
Softmax Deep Double Deterministic Policy Gradients

Ling Pan1, Qingpeng Cai2, Longbo Huang1
1Institute for Interdisciplinary Information Sciences, Tsinghua University
pl17@mails.tsinghua.edu.cn, longbohuang@tsinghua.edu.cn

2Alibaba Group
qingpeng.cqp@alibaba-inc.com

Abstract

A widely-used actor-critic reinforcement learning algorithm for continuous control,
Deep Deterministic Policy Gradients (DDPG), suffers from the overestimation
problem, which can negatively affect the performance. Although the state-of-the-
art Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm mitigates
the overestimation issue, it can lead to a large underestimation bias. In this paper,
we propose to use the Boltzmann softmax operator for value function estimation in
continuous control. We first theoretically analyze the softmax operator in continu-
ous action space. Then, we uncover an important property of the softmax operator
in actor-critic algorithms, i.e., it helps to smooth the optimization landscape, which
sheds new light on the benefits of the operator. We also design two new algorithms,
Softmax Deep Deterministic Policy Gradients (SD2) and Softmax Deep Double
Deterministic Policy Gradients (SD3), by building the softmax operator upon single
and double estimators, which can effectively improve the overestimation and un-
derestimation bias. We conduct extensive experiments on challenging continuous
control tasks, and results show that SD3 outperforms state-of-the-art methods.

1 Introduction

Deep Deterministic Policy Gradients (DDPG) [25] is a widely-used reinforcement learning [27, 31,
25, 30] algorithm for continuous control, which learns a deterministic policy using the actor-critic
method. In DDPG, the parameterized actor network learns to determine the best action with highest
value estimates according to the critic network by policy gradient descent. However, as shown
recently in [15], one of the dominant concerns for DDPG is that it suffers from the overestimation
problem as in the value-based Q-learning [38] method, which can negatively affect the performance
with function approximation [35]. Therefore, it is of vital importance to have good value estimates,
as a better estimation of the value function for the critic can drive the actor to learn a better policy.

To address the problem of overestimation in actor-critic, Fujimoto et al. propose the Twin Delayed
Deep Deterministic Policy Gradient (TD3) method [15] leveraging double estimators [20] for the
critic. However, directly applying the Double Q-learning [20] algorithm, though being a promising
method for avoiding overestimation in value-based approaches, cannot fully alleviate the problem
in actor-critic methods. A key component in TD3 [15] is the Clipped Double Q-learning algorithm,
which takes the minimum of two Q-networks for value estimation. In this way, TD3 significantly
improves the performance of DDPG by reducing the overestimation. Nevertheless, TD3 can lead to a
large underestimation bias, which also impacts performance [10].

The Boltzmann softmax distribution has been widely adopted in reinforcement learning. The softmax
function can be used as a simple but effective action selection strategy, i.e., Boltzmann exploration
[34, 9], to trade-off exploration and exploitation. In fact, the optimal policy in entropy-regularized
reinforcement learning [18, 19] is also in the form of softmax. Although it has been long believed
that the softmax operator is not a non-expansion and can be problematic when used to update value

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

01
0.

09
17

7v
1

 [
cs

.L
G

]
 1

9
O

ct
 2

02
0

functions [26, 4], a recent work [33] shows that the difference between the value function induced by
the softmax operator and the optimal one can be controlled in discrete action space. In [33], Song et
al. also successfully apply the operator for value estimation in deep Q-networks [27], and show the
promise of the operator in reducing overestimation. However, the proof technique in [33] does not
always hold in the continuous action setting and is limited to discrete action space. Therefore, there
still remains a theoretical challenge of whether the error bound can be controlled in the continuous
action case. In addition, we find that the softmax operator can also be beneficial when there is no
overestimation bias and with enough exploration noise, while previous works fail to understand the
effectiveness of the operator in such cases.

In this paper, we investigate the use of the softmax operator in updating value functions in actor-critic
methods for continuous control, and show that it has several advantages that makes it appealing.
Firstly, we theoretically analyze the properties of the softmax operator in continuous action space. We
provide a new analysis showing that the error between the value function under the softmax operator
and the optimal can be bounded. The result paves the way for the use of the softmax operator in
deep reinforcement learning with continuous action space, despite that previous works have shown
theoretical disadvantage of the operator [26, 4]. Then, we propose to incorporate the softmax operator
into actor-critic for continuous control. We uncover a fundamental impact of the softmax operator,
i.e., it can smooth the optimization landscape and thus helps learning empirically. Our finding sheds
new light on the benefits of the operator, and properly justifies its use in continuous control.

We first build the softmax operator upon single estimator, and develop the Softmax Deep Deterministic
Policy Gradient (SD2) algorithm. We demonstrate that SD2 can effectively reduce overestimation and
outperforms DDPG. Next, we investigate the benefits of the softmax operator in the case where there
is underestimation bias on top of double estimators. It is worth noting that a direct combination of
the operator with TD3 is ineffective and can only worsen the underestimation bias. Based on a novel
use of the softmax operator, we propose the Softmax Deep Double Deterministic Policy Gradient
(SD3) algorithm. We show that SD3 leads to a better value estimation than the state-of-the-art TD3
algorithm, where it can improve the underestimation bias, and results in better performance and
higher sample efficiency.

We conduct extensive experiments in standard continuous control tasks from OpenAI Gym [6] to
evaluate the SD3 algorithm. Results show that SD3 outperforms state-of-the-art methods including
TD3 and Soft Actor-Critic (SAC) [19] with minimal additional computation cost.

2 Preliminaries

The reinforcement learning problem can be formulated by a Markov decision process (MDP) defined
as a 5-tuple (S,A, r, p, γ), with S and A denoting the set of states and actions, r the reward function,
p the transition probability, and γ the discount factor. We consider a continuous action space, and
assume it is bounded. We also assume the reward function r is continuous and bounded, where the
assumption is also required in [32]. In continuous action space, taking the max operator over A as
in Q-learning [38] can be expensive. DDPG [25] extends Q-learning to continuous control based
on the Deterministic Policy Gradient [32] algorithm, which learns a deterministic policy π(s;φ)
parameterized by φ to maximize the Q-function to approximate the max operator. The objective
is to maximize the expected long-term rewards J(π(·;φ)) = E[

∑∞
k=0 γ

kr(sk, ak)|s0, a0, π(·;φ)].
Specifically, DDPG updates the policy by the deterministic policy gradient, i.e.,

∇φJ(π(·;φ)) = Es
[
∇φ(π(s;φ))∇aQ(s, a; θ)|a=π(s;φ)

]
, (1)

where Q(s, a; θ) is the Q-function parameterized by θ which approximates the true parameter
θtrue. We let T (s′) denote the value estimation function, which is used to estimate the target
Q-value r + γT (s′) for state s′. Then, we see that DDPG updates its critic according to θ′ =
θ + αEs,a∼ρ (r + γTDDPG(s′)−Q(s, a; θ))∇θQ(s, a; θ), where TDDPG = Q(s′, π(s′;φ−); θ−),
ρ denotes the sample distribution from the replay buffer, α is the learning rate, and φ−, θ− denote
parameters of the target networks for the actor and critic respectively.

3 Analysis of the Softmax Operator in Continuous Action Space

In this section, we theoretically analyze the softmax operator in continuous action space by studying
the performance bound of value iteration under the operator.

2

The softmax operator in continuous action space is defined by softmaxβ (Q(s, ·)) =∫
a∈A

exp(βQ(s,a))∫
a′∈A exp(βQ(s,a′))da′

Q(s, a)da, where β is the parameter of the softmax operator.

In Theorem 1, we provide an O(1/β) upper bound for the difference between the max and softmax
operators. The result is helpful for deriving the error bound in value iteration with the softmax
operator in continuous action space. The proof of Theorem 1 is in Appendix A.1.

Theorem 1 Let C(Q, s, ε) = {a|a ∈ A, Q(s, a) ≥ maxaQ(s, a)− ε} and F (Q, s, ε) =∫
a∈C(Q,s,ε) 1da for any ε > 0 and any state s. The difference between the max operator and

the softmax operator is 0 ≤ maxaQ(s, a)− softmaxβ (Q(s, ·)) ≤
∫
a∈A 1da−1−lnF (Q,s,ε)

β + ε.

Remark. A recent work [33] studies the distance between the two operators in the discrete setting.
However, the proof technique in [33] is limited to discrete action space. This is because applying
the technique requires that for any state s, the set of the maximum actions at s with respect to
the Q-function Q(s, a) covers a continuous set, which often only holds in special cases in the
setting with continuous action. In this case, ε can be 0 and the bound still holds, which turns into∫

a∈A 1da−1−lnF (Q,s,0)

β . Note that when Q(s, a) is a constant function with respect to a, the upper
bound in Theorem 1 will be 0, where the detailed discussion is in Appendix A.1.

Now, we formally define value iteration with the softmax operator by Qt+1(s, a) = rt(s, a) +
γEs′∼p(·|s,a)[Vt(s′)], Vt+1(s) = softmaxβ (Qt+1(s, ·)), which updates the value function using the
softmax operator iteratively. In Theorem 2, we provide an error bound between the value function
under the softmax operator and the optimal in continuous action space, where the proof can be found
in Appendix A.2.

Theorem 2 For any iteration t, the difference between the optimal value function V ∗ and the value
function induced by softmax value iteration at the t-th iteration Vt satisfies:

||Vt−V ∗||∞ ≤ γt||V0(s)−V ∗(s)||∞+
1

1− γ
βε+

∫
a∈A 1da− 1

β
−

t∑
k=1

γt−k
mins lnF (Qk, s, ε)

β
.

Therefore, for any ε > 0, the error between the value function induced by the softmax operator and
the optimal can be bounded, which converges to ε/(1 − γ), and can be arbitrarily close to 0 as β
approaches to infinity. Theorem 2 paves the way for the use of the softmax operator for value function
updates in continuous action space, as the error can be controlled in a reasonable scale.

4 The Softmax Operator in Actor-Critic

In this section, we propose to employ the softmax operator for value function estimation in standard
actor-critic algorithms with single estimator and double estimators. We first show that the softmax
operator can smooth the optimization landscape and help learning empirically. Then, we show that it
enables a better estimation of the value function, which effectively improves the overestimation and
underestimation bias when built upon single and double estimators respectively.

4.1 The Softmax Operator Helps to Smooth the Optimization Landscape

We first show that the softmax operator can help to smooth the optimization landscape. For simplicity,
we showcase the smoothing effect based on a comparative study of DDPG and our new SD2 algorithm
(to be introduced in Section 4.2). SD2 is a variant of DDPG that leverages the softmax operator to
update the value function, which is the only difference between the two algorithms. We emphasize
that the smoothing effect is attributed to the softmax operator, and also holds for our proposed SD3
algorithm (to be introduced in Section 4.3), which uses the operator to estimate value functions.1

We design a toy 1-dimensional, continuous state and action environment MoveCar (Figure 1(a))
to illustrate the effect. The car always starts at position x0 = 8, and can take actions ranging in
[−1.0, 1.0] to move left or right, where the left and right boundaries are 0 and 10. The rewards are

1See Appendix B.1 for the comparative study on the smoothing effect of TD3 and SD3.

3

+2, +1 in neighboring regions centered at x1 = 1 and x2 = 9, respectively, with the length of the
neighboring region to be 1. In other positions, the reward is 0. The episode length is 100 steps. We
run DDPG and SD2 on MoveCar for 100 independent runs. To exclude the effect of the exploration,
we add a gaussian noise with the standard deviation to be high enough to the action during training,
and both two algorithms collects diverse samples in the warm-up phase where actions are sampled
from a uniform distribution. More details about the experimental setup are in Appendix B.2. The
performance result is shown in Figure 1(b), where the shaded area denotes half a standard deviation
for readability. As shown, SD2 outperforms DDPG in final performance and sample efficiency.

(a) MoveCar. (b) Performance. (c) Scatter plot. (d) Linear interpolation.

Figure 1: Analysis of smoothing effect in the MoveCar environment.

We investigate the optimization landscape based on the visualization technique proposed in [2].
According to Eq. (1), we take the loss function of the actor L(φ) = Es∼ρ [−Q(s, π(s;φ); θ)] as the
objective function in our analysis. To understand the local geometry of the actor losses LDDPG and
LSD2, we randomly perturb the corresponding policy parameters φ0 and φ1 learned by DDPG and
SD2 during training from a same random initialization. Specifically, the key difference between the
two parameters is that φ0 takes an action to move left in locations [0, 0.5], while φ1 determines to
move right. Thus, φ1 are better parameters than φ0. The random perturbation is obtained by randomly
sampling a batch of directions d from a unit ball, and then perturbing the policy parameters in positive
and negative directions by φ± αd for some value α. Then, we evaluate the difference between the
perturbed loss functions and the original loss function, i.e., L(φ± αd)− L(φ).

Figure 1(c) shows the scatter plot of random perturbation. For DDPG, the perturbations for its policy
parameters φ0 are close to zero (blue circles around the origin). This implies that there is a flat region
in LDDPG, which can be difficult for gradient-based methods to escape from [12]. Figure 2(a) shows
that the policy of DDPG converges to always take action −1 at each location. On the other hand,
as all perturbations around the policy parameters φ1 of SD2 with respect to its corresponding loss
function LSD2 are positive (orange triangles), the point φ1 is a local minimum. Figure 2(b) confirms
that SD2 succeeds to learn an optimal policy to move the agent to high-reward region [0.5, 1.5]. To
illustrate the critical effect of the softmax operator on the objective, we also evaluate the change of
the loss function LSD2(φ0) of SD2 with respect to parameters φ0 from DDPG. Figure 1(c) shows that
φ0 is in an almost linear region under LSD2 (green squares), and the loss can be reduced following
several directions, which demonstrates the benefits of optimizing the softmax version of the objective.

(a) Learned policy of DDPG. (b) Learned policy of SD2.

Figure 2: Policies of DDPG and SD2 during learning for each state (y-axis) at each step (x-axis).

To further analyze the difficulty of the optimization of LDDPG on a more global view, we linearly
interpolate between the parameters of the policies from DDPG and SD2, i.e., αφ0 + (1 − α)φ1
(0 ≤ α ≤ 1) as in [16, 2]. Figure 1(d) illustrates the result with varying values of α. As shown, there
exists at least a monotonically decreasing path in the actor loss of SD2 to a good solution. As a result,
the smoothing effect of the softmax operator on the optimization landscape can help learning and
reduce the number of local optima, and makes it less sensitive to different initialization.

4

4.2 Softmax Deep Deterministic Policy Gradients (SD2)

Here we present the design of SD2, which is short for Softmax Deep Deterministic Policy Gradients,
where we build the softmax operator upon DDPG [32] with a single critic estimator.

Specifically, SD2 estimates the value function using the softmax operator, and the update of the critic
of SD2 is defined by Eq. (2), where the the actor aims to optimize a soft estimation of the return.

θ′ = θ + αEs,a∼ρ (r + γTSD2(s′)−Q (s, a; θ))∇θQ(s, a; θ). (2)

In Eq. (2), TSD2(s′) = softmaxβ(Q(s′, ·; θ−)). However, the softmax operator involves the integral,
and is intractable in continuous action space. We express the Q-function induced by the softmax
operator in expectation by importance sampling [18], and obtain an unbiased estimation by

Ea′∼p
[

exp(βQ(s′, a′; θ−))Q(s′, a′; θ−)

p(a′)

]
/Ea′∼p

[
exp(βQ(s′, a′; θ−))

p(a′)

]
, (3)

where p(a′) denotes the probability density function of a Gaussian distribution. In practice, we sample
actions obtained by adding noises which are sampled from a Gaussian distribution ε ∼ N (0, σ) to
the target action π(s′;φ−), i.e., a′ = π(s′;φ−) + ε. Here, each sampled noise is clipped to [−c, c]
to ensure the sampled action is in Ac = [−c + π(s′;φ−), c + π(s′;φ−)]. This is because directly
estimating TSD2(s′) can incur large variance as 1/p(a′) can be very large. Therefore, we limit the
range of the action set to guarantee that actions are close to the original action, and that we obtain a
robust estimate of the softmax Q-value. Due to space limitation, we put the full SD2 algorithm in
Appendix C.1.

4.2.1 SD2 Reduces the Overestimation Bias

Besides the smoothing effect on the optimization landscape, we show in Theorem 3 that SD2 enables
a better value estimation by reducing the overestimation bias in DDPG, for which it is known that the
critic estimate can cause significant overestimation [15], where the proof is in Appendix C.2.

Theorem 3 Denote the bias of the value estimate and the true value induced by T as bias(T) =
E [T (s′)]− E [Q(s′, π(s′;φ−); θtrue)]. Assume that the actor is a local maximizer with respect to the
critic, then there exists noise clipping parameter c > 0 such that bias(TSD2) ≤ bias(TDDPG).

Figure 3: Performance comparison of DDPG
and SD2, and Deterministic SAC.

We validate the reduction effect in two MuJoCo [36]
environments, Hopper-v2 and Walker2d-v2, where
the experimental setting is the same as in Section 5.
Figure 3 shows the performance comparison between
DDPG and SD2, where the shaded area corresponds
to standard deviation. The red horizontal line denotes
the maximum return obtained by DDPG in evaluation
during training, while the blue vertical lines show
the number of steps for DDPG and SD2 to reach
that score. As shown in Figure 3, SD2 significantly
outperforms DDPG in sample efficiency and final
performance. Estimation of value functions is shown in Figure 4(a), where value estimates are
averaged over 1000 states sampled from the replay buffer at each timestep, and true values are
estimated by averaging the discounted long-term rewards obtained by rolling out the current policy
starting from the sampled states at each timestep. The bias of corresponding value estimates and
true values is shown in Figure 4(b), where it can be observed that SD2 reduces overestimation and
achieves a better estimation of value functions.

Regarding the softmax operator in SD2, one may be interested in comparing it with the log-sum-exp
operator applied in SAC [19]. To study the effect of different operators, we compare SD2 with a
variant of SAC with deterministic policy and single critic for fair comparison. The performance
of Deterministic SAC (with fine-tuned parameter of log-sum-exp) is shown in Figure 3, which
underperforms DDPG and SD2, where we also observe that its absolute bias is larger than that of
DDPG, and worsens the overestimation problem. Its value estimates can be found in Appendix C.3.

5

(a) Value estimates and true values. (b) Bias of value estimations.

Figure 4: Comparison of estimation of value functions of DDPG and SD2.

4.3 Softmax Deep Double Deterministic Policy Gradients (SD3)

In Section 4.2.1, we have analyzed the effect of the softmax operator in the aspect of value estimation
based on DDPG which suffers from overestimation. We now investigate whether the softmax operator
is still beneficial when there is underestimation bias. We propose a novel method to leverage the
softmax operator with double estimators, called Softmax Deep Double Deterministic Policy Gradients
(SD3). We show that SD3 enables a better value estimation in comparison with the state-of-the-art
TD3 algorithm, which can suffer from a large underestimation bias.

TD3 [15] maintains a pair of critics as in Double Q-learning [20], which is a promising approach to al-
leviate overestimation in the value-based Q-learning [38] method. However, directly applying Double
Q-learning still leads to overestimation in the actor-critic setting. To avoid the problem, Clipped Dou-
ble Q-learning is proposed in TD3 [15], which clips the Q-value from the double estimator of the critic
by the original Q-value itself. Specifically, TD3 estimates the value function by taking the minimum
of value estimates from the two critics according to y1, y2 = r + γmini=1,2Qi(s

′, π(s′;φ−); θ−i).
Nevertheless, it may incur large underestimation bias, and can affect performance [24, 10].

We propose to use the softmax operator based on double estimators to address the problem. It is
worth noting that a direct way to combine the softmax operator with TD3, i.e., apply the softmax
operator to the Q-value from the double critic estimator and then clip it by the original Q-value, as in
Eq. (4) is ineffective.

yi = r + γmin
(
T −iSD2(s′), Qi(s

′, π(s′;φ−); θ−i)
)
, T −iSD2(s′) = softmaxβ(Q−i(s

′, ·; θ−−i)). (4)

This is because according to Theorem 3, we have T −iSD2(s′) ≤ Q−i(s′, π(s′;φ−); θ−−i), then the value
estimates result in even larger underestimation bias compared with TD3. To tackle the problem, we
propose to estimate the target value for critic Qi by yi = r + γTSD3(s′), where

TSD3(s′) = softmaxβ

(
Q̂i(s

′, ·)
)
, Q̂i(s

′, a′) = min
(
Qi(s

′, a′; θ−i), Q−i(s
′, a′; θ−−i)

)
. (5)

Here, target actions for computing the softmax Q-value are obtained by the same way as in the SD2
algorithm in Section 4.2. The full SD3 algorithm is shown in Algorithm 1.

4.3.1 SD3 Improves the Underestimation Bias

In Theorem D.1, we present the relationship between the value estimation of SD3 and that of TD3,
where the proof is in Appendix D.1.

Theorem 4 Denote TTD3, TSD3 the value estimation functions of TD3 and SD3 respectively, then
we have bias(TSD3) ≥ bias(TTD3).

Figure 5: Comparison of the bias of
value estimations of TD3 and SD3.

As illustrated in Theorem D.1, the value estimation of
SD3 is larger than that of TD3. As TD3 leads to an un-
derestimation value estimate [15], we get that SD3 helps
to improve the underestimation bias of TD3. Therefore,
according to our SD2 and SD3 algorithms, we conclude
that the softmax operator can not only reduce the overes-
timation bias when built upon DDPG, but also improve
the underestimation bias when built upon TD3. We em-
pirically validate the theorem using the same two MuJoCo environments and estimation of value

6

Algorithm 1 SD3
1: Initialize critic networks Q1, Q2, and actor networks π1, π2 with random parameters θ1, θ2, φ1, φ2

2: Initialize target networks θ−1 ← θ1, θ−2 ← θ2, φ−1 ← φ1, φ−1 ← φ1

3: Initialzie replay buffer B
4: for t = 1 to T do
5: Select action a with exploration noise ε ∼ N (0, σ) based on π1 and π2

6: Execute action a, observe reward r, new state s′ and done d
7: Store transition tuple (s, a, r, s′, d) in B // d is the done flag
8: for i = 1, 2 do
9: Sample a mini-batch of N transitions {(s, a, r, s′, d)} from B

10: Sample K noises ε ∼ N (0, σ̄)
11: â′ ← πi(s

′;φ−i) + clip(ε,−c, c)
12: Q̂(s′, â′)← minj=1,2

(
Qj(s

′, â′; θ−j)
)

13: softmaxβ
(
Q̂(s′, ·)

)
← Eâ′∼p

[
exp(βQ̂(s′,â′))Q̂(s′,â′)

p(â′)

]
/Eâ′∼p

[
exp(βQ̂(s′,â′))

p(â′)

]
14: yi ← r + γ(1− d)softmaxβ

(
Q̂(s′, ·)

)
15: Update the critic θi according to Bellman loss: 1

N

∑
s(Qi(s, a; θi)− yi)2

16: Update actor φi by policy gradient: 1
N

∑
s

[
∇φi(π(s;φi))∇aQi(s, a; θi)|a=π(s;φi)

]
17: Update target networks: θ−i ← τθi + (1− τ)θ−i , φ−i ← τφi + (1− τ)φ−i
18: end for
19: end for

functions and true values as in Section 4.2.1. Comparison of the bias of value estimates and true
values is shown in Figure 5, where the performance comparison is in Figure 8. As shown, SD3
enables better value estimations as it achieves smaller absolute bias than TD3, while TD3 suffers
from a large underestimation bias. We also observe that the variance of value estimates of SD3 is
smaller than that of TD3.

5 Experiments

In this section, we first conduct an ablation study on SD3, from which we aim to obtain a better
understanding of the effect of each component, and to further analyze the main driver of the perfor-
mance improvement of SD3. Then, we extensively evaluate the SD3 algorithm on continuous control
benchmarks and compare with state-of-the-art methods.

We conduct experiments on continuous control tasks from OpenAI Gym [6] simulated by MuJoCo
[36] and Box2d [8]. We compare SD3 with DDPG [25] and TD3 [15] using authors’ open-sourced
implementation [14]. We also compare SD3 against Soft Actor-Critic (SAC) [19], a state-of-the-art
method that also uses double critics. Each algorithm is run with 5 seeds, where the performance is
evaluated for 10 times every 5000 timesteps. SD3 uses double actors and double critics based on
the structure of Double Q-learning [20], with the same network configuration as the default TD3
and DDPG baselines. For the softmax operator in SD3, the number of noises to sample K is 50,
and the parameter β is mainly chosen from {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1}
using grid search. All other hyperparameters of SD3 are set to be the same as the default setting
for TD3 on all tasks except for Humanoid-v2, as TD3 with the default hyperparameters almost
fails in Humanoid-v2. To better demonstrate the effectiveness of SD3, we therefore employ the
fine-tuned hyperparameters provided by authors of TD3 [14] for Humanoid-v2 for DDPG, TD3 and
SD3. Details for hyperparameters are in Appendix E.1, and the implementation details are publicly
available at https://github.com/ling-pan/SD3.

5.1 Ablation Study

We first conduct an ablative study of SD3 in an MuJoCo environment HalfCheetah-v2 to study the
effect of structure and important hyperparameters.

Structure. From Figure 6(a), we find that for SD3 and TD3, using double actors outperforms its
counterpart with a single actor. This is because using a single actor as in TD3 leads to a same
training target for both critics, which can be close during training and may not fully utilize the double

7

https://github.com/ling-pan/SD3

(a) (b) (c) (d) (e)

Figure 6: Ablation study on HalfCheetah-v2 (mean ± standard deviation). (a) Structure. (b) Number
of noises K. (c) Comparison with TD3-K. (d) Comparison with SD3 (averaged). (e) Parameter β.

estimators. However, TD3 with double actors still largely underperforms SD3 (either with single or
double actors).

The number of noises K. Figure 6(b) shows the performance of SD3 with varying number of noise
samples K. The performance of all K values is competitive except for K = 2, where it fails to
behave stable and also underperforms other values of K in sample efficiency. As SD3 is not sensitive
to this parameter, we fix K to be 50 in all environments as it performs best. Note that doing so does
not incur much computation cost as setting K to be 50 only takes 3.28% more runtime on average
compared with K = 1 (in this case the latter can be viewed as a variant of TD3 with double actors).

The effect of the softmax operator. It is also worth studying the performance of a variant of TD3
using K samples of actions to evaluate the Q-function (TD3-K). Specifically, TD3-K samples K
actions by the same way as in SD3 to compute Q-values before taking the min operation (details are
in Appendix E.2). As shown in Figure 6(c), TD3-K outperforms TD3 for some large values of K,
but only by a small margin and still underperforms SD3. We also compare SD3 with its variant SD3
(averaged) that directly averages the K samples to compute the Q-function, which underperforms
SD3 by a large margin as shown in Figure 6(d). Results confirm that the softmax operator is the key
factor for the performance improvement for SD3 instead of other changes (multiple samples).

The parameter β. The parameter β of the softmax operator directly affects the estimation of value
functions, and controls the bias of value estimations, which is a critical parameter for the performance.
A smaller β leads to lower variance while a larger β results in smaller bias. Indeed, there is an
intermediate value that performs best that can best provide the trade-off as in Figure 6(e).

5.2 Performance Comparison

Figure 7: Sample efficiency
comparison.

The performance comparison is shown in Figure 8, where we report
the averaged performance as the solid line, and the shaded region
denotes the standard deviation. As demonstrated, SD3 significantly
outperforms TD3, where it achieves a higher final performance and is
more stable due to the smoothing effect of the softmax operator on the
optimization landscape and a better value estimation. Figure 7 shows
the number of steps for TD3 and SD3 to reach the highest score of TD3
during training. We observe that SD3 learns much faster than TD3.
It is worth noting that SD3 outperforms SAC in most environments
except for Humanoid-v2, where both algorithms are competitive.

6 Related Work

How to obtain good value estimation is an important problem in reinforcement learning, and has been
extensively investigated in discrete system control for deep Q-network (DQN) [20, 37, 3, 33, 24, 29].
Ensemble-DQN [3] leverages an ensemble of Q-networks which can reduce variance while Averaged-
DQN [3] uses previously learned Q-value estimates by averaging them to lower value estimations.
Lan et al. [24] propose to use an ensemble scheme to control the bias of value estimates for DQN
[27]. In [33], Song et al. apply the softmax operator for discrete control in DQNs, and validate the
performance gain by showing that softmax can reduce overestimation and gradient noise in DQN. In
[29], Pan et al. propose a convergent variant of the softmax operator for discrete control. In this paper,
our focus is to investigate the properties and benefits of the softmax operator in continuous control,

8

Figure 8: Performance comparison in MuJoCo environments.

where we provide new analysis and insights. TD3 [15] is proposed to tackle the overestimation
problem in continuous action space. However, it can suffer from a large underestimation problem,
which is a focus of this work. There are several works that build on and improve DDPG including
prioritized experience replay [21], distributional [5], model-based [17, 7, 13], evolution methods
[23], etc. Prior works [11, 28] generalize DDPG for learning a stochastic Gaussian policy, while we
uncover and study benefits of softmax operator with deterministic policy. Achiam et al. [1] study the
divergence problem of deep Q-learning, and propose PreQN to ensure that the value function update
is non-expansive. However, PreQN can be computationally expensive, while SD3 is efficient.

7 Conclusion

In this paper, we show that it is promising to use the softmax operator in continuous control. We first
provide a new analysis for the error bound between the value function induced by the softmax operator
and the optimal in continuous control. We then show that the softmax operator (i) helps to smooth the
optimization landscape, (ii) can reduce the overestimation bias and improve performance of DDPG
when combined with single estimator (SD2), and (iii) can also improve the underestimation bias of
TD3 when built upon double estimators (SD3). Extensive experimental results on standard continuous
control benchmarks validate the effectiveness of the SD3 algorithm, which significantly outperforms
state-of-the-art algorithms. For future work, it is interesting to study an adaptive scheduling of
the parameter β in SD2 and SD3. In addition, it also worths to quantify the bias reduction for
overestimation and underestimation. It will also be an interesting direction to unify SD2 and SD3
into a same framework to study the effect on value estimations.

Acknowledgments

We thank the anonymous reviewers for their valuable feedbacks and suggestions. The work of Ling
Pan and Longbo Huang was supported in part by the National Natural Science Foundation of China
Grant 61672316, the Zhongguancun Haihua Institute for Frontier Information Technology and the
Turing AI Institute of Nanjing.

Broader Impact

Recent years have witnessed unprecedented advances of deep reinforcement learning in real-world
tasks involving high-dimensional state and action spaces that leverages the power of deep neural
networks including robotics, transportation, recommender systems, etc. Our work investigates the
Boltzmann softmax operator in updating value functions in reinforcement learning for continuous
control, and provides new insights and further understanding of the operator. We show that the
error bound of the value function under the softmax operator and the optimal can be bounded and
it is promising to use the softmax operator in continuous control. We demonstrate the smoothing

9

effect of the softmax operator on the optimization landscape, and shows that it can provide better
value estimations. Experimental results show the potential of our proposed algorithm to improve
final performance and sample efficiency. It will be interesting to apply our algorithm in practical
applications.

A Proofs in Section 4

A.1 Proof of Theorem 1

Theorem 1 Let C(Q, s, ε) = {a|a ∈ A, Q(s, a) ≥ maxaQ(s, a)− ε} and F (Q, s, ε) =∫
a∈C(Q,s,ε) 1da for any ε > 0 and any state s. The difference between the max operator and

the softmax operator satisfies

0 ≤ max
a

Q(s, a)− softmaxβ (Q(s, ·)) ≤
∫
a∈A 1da− 1− lnF (Q, s, ε)

β
+ ε. (6)

Proof. For the left-hand-side, we have by definition that

softmaxβ (Q(s, ·)) ≤
∫
a∈A

exp(βQ(s, a))∫
a′∈A exp(βQ(s, a′))da′

max
a′

Q(s, a′)da ≤ max
a

Q(s, a). (7)

For the right-hand-side, we first provide a relationship between the softmax operator and the log-
sum-exp operator lseβ (Q(s, ·)) (Eq. (9) in [18]) in continuous action spaces, i.e., lseβ (Q(s, ·)) =
1
β ln

∫
a∈A exp(βQ(s, a))da.

Denote the probability density function of the softmax distribution by pβ(s, a) =
exp(βQ(s,a))∫

a′∈A exp(βQ(s,a′))da′
. We have

lseβ (Q(s, ·))− softmaxβ (Q(s, ·))

=
ln
∫
a∈A exp(βQ(s, a))da

β
−
∫
a∈A

pβ(s, a)Q(s, a)da

=

∫
a∈A pβ(s, a)(ln

∫
a′∈A exp(βQ(s, a′))da′)da

β
−
∫
a∈A pβ(s, a)βQ(s, a)da

β

=

∫
a∈A−pβ(s, a) ln pβ(s, a)da

β
.

(8)

As pβ(s, a) is non-negative, we have that ∀a,−pβ(s, a) ln pβ(s, a) ≤ 1− pβ(s, a).

Note that
∫
a∈A pβ(s, a)da = 1. We have

lseβ (Q(s, ·))− softmaxβ (Q(s, ·)) ≤
∫
a∈A 1da− 1

β
. (9)

Secondly, by the definition of the log-sum-exp operator and the fact that C(Q, s, ε) is a subset of A,
we have

lseβ (Q(s, ·)) =
ln
∫
a∈A exp(βQ(s, a))da

β

≥
ln
∫
a∈C(Q,s,ε) exp(βQ(s, a))da

β

≥
ln
∫
a∈C(Q,s,ε) exp (β(maxaQ(s, a)− ε)) da

β

≥ lnF (Q, s, ε) + β (maxaQ(s, a)− ε)
β

.

(10)

10

As a result, we get the inequality of the max operator and the log-sum-exp operator as in Eq. (11).

lseβ (Q(s, ·)) ≥ max
a

Q(s, a) +
lnF (Q, s, ε)− βε

β
. (11)

Finally, combining Eq. (9) and Eq. (11), we obtain Eq. (6). �

Remark. In a special case where for any state s, the set of the maximum actions at s with respect
to the Q-function Q(s, a) covers a continuous set, ε can be 0 and the upper bound in Eq. (6) still

holds as F (Q, s, 0) > 0, which turns into
∫
a∈A 1da−1−lnF (Q,s,0)

β . Please also note that when Q(s, a)

is a constant function w.r.t. a, the upper bound will be 0 in this case as from Eq. (8), we get that
lseβ (Q(s, ·))− softmaxβ (Q(s, ·)) =

ln
∫
a∈A 1da

β and lseβ (Q(s, ·)) ≥ maxaQ(s, a) +
ln

∫
a∈A 1da

β .

A.1.1 Discussion of Theorem 1 and Results in [33].

A recent work [33] studies the distance between the max and the softmax operators in the discrete
setting. However, the proof technique in [33] is limited to discrete action space, and cannot be
naturally extended to continuous action space. Specifically, following the line of analysis in [33], the
gap between the max operator and the softmax operator is given by∫

a∈A
1
D exp(−βδ(s, a))δ(s, a)da∫

a∈A
1
D exp(−βδ(s, a))da

=

∫
a∈A−Am

1
D exp(−βδ(s, a))δ(s, a)da

c+
∫
a∈A−Am

1
D exp(−βδ(s, a))da

, (12)

where Am is the set of actions where the Q-function Q(s, ·) attains the maximum value, δ(s, a) =

maxa′ Q(s, a′) − Q(s, a), D =
∫
a∈A 1da, and c =

∫
a∈A

Ia∈Am

D da, where Ia∈Am
is the indicator

function of event {a ∈ Am}. Please note that the analysis in [33] requires that c > 0, which does
not always hold in the continuous case. As a result, the proof technique in [33] cannot be naturally
extended to the continuous action setting, and we provide a new and different analysis in Theorem 1.

A.2 Proof of Theorem 2

Theorem 2 For any iteration t, the difference between the optimal value function V ∗ and the value
function induced by softmax value iteration at the t-th iteration Vt satisfies:

||Vt−V ∗||∞ ≤ γt||V0(s)−V ∗(s)||∞+
1

1− γ
βε+

∫
a∈A 1da− 1

β
−

t∑
k=1

γt−k
mins lnF (Qk, s, ε)

β
.

(13)

Proof. By the definition of softmax value iteration, we get

|Vt+1(s)− V ∗(s)|
=|softmaxβ (Qt+1(s, ·))−max

a
Q∗(s, a)|

≤|softmaxβ (Qt+1(s, ·))−max
a

Qt+1(s, a)|+ |max
a

Qt+1(s, a)−max
a

Q∗(s, a)|.
(14)

According to Theorem 1 and the fact that the max operator is non-expansive [22], we have

|Vt+1(s)− V ∗(s)| ≤
βε+

∫
a∈A 1da− 1− lnF (Qt+1, s, ε)

β
+ max

a
|Qt+1(s, a)−Q∗(s, a)|.

(15)

We also have the following inequality

|Qt+1(s, a′)−Q∗(s, a′)| ≤ γmax
s′
|Vt(s′)− V ∗(s′)|. (16)

Combining (15) and (16), we obtain

||Vt+1(s)− V ∗(s)||∞ ≤
βε+

∫
a∈A 1da− 1−mins lnF (Qt+1, s, ε)

β
+ γ||Vt(s)− V ∗(s)||∞.

(17)

11

Therefore, we have

||Vt(s)− V ∗(s)||∞

≤γt||V0(s)− V ∗(s)||∞ +

t∑
k=1

γt−k
βε+

∫
a∈A 1da− 1−mins lnF (Qk, s, ε)

β

≤γt||V0(s)− V ∗(s)||∞ +
1

1− γ
βε+

∫
a∈A 1da− 1

β
−

t∑
k=1

γt−k
mins lnF (Qk, s, ε)

β
.

(18)

�

B Softmax Helps to Smoooth the Optimization Landscape

B.1 Comparative Study on the Smoothing Effect of TD3 and SD3

We demonstrate the smoothing effect of SD3 on the optimization landscape in this section, where
experimental setup is the same as in Section 4.1 in the text for the comparative study of SD2 and
DDPG. Experimental details can be found in Section B.2.

(a) Performance comparison. (b) Scatter plot.

Figure 9: Analysis of smoothing effect of TD3 and SD3 in the MoveCar environment.

The performance comparison of SD3 and TD3 is shown in Figure 9(a), where SD3 significantly
outperforms TD3. Next, we analyze the smoothing effect of SD3 on the optimization landscape
by the same way as in Section 4.1 in the text. We obtain the scatter plot of random perturbation in
Figure 9(b). Specifically, φ0 and φ1 are policy parameters learned by TD3 and SD3 during training
from a same random initialization, where φ0 corresponds to a sub-optimal policy that determines to
move to the right at the initial position x0 while φ1 corresponds to an optimal policy that determines
to move to the left and is able to stay in the high-reward region. As demonstrated in Figure 9(b),
for TD3, we observe that blue triangles are around the origin, so the perturbations for its policy
parameters φ0 are close to zero. This implies that there is a flat region in LTD3 and can be difficult for
gradient-based methods to escape from [12]. For SD3, as the perturbations for its policy parameters
φ1 with respect to LSD3 are all positive (orange circles), the point φ1 is likely a local optimum. To
demonstrate the critical effect of the softmax operator on the objective, we also evaluate the change
of the loss function LSD3 of SD3 with respect to parameters φ0 from TD3. As shown in Figure 9(b),
the green squares indicate that the loss LSD3 can be reduced following many directions, which shows
the advantage of optimizing the softmax version of the objective.

So far, we have demonstrated the smoothing effect of SD3 over TD3. We further compare SD3
and TD3-K (which is introduced in Section 5.1 in the text) to demonstrate the critical effect of the
softmax operator on the objective. The performance comparison is shown in Figure 10(a), where K
is the same as in SD3. As shown, although TD3-K performs better than TD3, SD3 still outperforms
TD3-K by a large margin in final performance. With the same way of random perturbation as in the
previous part, we demonstrate the scatter plot of the random perturbation in Figure 10(b). Similarly,
the evaluation of the change of the loss function LSD3 of SD3 with respect to parameters φ0 from
TD3-K (green squares) shows the critical effect of the softmax operator on the objective, as the loss
can be reduced following a number of directions.

12

(a) Performance comparison. (b) Scatter plot.

Figure 10: Analysis of smoothing effect of TD3-K and SD3 in the MoveCar environment.

B.2 Experimental Setup in the MoverCar Environment

Hyperparameters of DDPG and SD2 are summarized in Table 1. For TD3 and SD3, hyperparameters
are the same as in Table 2, except that we use N (0, 0.5) as in Table 1 for exploration to ensure that
the exploration noise is high enough during training to exclude the effect of lack of exploration. For
the TD3-K algorithm in Figure 10, K is the same as in SD3. We run all algorithms are 100 times
(with different random seeds 0-99).

Table 1: Hyperparameters of DDPG and SD2.
Hyperparameter Value

Shared hyperparameters (From [15])
Batch size 100
Critic network (400, 300)
Actor network (400, 300)
Learning rate 10−3

Optimizer Adam
Replay buffer size 106

Warmup steps 104

Exploration policy N (0, 0.5)
Discount factor 0.99
Target update rate 5× 10−3

Hyperparameters for SD2
Number of samples K 50
Action sampling noise σ̄ 0.2
Noise clipping coefficient c 0.5

C Softmax Deep Deterministic Policy Gradients

C.1 The SD2 Algorithm

The full SD2 algorithm is shown in Algorithm 2.

C.2 Proof of Theorem 3

Theorem 3 Denote the bias of the value estimate and the true value induced by T as bias(T) =
E [T (s′)]− E [Q(s′, π(s′;φ−); θtrue)]. Assume that the actor is a local maximizer with respect to the
critic, then there exists noise clipping parameter c > 0 such that bias(TSD2) ≤ bias(TDDPG).

Proof. By definition, we have

TDDPG(s′) = Q(s′, π(s′;φ−); θ−), TSD2(s′) = softmaxβ(Q(s′, ·; θ−)) (19)

Assume that the actor is a local maximizer with respect to the critic. There exists c > 0 such that
for any state s′, the action selected by the policy π(s′;φ−) at state s′ is a local maximum of the

13

Algorithm 2 SD2

1: Initialize the critic network Q and the actor network π with random parameters θ, φ
2: Initialize target networks θ− ← θ, φ− ← φ
3: Initialzie replay buffer B
4: for t = 1 to T do
5: Select action a with exploration noise ε ∼ N (0, σ) based on π
6: Execute action a, observe reward r, new state s′ and done d
7: Store transition tuple (s, a, r, s′, d) in B
8: Sample a mini-batch of N transitions {(s, a, r, s′, d)} from B
9: Sample K noises ε ∼ N (0, σ̄)

10: â′ ← π(s′;φ−) + clip(ε,−c, c)
11: softmaxβ (Q(s′, ·; θ−))← Eâ′∼p

[
exp(βQ(s′,â′;θ−))Q(s′,â′;θ−)

p(â′)

]
/Eâ′∼p

[
exp(βQ(s′,â′;θ−))

p(â′)

]
12: yi ← r + γ(1− d)softmaxβ (Q(s′, ·; θ−))
13: Update the parameter θ of the critic according to Bellman loss: 1

N

∑
s(Q(s, a; θ)− y)2

14: Update the parameter φ of the actor by policy gradient:
1
N

∑
s

[
∇φ(π(s;φ))∇aQ(s, a; θ)|a=π(s;φ)

]
15: Update target networks: θ− ← τθ + (1− τ)θ−, φ− ← τφ+ (1− τ)φ−

16: end for

Q-function Q(s′, ·; θ−), i.e.,

Q(s′, π(s′;φ−); θ−) = max
a∈Ac

Q(s′, a; θ−). (20)

From Theorem 1, we have that

softmaxβ(Q(s′, ·; θ−)) ≤ max
a∈Ac

Q(s′, a; θ−). (21)

Thus,
softmaxβ(Q(s′, ·; θ−)) ≤ Q(s′, π(s′;φ−); θ−), (22)

and we obtain TSD2(s′) ≤ TDDPG(s′). Therefore, bias(TSD2) ≤ bias(TDDPG). �

C.3 Comparison of Estimation of Value Functions of DDPG and Deterministic SAC

Figure 11(a) shows the value estimates and true values of DDPG and Deterministic SAC, and
Figure 11(b) demonstrates the corresponding bias of value estimations, from which we observe that
Deterministic SAC incurs larger overestimation bias in comparison with DDPG.

(a) Value estimates and true values. (b) Bias of value estimations.

Figure 11: Comparison of estimations of value functions of DDPG and Deterministic SAC.

D Softmax Deep Double Deterministic Policy Gradients

D.1 Proof of Theorem 4

Theorem 4 Denote TTD3, TSD3 the value estimation functions of TD3 and SD3 respectively, then we
have bias(TSD3) ≥ bias(TTD3).

14

Proof. By definition, we have

TTD3(s′) = Q̂i(s
′, â
′
), TSD3(s′) = softmaxβ(Q̂i(s

′, â
′
)). (23)

Since
E
[
Q̂i(s

′, â
′
)
]

= E
[
softmax0(Q̂i(s

′, â
′
))
]
, (24)

it suffices to prove that ∀β ≥ 0,

softmaxβ

(
Q̂i(s

′, â
′
)
)
≥ softmax0

(
Q̂i(s

′, â
′
)
)
. (25)

Now we show that the softmax operator is increasing with β. By definition,

∇βsoftmaxβ (Q(s, ·))

=∇β

∫
a∈A e

βQ(s,a)Q(s, a)da∫
a′∈A e

βQ(s,a′)da′

=

∫
a∈A e

βQ(s,a)Q2(s, a)da×
∫
a′∈A e

βQ(s,a′)da′(∫
a′∈A e

βQ(s,a′)da′
)2 −

(∫
a∈A e

βQ(s,a)Q(s, a)da
)2(∫

a′∈A e
βQ(s,a′)da′

)2 .

(26)

From the Cauchy-Schwarz inequality, we have ∀β,∇βsoftmaxβ (Q(s, ·)) ≥ 0. Thus, softmaxβ
attains its minimum at β = 0. �

E Experimental Setup

E.1 Hyperparameters

Hyperparameters of DDPG, TD3, and SD3 are shown in Table 2, where DDPG refers to ‘OurDDPG’
in [14]. Note that all hyperparameters are the same for all environments except for Humanoid-
v2, as TD3 with default hyperparameters in this environment almost fails. For Humanoid-v2, the
hyperparameters is a tuned set as provided in author’s open-source implementation [14] to make TD3
work in this environment. For SD3, the parameter β is 10−3 for Ant-v2, 5×10−3 for HalfCheetah-v2,
5× 10−2 for BipedalWalker-v2, Hopper-v2, and Humanoid-v2, 10−1 for Walker2d-v2, 5× 10−1 for
LunarLanderContinuous-v2, and a relatively large β = 5× 102 for Swimmer-v2.

Table 2: Hyperparameters of DDPG, TD3, and SD3.

Hyperparameter All environments except Humanoid-v2for Humanoid-v2

Shared hyperparameters (From [15, 14])
Batch size 100 256
Critic network (400, 300) (256, 256)
Actor network (400, 300) (256, 256)
Learning rate 10−3 3× 10−4

Optimizer Adam
Replay buffer size 106

Warmup steps 104

Exploration policy N (0, 0.1)
Discount factor 0.99
Target update rate 5× 10−3

Noise clip 0.5

Hyperparameters for TD3 (From [15])
Target update interval 2
Target noise 0.2

Hyperparameters for SD3
Number of samples K 50
Action sampling noise σ̄ 0.2

15

E.2 The TD3-K Algorithm

We compare SD3 with TD3-K, a variant of TD3 that uses K samples of actions to evaluate the
Q-function, to demonstrate that using multiple samples is not the main factor for the performance
improvement of SD3. Specifically, TD3-K samples K actions a′ by the same way as in SD3
to compute Q-values, and take the min operation over the averaged Q-values, i.e., y1,2 = r +

γmini=1,2

(
1
K

∑K
j=1Qi(s

′, a′; θ−i)
)

.

References

[1] J. Achiam, E. Knight, and P. Abbeel. Towards characterizing divergence in deep q-learning.
arXiv preprint arXiv:1903.08894, 2019.

[2] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans. Understanding the impact of entropy
on policy optimization. In International Conference on Machine Learning, pages 151–160,
2019.

[3] O. Anschel, N. Baram, and N. Shimkin. Averaged-dqn: Variance reduction and stabilization for
deep reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 176–185. JMLR. org, 2017.

[4] K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
243–252. JMLR. org, 2017.

[5] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,
N. Heess, and T. Lillicrap. Distributed distributional deterministic policy gradients. arXiv
preprint arXiv:1804.08617, 2018.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement learn-
ing with stochastic ensemble value expansion. In Advances in Neural Information Processing
Systems, pages 8224–8234, 2018.

[8] E. Catto. Box2d: A 2d physics engine for games. 2011.

[9] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu. Boltzmann exploration done right. In
Advances in neural information processing systems, pages 6284–6293, 2017.

[10] K. Ciosek, Q. Vuong, R. Loftin, and K. Hofmann. Better exploration with optimistic actor critic.
In Advances in Neural Information Processing Systems, pages 1785–1796, 2019.

[11] K. Ciosek and S. Whiteson. Expected policy gradients. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[12] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In Advances
in neural information processing systems, pages 2933–2941, 2014.

[13] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018.

[14] S. Fujimoto. Open-source implementation for TD3. https://github.com/sfujim/TD3.

[15] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. 2018.

[16] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural network
optimization problems. arXiv preprint arXiv:1412.6544, 2014.

[17] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

[18] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based
policies. In International Conference on Machine Learning, pages 1352–1361, 2017.

16

https://github.com/sfujim/TD3

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1861–1870, 2018.

[20] H. V. Hasselt. Double q-learning. In Advances in Neural Information Processing Systems, pages
2613–2621, 2010.

[21] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and D. Silver.
Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

[22] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dynamic
programming algorithms. In Advances in neural information processing systems, pages 703–
710, 1994.

[23] S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In
Advances in Neural Information Processing Systems, pages 1188–1200, 2018.

[24] Q. Lan, Y. Pan, A. Fyshe, and M. White. Maxmin q-learning: Controlling the estimation bias of
q-learning. In International Conference on Learning Representations, 2020.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[26] M. L. Littman and C. Szepesvári. A generalized reinforcement-learning model: Convergence
and applications. In ICML, volume 96, pages 310–318, 1996.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[28] O. Nachum, M. Norouzi, G. Tucker, and D. Schuurmans. Smoothed action value functions for
learning gaussian policies. In International Conference on Machine Learning, pages 3692–3700,
2018.

[29] L. Pan, Q. Cai, Q. Meng, W. Chen, and L. Huang. Reinforcement learning with dynamic
boltzmann softmax updates. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, pages 1992–1998, 2020.

[30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International Conference on Machine Learning, pages 1889–1897, 2015.

[31] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[32] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. 2014.

[33] Z. Song, R. E. Parr, and L. Carin. Revisiting the softmax bellman operator: New benefits and
new perspective. arXiv preprint arXiv:1812.00456, 2018.

[34] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. 2011.
[35] S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning.

In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ. Lawrence
Erlbaum, 1993.

[36] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[37] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Thirtieth AAAI conference on artificial intelligence, 2016.

[38] C. J. C. H. Watkins. Learning from delayed rewards. 1989.

17

	1 Introduction
	2 Preliminaries
	3 Analysis of the Softmax Operator in Continuous Action Space
	4 The Softmax Operator in Actor-Critic
	4.1 The Softmax Operator Helps to Smooth the Optimization Landscape
	4.2 Softmax Deep Deterministic Policy Gradients (SD2)
	4.2.1 SD2 Reduces the Overestimation Bias

	4.3 Softmax Deep Double Deterministic Policy Gradients (SD3)
	4.3.1 SD3 Improves the Underestimation Bias

	5 Experiments
	5.1 Ablation Study
	5.2 Performance Comparison

	6 Related Work
	7 Conclusion
	A Proofs in Section 4
	A.1 Proof of Theorem 1
	A.1.1 Discussion of Theorem 1 and Results in song2018revisiting.

	A.2 Proof of Theorem 2

	B Softmax Helps to Smoooth the Optimization Landscape
	B.1 Comparative Study on the Smoothing Effect of TD3 and SD3
	B.2 Experimental Setup in the MoverCar Environment

	C Softmax Deep Deterministic Policy Gradients
	C.1 The SD2 Algorithm
	C.2 Proof of Theorem 3
	C.3 Comparison of Estimation of Value Functions of DDPG and Deterministic SAC

	D Softmax Deep Double Deterministic Policy Gradients
	D.1 Proof of Theorem 4

	E Experimental Setup
	E.1 Hyperparameters
	E.2 The TD3-K Algorithm

