2001) S39-S48.
[2] D.-Z. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing, World Scientific, 2006.
[3] D.-Z. Du, K.-I Ko, Theory of Computational Complexity, Wiley \& Sons, New York, 2000.
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of $N P$-Completeness, Freeman, San Francisco, 1979.
[5] R. Herwig, A.O. Schmitt, M. Steinfath, J. O'Brien, H. Seidel, S. Meier-Ewert, H. Lehrach, U. Radelof, Information theoretical probe selection for hybridisation experiments, Bioinformatics 16 (2000) 890-898.
[6] G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert, Optimal robust non-unique probe selection using integer linear programming, Bioinformatics 20 (2004) i186-i193.
[7] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, New York, 1994.
[8] C.H. Papadimitriou, D. Wolfe, The complexity of facets resolved, J. Comput. Systems Sci. 37 (1988) 2-13.
[9] S. Rahmann, Rapid large-scale oligonucleotide selection for microarrays, in: Proceedings of the 1st IEEE Computer Society Conference on Bioinformatics, CSB' 02, 2002, pp. 54-63.
[10] S. Rahmann, Fast and sensitive probe selection for DNA chips using jumps in matching statistics, in: Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference, CSB' 03, 2003, pp. 57-64.
[11] A. Schliep, D.C. Torney, S. Rahmann, Group testing with DNA chips: Generating designs and decoding experiments, in: Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference, CSB' 03, 2003, pp. 84-93.
[12] C. Umans, The minimum equivalent DNF problem and shortest implicants, in: Proceedings of 39th IEEE Symposium on Foundation of Computer Science, 1998, pp. 556-563.
[13] X. Wang, B. Seed, Selection of oligonucleotide probes for protein coding sequences, Bioinformatics 19 (2003) 796-802.

[^0]: * Corresponding author. Tel.: +86 1051537918.

 E-mail addresses: cyx @mails.tsinghua.edu.cn (Y. Cheng), keriko@cs.sunysb.edu (K.-I Ko), weiliwu@utdallas.edu (W. Wu).

