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Abstract

We investigate the computational complexity of some basic problems regarding non-unique probe selection using separable
matrices. In particular, we prove that the minimal d̄-separable matrix problem is DP-complete, and the d̄-separable submatrix
with reserved rows problem, which is a generalization of the decision version of the minimum d̄-separable submatrix problem, is
Σ P

2 -complete.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a collection of n targets and a sample S containing at most d of these targets, and a collection of m probes
each of which hybridizes to a subset of the given targets, we want to select a subset of probes such that we can identify
all targets in S by observing the hybridization reactions between the selected probes and S. For each probe p, there
is a hybridization reaction between p and S if S contains at least one target that hybridizes with p; otherwise there
is no hybridization reaction. The above probe selection problem has been extensively studied recently [5,1,9,10,13]
due to its important applications, particularly in molecular biology. For example, one application of this identification
problem is in identifying viruses (targets) from a blood sample. We establish the presence or absence of the viruses
by observing the hybridization reactions between the blood sample and some probes; here, each probe is a short
oligonucleotide of size 8–25 that can hybridize with one or more of the viruses.

A probe is called unique if it hybridizes with only one target; otherwise it is called non-unique. Identifying targets
using unique probes is straightforward. However, in situations where the targets have a high degree of similarity, for
instance when identifying closely related virus subtypes, finding unique probes for all targets is difficult. In [11],
Schliep, Torney and Rahmann proposed a group testing method using non-unique probes to identify targets in a given
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sample. Since each non-unique probe can hybridize with more than one target, the identification problem becomes
more complicated. One important issue is how to select a subset from the given non-unique probes so that we can
decode the hybridization results, i.e., determine the presence or absence of targets in the sample S. Also, the number
of selected probes is exactly the number of hybridization experiments required, so we hope to select as few probes
as possible to reduce the experimental cost. In [11,6], two heuristics using greedy and linear programming based
techniques respectively are proposed for choosing a suitable subset of non-unique probes. In this paper, we investigate
the computational complexity of some basic problems in non-unique probe selection, in the context of the theory of
NP-completeness (see Chapter 10 in [2–4]).

2. Preliminaries

The non-unique probe selection problem can be formulated as follows. We are given a collection of n targets
t1, t2, . . . , tn , and a collection of m non-unique probes p1, p2, . . . , pm . A sample S is known to contain at most d
of the n targets. The probe–target hybridizations can be represented by an m × n 0–1 matrix M . Mi, j = 1 indicates
that probe pi hybridizes with target t j , and Mi, j = 0 indicates otherwise. The subset of probes selected corresponds
to a subset of rows in M , which forms a submatrix H of M with the same number of columns. The results for
hybridization between the selected probes and S also can be represented as a 0–1 vector V . Vi = 1 indicates that there
is a hybridization reaction between pi and S, i.e., pi hybridizes with at least one target in S, and Vi = 0 indicates
otherwise. If there is no error in the hybridization experiments, then V is equal to the union of the columns of H that
correspond to the targets in S. Here, the union of a subset of columns is simply the Boolean sum of these column
vectors. In order to identify all targets in S, the submatrix H should satisfy that all unions of up to d columns in H
are different; in other words H should be d̄-separable. Also, as mentioned above, we hope to minimize the number of
rows in H .

A matrix H is said to be d̄-separable if all unions of up to d columns in H are different. However, the following
equivalent definition is more useful in our proofs. Let H be a t × n Boolean matrix. For each i ∈ {1, 2, . . . , t}, define
Hi = { j | 1 ≤ j ≤ n, Hi, j = 1}. For any subset S of {1, 2, . . . , n} and any i ∈ {1, 2, . . . , t}, we write Hi (S) = 1 if
Hi ∩ S 6= ∅, and Hi (S) = 0 otherwise. We say two sets S1, S2 ⊆ {1, 2, . . . , n} can be separated by H if there exists
an integer i , 1 ≤ i ≤ t , such that Hi (S1) 6= Hi (S2). We say H is d̄-separable if for any two different subsets S1, S2 of
{1, 2, . . . , n}, with |S1| ≤ d and |S2| ≤ d , S1 and S2 can be separated by H .

3. Complexity of the minimal d̄-separable matrix

In non-unique probe selection, one natural problem of interest is determining whether a submatrix H chosen is
d̄-separable and minimal. By minimal we mean that the removal of any row from H will make it no longer d̄-separable.
The problem can be formulated as follows.

MIN-SEPARABILITY (MINIMAL SEPARABILITY): Given a t × n Boolean matrix H and an integer d ≤ n,
determine whether it is true that (a) H is d̄-separable, and (b) for any submatrix Q of H of size (t − 1) × n, Q
is not d̄-separable.

For a given binary matrix H and a positive integer d , the problem of determining whether H is d̄-separable is known
to be coNP-complete ([2], Theorem 10.2.1). In this section, we will show that MIN-SEPARABILITY is DP-complete.
The class DP is the collection of sets A which are the intersection of a set X ∈ NP and a set Y ∈ coNP. The notion of
DP-completeness has been used to characterize the complexity of the “exact-solution” version of many NP-complete
problems. For instance, the exact traveling salesman problem, which asks, for a given edge-weighted complete graph
G and a constant K , whether the minimum weight of a traveling salesman tour of the graph G is equal to K , is
DP-complete (see [7], Theorem 17.2). In addition, the “critical” versions of some NP-complete problems are also
known to be DP-complete. For instance, the following problem is the critical version of the 3-satisfiability problem,
and has been shown to be DP-complete by Papadimitriou and Wolfe [8]:

MIN-3-UNSAT: Given a 3-CNF Boolean formula ϕ which consists of clauses C1, C2, . . . , Cm , determine
whether it is true that (a) ϕ is not satisfiable, and (b) for any j , 1 ≤ j ≤ m, the formula ϕ j that consists of
all clauses C`, ` ∈ {1, 2, . . . , m} − { j}, is satisfiable.
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Although most exact-solution versions of NP-complete problems have been shown to be DP-complete, many criti-
cal versions are not known to be DP-complete. The problem MIN-SEPARABILITY may be viewed as a critical version
of the d̄-separability problem. We will prove it to be DP-complete by constructing a reduction from MIN-3-UNSAT.

Theorem 1. MIN-SEPARABILITY is DP-complete.

Proof. Recall that DP = {X ∩Y | X ∈ NP, Y ∈ coNP}. A problem A is DP-complete if A ∈ DP and, for all B ∈ DP,
B ≤

P
m A. For convenience, we write, for any t × n matrix H , H̃ j to denote the (t − 1) × n submatrix of H with the

j th row removed.
First, to see that MIN-SEPARABILITY ∈ DP, let X = {(H, d) | H is a t × n Boolean matrix, 1 ≤ d ≤ n,

(∀ j, 1 ≤ j ≤ t) H̃ j is not d̄-separable}, and Y = {(H, d) | H is a t × n Boolean matrix, 1 ≤ d ≤ n, H is d̄-
separable}. It is clear that MIN-SEPARABILITY = X ∩ Y . It is also not hard to see that X ∈ NP and Y ∈ coNP. In
particular, to see that X ∈ NP, we note that (H, d) ∈ X if and only if there exist 2t subsets S j,1, S j,2 of {1, 2, . . . , n},
for j ∈ {1, 2, . . . , t}, such that, for each j , Hk(S j,1) = Hk(S j,2) for all k ∈ {1, 2, . . . , t} − { j}.

Next, we describe a reduction from MIN-3-UNSAT to MIN-SEPARABILITY. Let ϕ be a 3-CNF Boolean formula
which consists of m clauses C1, C2, . . . , Cm , over n variables x1, x2, . . . , xn . For each j ∈ {1, 2, . . . , m}, let ϕ j
denote the Boolean formula that consists of all clauses C` for ` ∈ {1, 2, . . . , m} − { j}. From ϕ, we will construct a
(3n + m + 1) × (2n + 2) Boolean matrix H , and define d = n + 1. For convenience, we denote the columns of H by
X = {xi , x̄i | 1 ≤ i ≤ n}∪{y, z}; and denote the rows of H by T = {xi , x̄i , ui | 1 ≤ i ≤ n}∪{y}∪{C j | 1 ≤ j ≤ m}.
We define H by defining each row of H :

(1) For each 1 ≤ i ≤ n, let Hxi = {xi }, Hx̄i = {x̄i }, and Hui = {xi , x̄i , z}.
(2) Hy = {y}.
(3) For each 1 ≤ j ≤ m, let HC j = {xi | xi ∈ C j } ∪ {x̄i | x̄i ∈ C j } ∪ {y, z} (so that |HC j | = 5).

To prove the correctness of the reduction, we first verify that, if ϕ is not satisfiable, then H is d̄-separable. To see
this, let S1 and S2 be two subsets of X , each of size ≤ n + 1.

Case 1. S1 − {z} 6= S2 − {z}. Then, there exists v ∈ X − {z} such that v ∈ S11S2. Then, Hv(S1) 6= Hv(S2).
Case 2. S1−{z} = S2−{z}. Then, it must be true that S11S2 = {z}. Without loss of generality, assume S2 = S1∪{z}.

Note that |S2| ≤ n + 1 implies |S1| ≤ n.
Subcase 2.1. There exists an integer i such that |S1 ∩ {xi , x̄i }| 6= 1. First, if |S1 ∩ {xi , x̄i }| = 0 for some i ,

then Hui (S1) = 0 and Hui (S2) = 1 (because z ∈ S2). Next, if |S1 ∩ {xi , x̄i }| = 2 for some i , then we must have
|S1 ∩ {xk, x̄k}| = 0 for some k, because |S1| ≤ n. Then, again Huk (S1) = 0 6= 1 = Huk (S2).

Subcase 2.2. |S1 ∩ {xi , x̄i }| = 1 for all i ∈ {1, 2, . . . , n}. We note that, in this case, y 6∈ S1. Define a Boolean
assignment τ : {x1, x2, . . . , xn} → {TRUE, FALSE} by τ(xi ) = TRUE if and only if xi ∈ S1. Since ϕ is not satisfiable,
there exists a clause C j that is not satisfied by τ . This means that C j ∩ S1 = ∅, and so HC j (S1) = 0. However,
HC j (S2) = 1 since z ∈ S2.

The above completes the proof that H is d̄-separable.
Next, we show that if ϕ j is satisfiable for all j = 1, 2, . . . , m, then H̃v is not d̄-separable for all v ∈ T . First, for

v ∈ X − {z}, let S1 = {z} and S2 = {v, z}. Then, we can see that for all rows w ∈ X − {z, v}, Hw(S1) = 0 = Hw(S2).
Also, for all other rows w ∈ T − X , Hw(S1) = Hw(S2) = 1 since z ∈ Hw. So, S1 and S2 are not separable by H̃v .

Next, consider the case v = ui for some i ∈ {1, 2, . . . , n}. Let S1 = {xk | 1 ≤ k ≤ n, k 6= i}∪{y} and S2 = S1∪{z}.
It is clear that |S1| = n and |S2| = n + 1. We claim that S1 and S2 are not separable by H̃ui .

To prove the claim, we note that the rows Hxk , Hx̄k , for 1 ≤ k ≤ n, and row Hy cannot separate S1 from S2, since
S1 − {z} = S2 − {z}. Also, rows Huk (S1) = Huk (S2) = 1, for all k ∈ {1, 2, . . . , n} − {i}, because |S1 ∩ {xk, x̄k}| = 1
if k 6= i . In addition, for any j = 1, 2, . . . , m, we have HC j (S1) = 1 = HC j (S2), since y ∈ S1. It follows that H̃ui

cannot separate S1 from S2.
Finally, consider the case v = C j for some j ∈ {1, 2, . . . , m}. We note that ϕ j is satisfiable. So, there

is a Boolean assignment τ : {x1, x2, . . . , xn} → {TRUE, FALSE} satisfying all clauses C`, except C j . Define
S1 = {xi | τ(xi ) = TRUE} ∪ {x̄i | τ(xi ) = FALSE}, and S2 = S1 ∪ {z}. Then, like with the argument for the
case v = ui , we can verify that Hw(S1) = Hw(S2) for w ∈ X −{z}, and for w ∈ {ui | 1 ≤ i ≤ n}. In addition, for any
clause C`, with ` 6= j , C` is satisfied by τ . It follows that C` ∩ S1 6= ∅ and HC`

(S1) = 1 = HC`
(S2). This completes

the proof that H̃v is not d̄-separable, for all v ∈ T .
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Conversely, we show that if ϕ 6∈ MIN-3-UNSAT, then (H, n + 1) 6∈ MIN-SEPARABILITY. First, we consider the
case where ϕ is a satisfiable formula. Let τ : {x1, x2, . . . , xn} → {TRUE, FALSE} be a Boolean assignment satisfying
ϕ. Define S1 = {xi | τ(xi ) = TRUE} ∪ {x̄i | τ(xi ) = FALSE}, and S2 = S1 ∪ {z}. Then, like in the earlier proof, we
can verify that H cannot separate S1 from S2. In particular, HC j (S1) = 1 for all j ∈ {1, 2, . . . , m}, because τ satisfies
C j and so C j ∩ S1 6= ∅. Thus, (H, n + 1) 6∈ MIN-SEPARABILITY.

Next, assume that there exists an integer j ∈ {1, 2, . . . , m} such that ϕ j is not satisfiable. We claim that H̃C j

is d̄-separable. The proof of the claim is similar to the proof for the statement that if ϕ is not satisfiable then H is
d̄-separable.

Case 1. S1 − {z} 6= S2 − {z}. Then, there exists v ∈ X − {z} such that v ∈ S11S2. So, Hv(S1) 6= Hv(S2).
Case 2. S1 − {z} = S2 − {z}. Then, it must be true that S11S2 = {z}, and we may assume S2 = S1 ∪ {z}. We must

have |S2| ≤ n + 1 and |S1| ≤ n.
Subcase 2.1. There exists an integer i such that |S1 ∩ {xi , x̄i }| 6= 1. Like in the earlier proof, if |S1 ∩ {xi , x̄i }| = 0

for some i = 1, 2, . . . , n, then we can use Hui to separate S1 from S2. If |S1 ∩ {xi , x̄i }| = 2 for some i = 1, 2, . . . , n,
then |S1 ∩ {xk, x̄k}| = 0 for some k, and again Huk separates S1 from S2.

Subcase 2.2. |S1∩{xi , x̄i }| = 1 for all i ∈ {1, 2, . . . , n}. Then, since |S1| ≤ n, y 6∈ S1. Define a Boolean assignment
τ : {x1, x2, . . . , xn} → {TRUE, FALSE} by τ(xi ) = TRUE if and only if xi ∈ S1. Since ϕ j is not satisfiable, there exists
a clause C`, ` 6= j , such that τ(C`) = FALSE. This means that C` ∩ S1 = ∅, and so HC`

(S1) = 0. However,
HC`

(S2) = 1 since z ∈ S2. So, HC`
separates S1 from S2. This completes the proof that H̃C j is d̄-separable, and hence

(H, n + 1) 6∈ MIN-SEPARABILITY. �

4. Minimum d̄-separable submatrix

A more important problem in non-unique probe selection is finding a minimum subset of probes that can identify
up to d targets in a given sample. In the matrix representation, the problem can be formulated as the following: Given
a binary matrix M and a positive integer d , find a minimum d̄-separable submatrix of M with the same number of
columns (problem MIN-d̄ -SS in [2], Chapter 10).

For d = 1, MIN-d̄ -SS has been proved to be NP-hard ([2], Theorem 10.3.2), by modifying a reduction used in the
proof of the NP-completeness of the problem MINIMUM-TEST-SETS in [4]. For a fixed d > 1, MIN-d̄ -SS is believed
to be NP-hard; however up to now no formal proof has been known. We consider the decision version of MIN-d̄ -SS.

d̄ -SS (d̄ -SEPARABLE SUBMATRIX): Given a t × n Boolean matrix M and two integers d, k > 0, determine
whether there is a k × n submatrix H of M that is d̄-separable.

Recall that Σ P
2 is the complexity class of problems that are solvable in nondeterministic polynomial time with the

help of an NP-complete set as an oracle. For instance, the following problem SAT2 is Σ P
2 -complete ([3], Theorem

3.13): Given a Boolean formula ϕ over two disjoint sets X and Y of variables, determine whether there exists an
assignment to variables in X so that the resulting formula (over variables in Y ) is a tautology. It is easy to see that
d̄ -SS is in Σ P

2 . We conjecture that it is actually Σ P
2 -complete. Here, we consider a similar problem that is a little more

general than d̄-SS, and prove that it is Σ P
2 -complete.

d̄ -SSRR (d̄ -SEPARABLE SUBMATRIX WITH RESERVED ROWS): Given a t × n Boolean matrix M and three
integers d > 0, s, k ≥ 0, determine whether there is a d̄-separable (s + k) × n submatrix H of M that contains
the first s rows of M and k rows from the remaining t − s bottom rows of M .

Let ϕ be a Boolean formula; an implicant of ϕ is a conjunction C of literals that implies ϕ. The following problem
is proved to be Σ P

2 -complete by Umans [12].

SHORTEST IMPLICANT CORE: Given a DNF formula ϕ = T1 + T2 + · · · + Tm , and an integer p, determine
whether ϕ has an implicant C that consists of p literals from the last term Tm .

By a reduction from SHORTEST IMPLICANT CORE, we can obtain the following result.

Theorem 2. d̄ -SSRR is Σ P
2 -complete.
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Proof. The problem d̄-SSRR can be solved by a nondeterministic machine that guesses an (s + k) × n submatrix H
of M which contains the first s rows of M , and then determines whether H is d̄-separable. We note that the problem
of determining whether a given matrix H is d̄-separable is in coNP. Thus, d̄-SSRR ∈ Σ P

2 .
Next, we prove that d̄-SSRR is Σ P

2 -complete by constructing a polynomial-time reduction from SHORTEST

IMPLICANT CORE to it. To define the reduction, let (ϕ, p) be an instance of the problem SHORTEST IMPLICANT

CORE, i.e., let ϕ = T1 + T2 + · · ·+ Tm be a DNF formula over n variables x1, x2, . . . , xn , and let p be an integer > 0.
We note that each term T j , 1 ≤ j ≤ m, of ϕ is a conjunction of some literals. We also write T j to denote the set of
these literals. Assume that the last term Tm of ϕ has q literals `1, `2, . . . , `q . We define a (3n + m + q) × (2n + 1)

Boolean matrix M as follows:

(1) Let the 2n + 1 columns of M be X = {x1, x̄1, x2, x̄2, . . . , xn , x̄n , z}, and the 3n + m + q rows of M be
T = {xi , x̄i , ui | 1 ≤ i ≤ n} ∪ {t j | 1 ≤ j ≤ m} ∪ {c j | 1 ≤ j ≤ q}.

(2) For i = 1, 2, . . . , n, Mxi = {xi }, Mx̄i = {x̄i }, and Mui = {xi , x̄i , z}.
(3) For j = 1, 2, . . . , m, Mt j = {xi | x̄i ∈ T j } ∪ {x̄i | xi ∈ T j } ∪ {z}. (Note that Mt j ∩ T j = ∅.)
(4) The bottom q rows of M are Mc j = {` j , z}, for j = 1, 2, . . . , q.

We let d = n + 1, s = 3n + m, k = p, and consider the instance (M, d, s, k) for the problem d̄ -SSRR.
First assume that ϕ has an implicant C of size p that is a subset of Tm . Let H be the submatrix of M that consists

of the first s = 3n + m rows plus the k = p rows Mc j for which ` j ∈ C . We claim that H is d̄-separable. That is, for
any subsets S1 and S2 of {x1, x̄2, . . . , xn, x̄n, z} of size ≤ d, there exists a row in H that separates them.

Case 1. S1 − {z} 6= S2 − {z}. Then, there exists v ∈ X − {z} such that v ∈ S11S2. Then, Mv(S1) 6= Mv(S2), and
so H separates S1 from S2.

Case 2. S1−{z} = S2−{z}. Then, it must be true that S11S2 = {z}. Without loss of generality, assume S2 = S1∪{z}.
Note that |S2| ≤ n + 1 implies |S1| ≤ n.

Subcase 2.1. There exists an integer i such that |S1 ∩ {xi , x̄i }| 6= 1. First, if |S1 ∩ {xi , x̄i }| = 0 for some i , then
Mui (S1) = 0 and Mui (S2) = 1 (because z ∈ S2). Next, if |S1 ∩ {xi , x̄i }| = 2 for some i , then we must have
|S1 ∩ {xk, x̄k}| = 0 for some k, because |S1| ≤ n. Then, again Muk (S1) = 0 6= 1 = Muk (S2). It follows that H
separates S1 from S2.

Subcase 2.2. |S1 ∩ {xi , x̄i }| = 1 for all i ∈ {1, 2, . . . , n}. Define a Boolean assignment τ : {x1, x2, . . . , xn} →

{TRUE, FALSE} by τ(xi ) = TRUE if and only if xi ∈ S1. We further divide this into two subcases:
Subcase 2.2.1. τ satisfies the conjunction C . Since C is an implicant of ϕ = T1 + T2 + · · · + Tm , τ must satisfy

some T j , 1 ≤ j ≤ m. Thus, we have T j ⊆ S1: for any xi ∈ T j , τ(xi ) = TRUE and so xi ∈ S1; and for any x̄i ∈ T j ,
τ(xi ) = FALSE and so x̄i ∈ S1. It follows that Mt j (S1) = 0 since Mt j ∩ T j = ∅. On the other hand, Mt j (S2) = 1 since
z ∈ Mt j ∩ S2. So, Mt j , and hence H , separates S1 from S2.

Subcase 2.2.2. τ does not satisfy C . Then, for some literal ` j ∈ C , τ(` j ) = 0. Thus, ` j 6∈ S1, and Mc j (S1) = 0.
On the other hand, Mc j (S2) = 1 since z ∈ Mc j . Thus, Mc j , which is a row in H , separates S1 from S2.

Conversely, assume that H is a (3n + m + k) × (2n + 1) submatrix of M that contains the first 3n + m rows of M
and is d̄-separable. Let C be the conjunction of literals ` j for which Mc j is a row in H . Then, obviously, |C | = k. We
claim that C is an implicant of ϕ.

Let τ : {x1, x2, . . . , xn} → {TRUE, FALSE} be a Boolean assignment that satisfies C . We need to show that τ

satisfies ϕ. Let S1 = {xi | τ(xi ) = TRUE} ∪ {x̄i | τ(xi ) = FALSE} and S2 = S1 ∪ {z}. Then, S1 and S2 can be
separated by some row in H . Since S2 = S1 ∪ {z}, we know that they are not separable by a row Mxi or Mx̄i , for any
i = 1, 2, . . . , n. In addition, since |S1 ∩ {xi , x̄i }| = 1 for all i = 1, 2, . . . , n, we know that they cannot be separated
by row Mui , for any i = 1, 2, . . . , n. Furthermore, we note that for any literal ` j ∈ C , τ(` j ) = 1 and so ` j ∈ S1 and
Mc j (S1) = Mc j (S2) = 1. Thus, S1 and S2 cannot be separated by any row Mc j of H .

Therefore, S1 and S2 must be separable by a row Mt j , for some j = 1, 2, . . . , m. That is, Mt j (S1) = 0 6= 1 =

Mt j (S2). Since Mt j contains the complements of the literals in T j , we see that T j ⊆ S1. It follows that τ satisfies the
term T j , and hence ϕ. �

5. Conclusion

In the previous sections, we investigated the computational complexity of problems related to non-unique probe
selection. We have shown that the problem of verifying the minimality of a d̄-separable matrix is DP-complete, and
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hence is intractable, unless DP = P . For the problem of finding a minimum d̄-separable submatrix, we conjecture
that it is Σ P

2 -complete and, hence, is even more difficult than the minimal d̄-separability problem. To support this
conjecture, we showed that the problem d̄-SSRR, which is a little more general than the minimum d̄-separable
submatrix problem, is Σ P

2 -complete. The complexity of the original problem MIN-d̄ -SS remains open.
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