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Non-Hermitian topological phases exhibit a number of exotic features that have no Hermitian
counterparts, including the skin effect and breakdown of the conventional bulk-boundary correspondence.
Here, we implement the non-Hermitian Su-Schrieffer-Heeger Hamiltonian, which is a prototypical model
for studying non-Hermitian topological phases, with a solid-state quantum simulator consisting of an
electron spin and a 13C nuclear spin in a nitrogen-vacancy center in a diamond. By employing a dilation
method, we realize the desired nonunitary dynamics for the electron spin and map out its spin texture in the
momentum space, from which the corresponding topological invariant can be obtained directly. From the
measured spin textures with varying parameters, we observe both integer and fractional winding numbers.
The non-Hermitian topological phase with fractional winding number cannot be continuously deformed to
any Hermitian topological phase and is intrinsic to non-Hermitian systems. Our result paves the way for
further exploiting and understanding the intriguing properties of non-Hermitian topological phases with
solid-state spins or other quantum simulation platforms.
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While Hermiticity lies at the heart of quantum mechan-
ics, non-Hermitian Hamiltonians have widespread appli-
cations as well [1–3]. Indeed, they have been extensively
studied in photonic systems with loss and gain [4–9], open
quantum systems [10–15], and quasiparticles with finite
lifetimes [16–18], etc. Recently, the interplay between non-
Hermiticity and topology has attracted tremendous atten-
tion [19,20], giving rise to an emergent research frontier of
non-Hermitian topological phases of matter. In contrast to
topological phases for Hermitian systems [21–23], non-
Hermitian ones bears several peculiar features, such as the
skin effect [24–26] and breakdown of the conventional
bulk-boundary correspondence [25–30], and new topologi-
cal classifications [31–33]. In particular, the non-Hermitian
skin effect describes an exotic phenomena that possesses no
counterpart in Hermitian systems, where the majority of the
eigenstates of a non-Hermitian Hamiltonian are exponen-
tially localized at boundaries. This localization of the bulk
states leads to the breakdown of the conventional bulk-
boundary correspondence and suggests a non-Bloch band
theory in which a non-Bloch topological invariant could be
defined to restore a generalized bulk-boundary correspon-
dence beyond the conventional framework [25,26]. The
non-Hermitian skin effect would also dramatically alter the
long-time dynamics of an open quantum system, resulting
in a chiral damping phenomena [34]. More recently, its
unusual consequences have been investigated in the context
of machine learning topological phases [35], where it is
shown that this effect would cause a critical obstacle for the
straightforward extension of the unsupervised method for

learning Hermitian topological phases to the non-Hermitian
scenario.
Experimental observations of the non-Hermitian skin

effect have been reported in mechanical metamaterials [36],
nonreciprocal topolectric circuits [37], and photonic sys-
tems [38,39]. However, despite the notable progress, direct
observation of the topological invariant for non-Hermitian
systems has not been reported in a quantum solid-state
system hitherto, owing to the stringent requirement of
delicate engineering of the coupling between the target
system and the environment in implementing non-
Hermitian Hamiltonians. In this Letter, we carry out such
an experiment and report the direct observation of the non-
Hermitian topological invariant with a solid-state quantum
simulator consisting of both electron and nuclear spins in a
nitrogen-vacancy (NV) center (see Fig. 1).
NV centers in diamonds [40] exhibit atomlike properties,

such as long-lived spin quantum states and well-defined
optical transitions, which make them an excellent exper-
imental platform for quantum information processing [41–
46], sensing [47–49], and quantum simulation [50–52]. For
Hermitian topological phases, simulations of three-dimen-
sional (3D) Hopf insulators [50] and chiral topological
insulators [51] with NV centers have been demonstrated in
recent experiments, and observations of their topological
properties, such as nontrivial topological links associated
with the Hopf fibration and the integer-valued topological
invariants, have been reported. A key idea that enables
these simulations is to use the adiabatic passage technique,
where we treat the momentum-space Hamiltonian as a
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time-dependent one with the momentum playing the role of
time. The ground state of the Hamiltonian at different
momentum points can be obtained via adiabatically tuning
the frequency and the amplitude of a microwave that
manipulates the electron spin in the center, and quantum
tomography of the final state with a varying momentum
provides all the information needed for obtaining the
characteristic topological properties [50].
Nevertheless, simulating non-Hermitian topological

phases with the NV center platform [see Figs. 1(a) and
1(b)] faces two apparent challenges. First, for non-Hermitian
systems the governing Hamiltonians typically have complex
eigenenergies and the conventional adiabatic theorem is not
necessarily valid in general [53]. As a consequence, the
adiabatic passage technique may not apply and the prepa-
ration of eigenstates of non-Hermitian Hamiltonians
becomes trickier. Second, the non-Hermiticity requires a
delicate engineering of the coupling between the targeted
system and the environment, so that tracing out the environ-
ment could leave the system effectively governed by a given
non-Hermitian Hamiltonian. These two challenges make
simulating non-Hermitian topological phases notably more
difficult than that for their Hermitian counterparts.

In this Letter, we overcome these two challenges and
report the first experimental demonstration of simulating
non-Hermitian topological phases with the NV center
platform. In particular, we implement a prototypical model
for studying non-Hermitian topological phases, i.e., the
non-Hermitian Su-Schrieffer-Heeger (SSH) model, by
carefully engineering the coupling between the electron
and nuclear spins through a dilation method [54–57].
Without using adiabatic passage, we find that the nonuni-
tary dynamics generated by the non-Hermitian Hamiltonian
will autonomously drive the electron spin into the eigen-
state of the Hamiltonian with the largest imaginary eigen-
value, independent of its initial state. The topological
nature of the Hamiltonian can be visualized by mapping
out the spin texture in the momentum space and the
topological invariant can be derived directly by a discre-
tized integration over the momentum space. From the
measured spin textures at different model parameters, we
observe both integer and fractional winding numbers.
Whereas the topological phases with integer wind-
ing numbers might be continuously deformed to the
Hermitian ones, the observed fractional winding number
captures intrinsic non-Hermitian topology and possesses no
counterpart in Hermitian systems.
To start with, we consider the following non-Hermitian

SSH model Hamiltonian in the momentum space
[26,27,58,59]:

HðkÞ ¼ γ

�
hxσx þ

�
hz þ

i
2

�
σz

�
; ð1Þ

where γ measures the energy scale (we set ℏ ¼ 1 for
simplicity), hx ¼ vþ r cos k, hz ¼ r sin k, and σx;z are the
usual Pauli matrices. This Hamiltonian possesses a sub-
lattice symmetry σ−1y HðkÞσy ¼ −HðkÞ, which ensures that
its eigenvalues appear in ðE;−EÞ pairs. Its energy gap
closes at the exceptional points ðhx; hzÞ ¼ ð� 1

2
; 0Þ, which

gives v ¼ r� 1
2
for k ¼ π and v ¼ −r� 1

2
for k ¼ 0. The

topological properties for the Hamiltonian can be charac-
terized by the winding number w of HðkÞ, circling around
the exceptional points as k sweeps through the first
Brillouin zone [27,60]: w ¼ 0, 1

2
, and 1 respectively, if

HðkÞ encircles zero, one, and two exceptional points. A
direct calculation yields w ¼ 0 for jv� 1

2
j > jrj, w ¼ 1

2
for

jv� 1
2
j < jrj and jrj < 1

2
, and w ¼ 1 for jv� 1

2
j < jrj and

jrj > 1
2
. A sketch of the phase diagram of the non-Hermitian

SSH model is shown in Fig. 1(c) and the trajectories of the
right eigenstates of HðkÞ as k sweeps the first Brillouin
zone is plotted Fig. 1(d).
Studying non-Hermitian quantum physics in experiment

is challenging, since closed quantum systems are governed
by Hermitian Hamiltonians. To this end, theoretical
approaches have been introduced to dilate parity-time
symmetric Hamiltonians into Hermitian ones in a larger
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FIG. 1. Experimental system and topological properties of the
non-Hermitian Su-Schrieffer-Heeger (SSH)model. (a) Illustration
of the NV center platform used in this work. The electron spin is
coupled to a nearby 13C nuclear spin with 13.7 MHz hyperfine
interaction. (b) Energy level structure of the electron-nuclear spin
system. Black arrows indicate the microwave transitions. Green
arrows indicate the radio frequency transition. We choose j0i and
j − 1i to consist our electron-spin qubit. j↑i and j↓i denote the
nuclear spin state. (c) A sketch of the phase diagram of the non-
Hermitian SSH Hamiltonian HðkÞ. (d) Trajectories of the right
eigenvectors of HðkÞ on the Bloch sphere with varying param-
eters as k sweeps through the first Brillouin zone. Different
trajectories correspond to the markers with the same color as
shown in (c).
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Hilbert space [54,55]. More recently, the dilation method
has been used in experiments to realize nonunitary quan-
tum dynamics for photons [56] and to implement arbitrary
single-qubit non-Hermitian Hamiltonians and study parity-
time symmetry breaking with NV centers [57]. To imple-
ment HðkÞ in our experiment, we exploit the dilation
method and use the electron spin as the targeted system
and a nearby 13C nuclear spin as the ancillary qubit.
Suppose that the dynamics of the electron spin is described
by He and the dilated system described by He;n, then the
problem essentially reduces to a task that for a given
momentum k we need to carefully engineer He;n, such that
He equals HðkÞ after projecting the nuclear spin onto a
desired state. The basic idea is as follows. We consider a
quantum state jψi evolving under a non-Hermitian
Hamiltonian He, which satisfies the Schrödinger equation
ið∂=∂tÞjψðtÞi ¼ HejψðtÞi. Then we introduce a dila-
ted state jΨðtÞi ¼ jψðtÞij−i þ ηðtÞjψðtÞijþi governed
by the dilated Hermitian Hamiltonian He;n. Here,
j−i ¼ ðj↑i − ij↓iÞ= ffiffiffi

2
p

, jþi ¼ −iðj↑i þ ij↓iÞ= ffiffiffi
2

p
and

ηðtÞ is a proper time-dependent linear operator. The dilated
system satisfies ið∂=∂tÞjΨðtÞi ¼ He;njΨðtÞi. For our pur-
pose, the dilated Hamiltonian should be designed properly
as [61]

He;n ¼ ½A0ðtÞIþ A1ðtÞσx þ A2ðtÞσy þ A3ðtÞσz� ⊗ I

þ ½B0ðtÞIþ B1ðtÞσx þ B2ðtÞσy þ B3ðtÞσz� ⊗ σz;

ð2Þ

where I is the two-by-two identity matrix, and AiðtÞ and
BiðtÞ (i ¼ 0, 1, 2, 3) are time-dependent real-valued
functions determined by He. The dilated Hamiltonian
He;n is Hermitian and jΨðtÞi undergoes a unitary evolution.
Through measuring the state jΨðtÞi, the nonunitary evo-
lution of jψðtÞi under He can be obtained in the j−ih−j
subspace of the nuclear spin [61].
Unlike the case of simulating Hermitian topo-

logical phases [50,51], where the ground state of the
Hamiltonian at different momentum points can be obta-
ined through adiabatic passages, for non-Hermitian
Hamiltonians their eigenvalues are complex numbers in
general and the adiabatic passage method does not apply
directly. Fortunately, we can explore the nonunitary dynam-
ics generated by the non-Hermitian Hamiltonian to prepare
the eigenstate that corresponds to the eigenvalue with
the largest imaginary part. To be more specific, suppose
the electron spin is initially at an arbitrary state
jψð0Þi ¼ α1jR1i þ α2jR2i, where jR1;2i are the right eigen-
states of He corresponding to the eigenvalues λ1;2. Without
loss of generality, we assume Imðλ1Þ > Imðλ2Þ. Then the
electron spin state will decay to jR1i in the long time limit.
As a result, we can prepare the eigenstate jR1i ofHe by just
waiting long enough time for the system to decay to
this state.

To experimentally realizeHe;n, we apply two microwave
pulses with time-dependent amplitude, frequency, and
phase. We explore the state evolution by monitoring the
population on j0ie state and see how it decays to the desired
eigenstate ofHe. In Fig. 2(a), we show the quantum circuits
used in our experiment. Figures 2(b) and 2(c) show our
experimental results of Pz;x

0 as a function of time. From
these figures, it is evident that our experimental results
match the theoretical predictions excellently, within the
error bars for almost all of the data points. In addition, after
long enough evolution time (about 1.5 μs in our experi-
ment), the electron spin state decays to the desired
eigenstate of HðkÞ for different momentum k. This indi-
cates that our dilated Hamiltonian indeed effectively imple-
ments the non-Hermitian HðkÞ in our experiment.
We mention that in Fig. 2(c), we measure P0 in the x

basis, which requires a π=2 rotation of the electron spin. In
order to avoid off-resonance driving, the microwave driving
power should be weak enough. The Rabi frequency should
be much smaller than the hyperfine coupling strength
(13.7 MHz), so that the π=2 rotation would take time on
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FIG. 2. (a) The quantum circuits used in our experiment.
Through optical pumping, we first polarize the electron and
nuclear spins onto j0ie and j↑in, respectively [62–65]. Then,
rotations along x and y axes will prepare the dilated system onto
the state jΨð0Þi ¼ j − 1iej−in þ ηð0Þj − 1iejþin. The evolution
box implements the unitary dynamics generated by the dilated
Hamiltonian He;n, after which we measure the nuclear spin in the
j�i basis [66–68]. A postselection of nuclear spin in the j−i state
collapses the electron spin into the desired eigenstate of He ¼
HðkÞ for a given momentum k. (b), (c) Benchmark of the
nonunitary time evolution. Here, we plot the time evolution
(under the Hamiltonian He) of the populations Pz

0 ¼
Trðρej0ieh0jÞ and Px

0¼TrðρejþiehþjÞwith jþie ¼ ð1= ffiffiffi
2

p Þðj0iþ
j − 1iÞ. For (b) and (c), the parameters characterizing the under-
lying Hamiltonian are chosen as v ¼ 0.3, r ¼ 1, γ ¼ 3.5, and
k ¼ 0.3π, and v ¼ 0.3, r ¼ 0.3, γ ¼ 4, and k ¼ 0.6π, respec-
tively. Here, the solid lines plot the theoretical predictions and the
dashed green lines indicate the theoretical population of the
targeted state at the long time limit [61].
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the order of a microsecond. Meanwhile, the time evolution
process also takes approximately half of the system’s
coherence time (T⋆

2 ¼ 3.3 μs). Thus, adding an additional
rotation would not only increase the processing time but
also introduce both gate and decoherence errors. To avoid
this, we first apply a unitary transform to the target
Hamiltonian: fHe ¼ U†

yHeUy, where Uy ¼ ð1= ffiffiffi
2

p Þð1
1
−1
1
Þ.

We evolve the electron spin with fHe instead of He and
measure the final state in the z basis. This is equivalent to
evolving the electron spin with He and then measuring in
the x basis, but with improved efficiency and accuracy [61].
In addition, the time needed for the initial state to decay to
the desired eigenstate of He depends crucially on the
difference between the imaginary parts of its two eigen-
values. For some parameter regions, this difference may not
be large enough and the decay time could even be longer
than T⋆

2 . To speedup the process, we increase γ according to
the specific parameters so that we can finish the experiment
within the coherence time.
To probe the topological properties of the non-Hermitian

SSHmodel, we can measure hσzi and hσxi for the final state
of the time evolution as k sweeps the Brillouin zone. We
plot our experimental results in Fig. 3. When HðkÞ
encircles no or two exceptional points, the eigenvectors
of HðkÞ are 2π periodic in k, and the trajectory of hσzi and
hσxi as k sweeps through the Brillouin zone forms closed
circles. In this case, the winding number is zero or one,
depending on whether the trajectory of hσzi and hσxi winds
around the origin or not, as clearly shown in Figs. 3(a) and
3(c). In contrast, when HðkÞ encircles only one exceptional
point, the eigenvector will have a 4π periodicity and kmust

sweep through 4π to close the trajectory, giving rise to a
fractional value of the winding number w ¼ 1

2
if k only

sweeps through the first Brillouin zone [27]. This is also
explicitly observed in our experiment as shown in Fig. 3(b).
We mention that in Fig. 3(c), when k sweeps across π, the
imaginary part of the eigenvalues of HðkÞ will exchange
their sign, leading to a leap from one eigenstate to another.
Mathematically, we can prove that hR1jσz;xjR1i ¼
−hR2jσz;xjR2i and hR1jσyjR1i ¼ hR2jσyjR2i [61]. As a
result, in the experiment we obtain hR1jσz;xjR1i by actually
measuring hR2jσz;xjR2i after the crossing of the eigenstates.
In addition, with our experimentally measured data the
winding number can also be calculated directly through a
discretized integration over the momentum space [61]. In
Table I, we show the winding number calculated from the
experimental and theoretically simulated data for different
parameter values of r [69]. From this table, it is clear that
the winding number calculated from the experimental data
matches its theoretical predictions within a good precision,
and is in agreement with that obtained from the trajectory of
hσzi and hσxi.
We stress that the observation of the fractional winding

number in our experiment is crucial because it captures a
signature of intrinsic non-Hermitian topology. For the
integer winding number, it corresponds to the line-gap
topology and the corresponding topological phases are
continuously deformable to the Hermitian ones. Whereas,
the fractional winding number corresponds to point-
gap topology and is intrinsic to non-Hermitian systems
with no counterparts in Hermitian systems [33,70]. In our
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FIG. 3. The trajectory of the target eigenvector of HðkÞ in the Brillouin zone. (a), (b), and (c) plot the experimental results of hσzi
versus hσxi as k sweeps the first Brillouin zone. Here, the red dots with error bars denote the experimental data, whereas the blue dots
with dashed curves represent the theoretical prediction from numerical simulations. The parameters are chosen as v ¼ 0.3 and r ¼ 0.18,
0.3, 1 in (a), (b), and (c) respectively, with corresponding winding number w ¼ 0; 1

2
; 1. (d), (e), and (f) show the theoretical trajectories of

the electron spin state on the Bloch sphere, whose projections onto the xz plane correspond to (a), (b), and (c), respectively.
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experiment, we observe both integer and fractional winding
numbers, which unambiguously confirms the exotic and
intrinsic non-Hermitian topology carried by the simple but
illuminating non-Hermitian SSH model. We also note that,
under the open boundary condition, the non-Hermitian
SSH model will exhibit the non-Hermitian skin effect due
to the correspondence between intrinsic non-Hermitian
topology and the skin effect [30,70,71]. In the future, it
would be interesting and important to observe the skin
effect in a quantum solid-state system. Our current experi-
ment uses only two spins of an NV center and treats the
momentum k as a parameter of the SSH Hamiltonian. As a
result, it is not capable of implementing this non-Hermitian
Hamiltonian in real space so as to observe the desired skin
effect. Accomplishing this requires delicate and accurate
engineering of interactions between many spins, which is
still challenging with the state-of-the-art NV technologies.
In summary, we have experimentally observed the non-

Hermitian topological properties of the SSH model through
nonunitary dynamics with a solid state quantum simulator.
Our method carries over straightforwardly to other types of
non-Hermitian topological models that are predicted to
exist in the extended periodic table [31–33] but have not yet
been observed in any experiment. It thus paves the way for
future explorations of exotic non-Hermitian topological
phases with the NV center or other quantum simulation
platforms.
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