
A Safe Hierarchical Planning Framework for Complex Driving
Scenarios based on Reinforcement Learning

Jinning Li, Liting Sun, Jianyu Chen, Masayoshi Tomizuka and Wei Zhan

Abstract— Autonomous vehicles need to handle various traf-
fic conditions and make safe and efficient decisions and maneu-
vers. However, on the one hand, a single optimization/sampling-
based motion planner cannot efficiently generate safe trajecto-
ries in real time, particularly when there are many interactive
vehicles near by. On the other hand, end-to-end learning
methods cannot assure the safety of the outcomes. To address
this challenge, we propose a hierarchical behavior planning
framework with a set of low-level safe controllers and a
high-level reinforcement learning algorithm (H-CtRL) as a
coordinator for the low-level controllers. Safety is guaranteed
by the low-level optimization/sampling-based controllers, while
the high-level reinforcement learning algorithm makes H-CtRL
an adaptive and efficient behavior planner. To train and test our
proposed algorithm, we built a simulator that can reproduce
traffic scenes using real-world datasets. The proposed H-
CtRL is proved to be effective in various realistic simulation
scenarios, with satisfying performance in terms of both safety
and efficiency.

I. INTRODUCTION

Recently the field of autonomous driving has witnessed
rapid development. A number of novel behavior planning
algorithms have been proposed, many of which are awesome
achievements. However, it is almost impossible for a single
behavior planner to drive through so many different real and
complex scenarios. For example, one needs to ride in an
autonomous car in his everyday life. The autonomous car
should be able to drive both in cities and on highways, which
include various intersections, roundabouts, and merging and
following scenarios (as shown in Figure 1). One single
planning algorithm, such as an optimization-based planner,
may never find its solution in each complex traffic condition.
The hyperparameters in each planner or policy may work
well in intersection scenarios, but it is very likely to fail
in highway merging scenarios, because the optimal driving
settings in each scenario, e.g. the optimal speed and spacing,
are so difficult to adjust with only one fixed planner.

The most difficult part in this complex driving problem
lies in the rapidly changing environment. The road curvature
may change, and the number of obstacles may vary in
each of these self-driving scenarios. For example, when an
autonomous vehicle is trying to make a left turn at an
intersection, it has to consider the number of oncoming
vehicles, the actual speed of them, and their distance to

J. Li, L. Sun, M. Tomizuka and W. Zhan are with the De-
partment of Mechanical Engineering, University of California, Berke-
ley, CA 94720, USA {jinning li, litingsun, tomizuka,
wzhan}@berkeley.edu

J. Chen is with the Institute for Interdisciplinary Informa-
tion Sciences, Tsinghua University, Beijing, 100084, China
jianyuchen@tsinghua.edu.cn

Fig. 1: Various complex real-world traffic conditions in
which autonomous vehicles (red) must drive safely and
efficiently.

the intersection. However, when the self-driving vehicle is
finding its way to merge to the next lane on the highway,
although it also has to analyze similar information, it needs to
do it in a whole different larger scale for distance, velocity,
etc. We therefore have to find an adaptive policy that can
make high-quality decisions in various scenarios.

Each behavior and motion planner from existing work has
its own advantages and disadvantages. For example, learning-
based methods can recognize the specific properties of dif-
ferent scenarios with less effort, but it is hard to interpret the
results and generalize them to other scenarios. On the other
hand, non-learning-based methods can ensure the safety of
the agent and deal with many similar cases without too much
modification, but it is difficult to tune the hyperparameters
(e.g., the detailed cost function of motion planning) to be
compatible for various traffic scenarios with different number
of interactive agents. Therefore, based on the analysis of
these limitations, we seek to design a hierarchical model
to exploit the advantages of both reinforcement learning and
non-learning-based policies.

In this paper, we make the following contributions:

• We propose a Hierarchical behavior planning frame-
work with low-level safe Controllers and a high-level
Reinforcement Learning (H-CtRL). It is an adaptive
behavior planner that can make high-quality decisions
in many complex traffic scenarios.

• A simulator that could reproduce traffic scenes from
real-world traffic datasets is constructed, so that the
proposed method can be trained and tested in realistic
scenarios.

• We test the proposed method H-CtRL in real-world
traffic conditions, and it was proved to be capable of
handling different planning tasks in various scenarios.

ar
X

iv
:2

10
1.

06
77

8v
2

 [
cs

.R
O

]
 9

 J
un

 2
02

1

II. RELATED WORK
A. Non-Learning Based Methods

Non-learning-based decision-making modules are consid-
ered to be safe-guaranteed and interpretable [1], [2]. But
these planners tends to be too conservative. In [3], [4], this
problem was addressed by making the autonomous agent
more cognizant of and reactive to obstacles. The authors
of [5] proposed another framework leveraging effects on
human actions to make it more interactive. However, the
methods aforementioned suffer more or less from their long
computation time. Constrained Iterative Linear Quadratic
Regulator [6] significantly reduced the operation time while
preserving the safety. We try to inherit the safe guarantees
and fast operation time from these methods, and select non-
learning-based planners as our low-level safe controllers.

B. Supervised Learning

The application of supervised learning on autonomous
driving dates back to the work in [7]. The authors of [8]
then learned a map from raw pixels directly to steering
commands, where the concept of imitation learning (IL)
began to surface. A more robust perception-action model was
developed in [9]. To enhance the safety of IL, [10] proposed a
hierarchical framework which utilized a high-level IL policy
and a low-level MPC controller to improve efficiency and
safety. Similarly, to make IL generalizable and deal with
complex urban scenarios, the authors of [11] learned policies
from offline connected driving data, and integrated a safety
controller at test time.

C. Reinforcement Learning

Reinforcement learning (RL) has also been extensively ex-
plored in autonomous driving. The algorithm in [12] adopted
Recurrent Neural Networks for information integration, and
learned an effective driving policy on simulators. The work
in [13] developed a realistic translation network to make
sim2real possible. [14], [15] developed robust policies to
make self-driving cars capable of driving through complex
urban scenarios. One can also consider to incorporate predic-
tion models [16], [17] to build model-based RL planners. We
believe RL is a suitable high-level policy candidate. It can
learn from experience to know which low-level controller is
the most suitable at a specific time step.

Hierarchical Reinforcement Learning (HRL) can make the
learning process more sample-efficient. The idea is to reuse
the well trained network of one sub-goal on other similar
tasks in HRL [18], [19].

There are also many variants of HRL. The work in [20]
integrated a sampling-based motion planner with a high-
level RL policy, which can solve long horizon problems.
Similarly, [21] combined deep reinforcement learning with
Monte Carlo sampling to achieve tactical decision making
for autonomous vehicles. Authors of [22] developed SAVED
which augmented the safety of model-based reinforcement
learning with Value estimation from demonstrations. Only
to plan in normal scenarios is not enough for reliable self-
driving cars, so the authors of [23] developed a hybrid

method with RL and IL policies to plan safely in near ac-
cident scenarios. The authors of [24] proposed an attention-
based architecture that can deal with a varying number of
obstacles and the interaction in between.

We adopted the basic ideas to reuse low-level controllers,
and aimed to design a novel planning module that works in
various traffic conditions. The high-level RL was trained to
recognize and react to different environments, while the low-
level conventional controllers fulfill the goals sent from the
high-level RL and guarantee the safety in the same time.

III. PROBLEM STATEMENT

Throughout the paper, we focus on the behavior planning
problem in different complex urban traffic scenarios. There
is one ego agent and many other obstacle cars in the environ-
ment. Each of them has its own behavior pattern. Thus, we
need a mechanism to model the evolution of each scene and
the interactions among agents. We formulate the problem as a
Partially Observable Markov Decision Process (POMDP). A
POMDP can be defined as a tuple: < S,A,O, T ,Z,R, γ >.
S denotes the state space and s ∈ S is a state of the
environment. A is defined to be the action space and a ∈ A
is an action taken by the ego agent. o ∈ O is an observation
received by the ego agent. The transition model T (s, a, s′) is
the probability of the transition from a current state - action
pair (s, a) to s′ at the next time step. Z(s, o) denotes the
transition model, which calculates the probability of ending
in the observation o given a state s. The reward function
is defined by R(s, a), which yields a specific reward via a
state - action pair (s, a). The discount factor is denoted by γ.
The overall objective is to maximize the expected discount
reward and find the corresponding optimal policy

π∗ = argmax
π

E

[∞∑
t=0

γtR(st, π(ot))

]
(1)

where st, ot are the state and the observation at timestep t
of the environment, respectively.

IV. METHOD

A. H-CtRL Framework

We propose to solve the POMDP aforementioned with a
hierarchical behavior planning framework H-CtRL (shown
in Figure 2). It can be viewed as an integrated solver for
the POMDP. We input the current state of the environment
into the framework and then it outputs actions to be executed
by the ego agent. The hierarchical framework consists of a
collection of low-level controllers with safety constraints and
a high-level Reinforcement Learning policy to manage them
all. We aim to find an optimal high-level policy π∗ that can
take advantage of one controller at a specific time step when
doing behavior planning for the autonomous agent.

In details, the state st of the problem at the time step t
is designed to be the low-dimensional states of all agents
presented in the environment at t, namely,

st =
[
s1t || s2t || . . . || smt

]
sit =

[
xit yit vit θi

]
, i ∈ [1,m]

(2)

Fig. 2: The hierarchical framework with low-level safe
controllers and a high-level RL algorithm.

where sit, i ∈ [0,m] is the low-dimensional state of the
i-th agent in the environment at time step t (note that s0t
denotes the state of the ego agent), and st is the state of the
environment. The operator || here is the concatenation oper-
ator. The action at time step t is denoted by at = [acct δt]
where acct and δt are the acceleration and the steering angle
of the ego agent, respectively. We choose the states of the
k nearest neighbors around the ego vehicle at time step t to
be the observation, namely, ot = [o1t || o2t || . . . || okt]
where oit, i ∈ [1, k] is the state of the i-th nearest obstacle
around the ego car. We refer [25] and select the bicycle model
as the transition model for the ego agent. As for the other
vehicles in the scene, their states would evolve according to
the definition by the environment or the simulator.

Low-Level Safe Controllers consist a set of n non-
learning-based controllers, denoted by {f1, f2, . . . , fn}.
They are like the workers within the hierarchical framework,
who are responsible for specific tasks assigned by high-level
coordinators. Each fi, i ∈ [1, n] has its own behavior pattern,
either cooperative or selfish, either defensive or aggressive.
Although they can lead to different driving strategies, they
all have their own safety constraints when performing mo-
tion planning. For example, sampling-based planners would
assign little probability to the area where an accident is
more likely to happen, and optimization-based controllers
would have huge cost in the objective function when the
output lands in the dangerous area. Since the chosen low-
level controller is the one whose action directly affects the
evolution of the environment, these safety constraints of
the low-level controllers are generally a good property that
guarantees the safety of the whole hierarchical behavior
planning framework. Specifically, the low-level controller
takes in the observation ot and gives back an action at at
the time step t.

The High-Level Reinforcement Learning policy is the
coordinator in this framework. It makes observations from
the environment and gets to choose one of the low-level
controllers that is the most suitable given the current ob-

Algorithm 1 H-CtRL Training Algorithm

1: Initialize the simulation environment env and get an
initial observation ot.

2: Initialize the policy and the target Q-network with
weights θ and θ−. Set θ− ← θ.

3: Instantiate an empty reply buffer B with a maximum
length of lB .

4: for h← 0 to N steps do
5: Select an action ah ← argmaxah Qθ(oh, ah) ac-

cording to the ε− greedy.
6: Given oh, the chosen low-level controller corre-

sponding to ah acts p timesteps in env to get the next
observation oh+1 and the reward rh.

7: Push the transition T =
[
oh ah rh oh+1

]
into

B.
8: Update the weights θ of the policy Q-network using

the replay buffer B.
9: if h mod target update frequency == 0 then

10: θ− ← θ.copy()

11: if the episode is done then
12: Record the cumulative reward in this episode.
13: Reset env and get an initial observation ot+1.

servation. Therefore, the action space of the high-level RL
is reduced and discretized from the original continuous space
to a finite set of low-level controller’s id {1, 2, . . . , n}.
The actions of RL can be viewed as intermediate actions
within the hierarchical framework, whereas the final output
actions that directly interact and affect the environment are
the outputs of low-level controllers. Here, we should note
that to reduce the cardinality of the actions within one
episode and improve the stability of the algorithm, the high-
level RL switches its choice of low-level controllers every
p time steps, which means within the p time steps of the
environment, only one chosen low-level controller would
plan trajectories consistently and would not be disabled by
the RL. We therefore introduce the new timestep h for the
high-level RL: the original time step t = h·p should coincide
with the time step h in RL.

The state and the observation at each time step of the RL
problem are defined accordingly as sh and oh as aforemen-
tioned. One way to get sh and oh is to convert the time
scale in RL back to the original scale, thus sh and oh should
be the state and the observation at time step t = h · p in
the environment. The transition model of RL is also defined
within the new time scale, namely, T (sh, ah, sh+1), where
sh+1 is the next state of sh after applying p actions by
the low-level controller corresponding to ah. Because of
the existence of low-level controllers, we no longer need
to worry about various tedious design details of the reward
function R(sh, ah), and can simply adopt a very high-level
one that encourages the completion of the planning task as
fast as possible without any collision. In detail, the ego agent
receives a positive reward that is proportion to its progress
along its reference trajectory and a negative reward if the

episode terminates early because of collision or low-level
controller failure or other factors.

Generally, the high-level RL can be trained using any
model-free RL algorithms. In this paper, we choose to use
Double Deep Q-Network (DDQN) in [26] to learn our high-
level RL policy, for it is more stable and has less variance.
The pseudo-code for the hierarchical planning framework is
shown in algorithm 1.

V. EXPERIMENTS

A. Simulator

We constructed our own simulation environment based
on the INTERACTION Dataset [27] and the OpenAI GYM
toolkit. The road maps in the simulator were loaded from the
INTERACTION Dataset map collections, which contained
various real-world traffic scenarios recorded from many
different countries. After the simulator finished constructing
the road map, we specify an initial timestep from where
vehicles data were loaded. The states of these vehicles other
than the ego agent were all loaded from the dataset at each
time step. Since these vehicle data were all collected from
real-word traffics, we could simulate relatively realistic traffic
conditions. The ego agent in the simulator would then be
our self-driving car equipped with H-CtRL. The transition
model of the ego agent was the bicycle model. When running
experiments in the simulator, we input into it one low-level
action, at = [acct, δt], and then it would take one step and
output a reward, an observation, and a boolean indicating
whether the episode had terminated, according to the bicycle
model and the dataset.

B. Scenarios

We consider two road maps from the INTERACTION
dataset, and design different driving tasks in each of them.
• TC BGR Intersection VA (VA). It is a map of a busy

and complex intersection, which makes it difficult for
the ego agent to avoid collisions.

• DR USA Roundabout SR (SR). The map is collected
from a real-world roundabout. The map is bigger than
the previous intersection map and thus is difficult to
navigate through.

Since there are four directions in both scenarios, we design
similar tasks in each of them. The ego agent should navigate
through the traffic safely to make unprotected left turns, un-
protected right turns, and straight crossings. By unprotected
left or right turns, we mean that one must yield to other
vehicles when turning left on green lights and turning right
on red lights according to the traffic rules.

C. Low-level Controllers

Generally speaking, we can choose any mature non-
learning-based planner to make the proposed hierarchical
framework inclusive and powerful. In this paper, we consider
n = 9 different Constrained Iterative Linear Quadratic
Regulators (CILQR) [6] as the set of low-level controllers.
The objective of CILQR is to find an optimal control

sequence, namely, an optimal action sequence a∗ given an
initial observation o0 that minimizes a cost function:

a∗, o∗ = argmin
a,o

{
φ(oN) +

N−1∑
t=0

L(ot, at)

}
s.t. ot+1 = f(ot, at), t = 0, 1, . . . , N − 1

gt(ot, at) < 0, t = 0, 1, . . . , N − 1

gN (oN) < 0

(3)

where N is the planning horizon, L(·) and φ(·) are the cost
functions, f(·) is the transition model, and gt(·)’s are the
safety and dynamics constraints.

From a theoretical point of view, Chen et al proved in
Theorem 1 in [6] that for the problem in Equation 3, the
output trajectories {o(k)t , a

(k)
t } at the k−th step will converge

to a local optimum as k → 0 when using the CILQR
algorithm. Compared to other non-learning based methods,
CILQR solves the optimal control problem with non-convex
constraints and non-linear system dynamics much faster with
a guarantee to converge. Learning based methods do not
introduce constraints on dynamics and have no guarantee
of a convergence either.

It has been tested with on-road driving scenarios and is
proved to be able to avoid obstacles successfully. However,
the main drawback of CILQR is that it tends to be very
aggressive if its reference speed is too fast. For example,
when the ego agent is following slow traffic in an urban
scenario, it always tries to pass the cars in the front whenever
it finds a gap. This maneuver style may cause serious
problems, because a sudden move is highly likely to result
in collisions in such dense traffic with many occlusions. The
dangerous decision is mainly because of the high reference
speed that the controller tempts to track. Since the objective
function penalizes its deviation from the reference trajectory,
it is willing to sacrifice the safety to bypass the obstacles.

Therefore, we seek to apply the high-level RL policy to
choose the most suitable reference and the most appropriate
setting for low-level controllers. We design a fixed finite
set of candidate reference speed for the high-level RL to
choose. The set includes 9 possible discrete speeds: vref ∈
{0, 2, 3, 4, 5, 6, 7, 8, 9}(m/s). Each reference speed corre-
sponds to a different CILQR controller that has a different
behavior pattern. For example, the one with the reference
speed vref = 0m/s is the most conservative one, because
it would yield to any obstacle in the environment, whereas
the one with vref = 9m/s is the most aggressive one, for
it would tries its best to track the high reference speed and
the safety would be compromised. The high-level RL aims
to balance between the safety and the passing time given the
current observations, so as to make the ego agent capable of
handling various complex scenarios.

D. Baseline Methods

We compared the following policies in the experiments:
• CILQR#3. The third low-level CILQR controller with

a reference speed of 3m/s. No high-level RL policy is
used.

(a) VA: 1-Entering (b) VA: 2-Waiting (c) VA: 3-Exiting

(d) SR: 1-Entering (e) SR: 2-Waiting (f) SR: 3-Following

Fig. 3: The planned trajectories in both maps. The ego car is always red and the obstacles are always purple. The future
trajectories for the next 10 high-level timestep h are plotted using a line with markers on it. A green line means H-CtRL
chooses a low-level CILQR planner with high reference speed, while a red line means H-CtRL chooses one with low
reference speed. The darker the red, the lower the speed.

• CILQR#9. The ninth low-level CILQR controller with
a reference speed of 9m/s. No high-level RL policy is
used.

• Random. The hierarchical framework with the high-
level RL is replaced by a random sampler, which
chooses low-level controllers randomly.

• H-CtRL. Our proposed hierarchical behavior planning
framework.

It would be tedious to compare and list results of all low-level
CILQR controllers, so we only choose two representative
low-level controllers here. CILQR#3 plans trajectory that
tracks a low reference speed, which will results in a rather
conservative driving strategy, whereas CILQR#9 is just the
opposite resulting in an aggressive driving strategy.

E. Implementation Details

We trained and tested the RL in our proposed hierarchical
framework in two maps separately. At the beginning of each
episode, we initialized the position of the ego vehicle at
the edge of the road map, perturbed by a Gaussian noise.
The initial timestep to load obstacles from the dataset was
randomly sampled from 600 to 900 original timestep in VA
and from 100 to 400 in SR. Each timestep in the simulator
as well as CILQRs lasts 0.1s, whereas each timestep of the
high-level RL lasts 1.0s with p = 10.

The goal of each episode was also chosen randomly, either
to turn left, turn right, or to go straight. The observation
that was fed into the high-level RL was the observation
given by the simulator plus the goal of each episode. The
RL policy was represented by a neural network with two
fully connected hidden layers. According to the high-level
decision, the same observation was then fed into the low-
level controller to plan executable actions in the simulator
for the ego agent.

TABLE I: Average episode returns, collision rate, and the
completion rate within 50s time limit based on 100 episodes
in each map.

Method Aver. Epi. Return Collision Rate Completion Rate
Intersection (VA)
CILQR#3 80.06 0.07 0.24
CILQR#9 37.84 0.59 0.09
Random 51.23 0.36 0.17
H-CtRL 86.59 0.10 0.85

Roundabout (SR)
CILQR#3 73.52 0.05 0.17
CILQR#9 48.64 0.47 0.22
Random 55.13 0.32 0.28
H-CtRL 90.29 0.08 0.91

VI. RESULTS

A. Statistics

We ran each policy for 100 episodes in VA and SR
separately, and compared the average episode return, the
collision rate, and the completion rate within a 50s time limit.

As shown in Table I, the proposed H-CtRL has the best
performance in terms of the average episode reward. It is
much higher than CILQR#9 and Random, while CILQR#3 is
close to it. Considering the experiment setting where initial
states of the environment are sampled randomly among a
wide range, we can safely conclude that our proposed H-
CtRL is able to handle various situations better than each
individual low-level planners. It also implies that H-CtRL
is better than a random high-level switching policy, so the
high-level RL successfully learned useful skills to navigate
through various complex urban traffics.

When looking into the collision rate, CILQR#3 performs
the best, following by H-CtRL. CILQR#9 is the most ag-
gressive policy, as is implied by its high reference speed.
When we set a time limit of 50 seconds for each episode,
only the proposed H-CtRL has the ability to finish the task
in both maps. CILQR#3 is too conservative and drives at a
low speed, making it almost impossible to finish the task in
time. CILQR#9 is just the opposite of CILQR#3. It drives too
fast to recognize danger and to avoid collisions in time. The
random switching policy fails to reach a high completion rate
because of a mixture of the reasons aforementioned. If we
look into the collision rate and the completion rate together,
we can conclude that H-CtRL makes a good balance between
the safety and the operation time.

B. Visualization

To show the details of what happened in both VA and SR,
we visualized one representative episode in each map.

Figure 3a - 3c are the visualization for an episode in VA,
where the ego car was trying to make a left turn when the
traffic light was green. According to traffic rules, it must
yield to oncoming cars from across the road. As we can
see in Figure 3a, the high-level RL first chose to drive at a
high speed of approximately 6m/s (as shown by the green
markers) into the entrance of the intersection. Then it decided
to slow down in front of the intersection (as shown by the
orange markers). When cars continued to come from the
opposite direction, the high-level RL planned a perfect stop
to stay put (as shown in Figure 3b). After all cars finished
crossing the intersection, It decided to accelerate and to exit
the intersection as fast as possible (as shown in Figure 3c).

One episode in SR was visualized in Figure 3d - 3f. In
this episode, the ego agent was trying to go straight across
the roundabout. When it was approaching the roundabout,
the high-level RL chose to drive at a high speed as usual
(implied by the green markers in Figure 3d). When it was
about to enter the roundabout, the high-level RL decided to
slow down (shown in Figure 3e) so that it could observe
the surroundings and could avoid collisions if necessary.
After it exited the roundabout (shown in Figure 3f), it first
accelerated toward the goal position. But there were several
obstacles driving slowly in the front, so it chose a low-level
controller with a very low reference speed (vref = 2m/s).
Then the low-level CILQR controller helped the ego agent
to slow down and avoid collisions.

We visualized the velocity and the task progress of H-
CtRL for the SR episode described above, and compared
them with those of CILQR#3 and CILQR#9 in Figure 4.
As we can see, neither CILQR#3 nor CILQR#9 managed to
finish the task before the time was up. The ego agent with
CILQR#9 collided with obstacles in the episode, whereas the
one with CILQR#3 did not manage to finish the task before
the time was up. Only the agent with H-CtRL successfully
finished this episode. We can therefore conclude that our
proposed H-CtRL has the ability to handle these complex
urban traffic conditions safely and efficiently.

(a) The velocity vs. the position along the trajectory of the ego
agent.

(b) The task progress vs. the timestep of the ego agent.

Fig. 4: A visualization of the velocity and the task progress
of the ego agent driving in SR. The proposed H-CtRL was
compared to CILQR#3 (with vref = 3m/s) and CILQR#9
(with vref = 9m/s). The black cross means that the episode
was terminated earlier without reaching the goal position.

C. Failure Cases

When training and testing our proposed method, we dis-
covered that the ego agent braked really hard if it observed
obstacles in the front or the front vehicle slowed down. We
believed that this is caused by the low-level CILQR con-
trollers, which only considered the safety constraint without
any optimization on the comfort. Generally speaking, our
proposed hierarchical framework has the ability to adopt
many low-level planners. Therefore, the future work is to
add more low-level planners into the framework, and to train
them all together to get a more powerful and generalizable
behavior planner.

VII. CONCLUSION
In this paper, we proposed a general behavior planner

for autonomous vehicles based on reinforcement learning
and safe motion planners. By combining the power of low-
level safe controllers with a high-level reinforcement learning
coordinator, various complex urban traffic conditions can be
handled via this general framework. We built a simulator
that can reproduce scenarios according to real-world traffic
dataset. The proposed algorithm was trained and tested based
on such real traffic data. Compared to other baseline meth-
ods, the proposed framework achieved both high completion
rate and low collision rate, verifying its ability to handle
various traffic scenarios with satisfying performance on both
safety and efficiency.

REFERENCES

[1] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion
planning for autonomous driving with a conformal spatiotemporal
lattice,” in 2011 IEEE International Conference on Robotics and
Automation, pp. 4889–4895, IEEE, 2011.

[2] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[3] W. Zhan, C. Liu, C.-Y. Chan, and M. Tomizuka, “A non-conservatively
defensive strategy for urban autonomous driving,” pp. 459–464, 11
2016.

[4] C. Peng and M. Tomizuka, “Bayesian persuasive driving,” in 2019
American Control Conference (ACC), pp. 723–729, 2019.

[5] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.,” in Robotics:
Science and Systems, vol. 2, Ann Arbor, MI, USA, 2016.

[6] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr
for on-road autonomous driving motion planning,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC), pp. 1–7, 2017.

[7] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems,
pp. 305–313, 1989.

[8] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
2016.

[9] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” 2017.

[10] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A fast integrated
planning and control framework for autonomous driving via imitation
learning,” in Dynamic Systems and Control Conference, vol. 51913,
p. V003T37A012, American Society of Mechanical Engineers, 2018.

[11] J. Chen, B. Yuan, and M. Tomizuka, “Deep imitation learning for
autonomous driving in generic urban scenarios with enhanced safety,”
2019.

[12] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, p. 70–76, Jan 2017.

[13] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” 2017.

[14] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer, “Scal-
able decision making with sensor occlusions for autonomous driving,”

in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2076–2081, 2018.

[15] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,” 2020.

[16] J. Li, F. Yang, M. Tomizuka, and C. Choi, “Evolvegraph: Multi-
agent trajectory prediction with dynamic relational reasoning,” in 2020
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[17] J. Li, H. Ma, and M. Tomizuka, “Conditional generative neural system
for probabilistic trajectory prediction,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6150–6156,
IEEE, 2019.

[18] Z. Qiao, Z. Tyree, P. Mudalige, J. Schneider, and J. M. Dolan,
“Hierarchical reinforcement learning method for autonomous vehicle
behavior planning,” 2019.

[19] M. S. Nosrati, E. A. Abolfathi, M. Elmahgiubi, P. Yadmellat, J. Luo,
Y. Zhang, H. Yao, H. Zhang, and A. Jamil, “Towards practical hier-
archical reinforcement learning for multi-lane autonomous driving,”
2018.

[20] J. Wang, Y. Wang, D. Zhang, Y. Yang, and R. Xiong, “Learning
hierarchical behavior and motion planning for autonomous driving,”
2020.

[21] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J.
Kochenderfer, “Combining planning and deep reinforcement learning
in tactical decision making for autonomous driving,” IEEE Transac-
tions on Intelligent Vehicles, vol. 5, no. 2, pp. 294–305, 2019.

[22] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister,
J. E. Gonzalez, S. Levine, F. Borrelli, and K. Goldberg, “Safety
augmented value estimation from demonstrations (saved): Safe deep
model-based rl for sparse cost robotic tasks,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3612–3619, 2020.

[23] Z. Cao, E. Bıyık, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman,
and D. Sadigh, “Reinforcement learning based control of imitative
policies for near-accident driving,” 2020.

[24] E. Leurent and J. Mercat, “Social attention for autonomous decision-
making in dense traffic,” 2019.

[25] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1094–1099, 2015.

[26] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” 2015.

[27] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION Dataset: An INTERnational, Ad-
versarial and Cooperative moTION Dataset in Interactive Driving
Scenarios with Semantic Maps,” arXiv:1910.03088 [cs, eess], 2019.

	I INTRODUCTION
	II RELATED WORK
	II-A Non-Learning Based Methods
	II-B Supervised Learning
	II-C Reinforcement Learning

	III Problem Statement
	IV METHOD
	IV-A H-CtRL Framework

	V EXPERIMENTS
	V-A Simulator
	V-B Scenarios
	V-C Low-level Controllers
	V-D Baseline Methods
	V-E Implementation Details

	VI RESULTS
	VI-A Statistics
	VI-B Visualization
	VI-C Failure Cases

	VII CONCLUSION
	References

