
ar
X

iv
:1

50
1.

01
08

4v
2

 [c
s.

IT
]

16
 F

eb
 2

01
5

Upper Bound on Function Computation in
Directed Acyclic Networks

Cupjin Huang∗, Zihan Tan∗ and Shenghao Yang†
∗The Institute for Theoretical Computer Science (ITCS), Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, China
†Institute of Network Coding, The Chinese University of HongKong, Hong Kong, China

Abstract—Function computation in directed acyclic networks is
considered, where a sink node wants to compute a target function
with the inputs generated at multiple source nodes. The network
links are error-free but capacity-limited, and the intermediate
network nodes perform network coding. The target function is
required to be computed with zero error. The computing rate
of a network code is measured by the average number of times
that the target function can be computed for one use of the
network. We propose a cut-set bound on the computing rate
using an equivalence relation associated with the inputs ofthe
target function. Our bound holds for general target functions and
network topologies. We also show that our bound is tight for some
special cases where the computing capacity can be characterized.

I. I NTRODUCTION

We consider function computation in a directed acyclic
network, where atarget functionf is intended to be calculated
at a sink node, and the input symbols of the target function
are generated at multiple source nodes. As a special case,
network communication is just the computation of theidentity
function.1 Network function computation naturally arises in
sensor networks [1] and Internet of Things, and may find
applications in big data processing.

Various models and special cases of this problem have
been studied in literature (see the summarizations in [2]–
[4]). We are interested in the followingnetwork coding model
for function computation. Specifically, we assume that the
network links have limited (unit) capacity and are error-free.
Each source node generates multiple input symbols, and the
network codes perform vector network coding by using the
network multiple times.2 An intermediate network node can
transmit the output of a certain fixed function of the symbols
it receives. Here all the intermediated nodes are considered
with unbounded computing ability. The target function is
required to be computed correctly for all possible inputs. We
are interested in thecomputing rateof a network code that

This work was supported in part by the National Basic Research Program of
China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61033001, 61361136003, 61471215. The work
described in this paper was partially supported by a grant from University
Grants Committee of the Hong Kong Special Administrative Region, China
(Project No. AoE/E-02/08).

1A function f : A → A is identity if f(x) = x for all x ∈ A.
2One use of a network means the use of each link in the network atmost

once.

computes the target function, i.e., the average number of times
that the target function can be computed for one use of the
network. The maximum achievable computing rate is called
the computing capacity.

When computing the identity function, the problem becomes
the extensively studied network coding [5], [6], and it is known
that in general linear network codes are sufficient to achieve
the multicast capacity [6], [7]. For linear target functions over
a finite field, a complete characterization of the computing
capacity is not available for networks with one sink node.
Certain necessary and sufficient conditions have been obtained
such that linear network codes are sufficient to calculate a
linear target function [4], [8]. But in general, linear network
codes are not sufficient to achieve the computing capacity of
linear target functions [9].

Networks with a single sink node are discussed in this paper,
while both the target function and the network code can be
non-linear. In this scenario, the computing capacity is known
when the network is a multi-edge tree [2] or when the target
function is the identity function. For the general case, various
bounds on the computing capacity based on cut sets have been
studied [2], [3]. But we find that the upper bounds claimed in
[2], [3] are not valid. Specifically, the proof of [2, Theorem
II.1] has an error3: The condition provided in the beginning
of the second paragraph is not always necessary, which is
illustrated by an example given in this paper. We show that
the computing capacity of our example is strictly larger than
the two upper bounds claimed in [2], [3].

Towards a general upper bound, we define an equivalence
relation associated with the inputs of the target function (but
does not depend on the network topology) and propose a cut-
set bound on the computing capacity using this equivalence
relation. Our bound holds for general target functions and
general network topologies in the network coding model. We
also show that our bound is tight when the network is a multi-
edge tree or when the target function is the identity function.

In the remainder of this paper, Section II formally introduces
the network computing model. The upper bound of the com-
puting rate is given in Theorem 3, and is proved in Section IV.
Section III compares with the previous results and discusses
the tightness of our upper bound.

3No proof is provided for the upper bound (Lemma 3) in [3].

http://arxiv.org/abs/1501.01084v2

II. M AIN RESULTS

In this section, we will first introduce the network com-
puting model. Then we will define cut sets and discuss some
special cases of the function computation problem. Last we
head to the main theorem about the cut-set bound for function
computation.

A. Function-Computing Network Codes

Let G = (V , E) be a directed acyclic graph (DAG) with
a finite vertex setV and an edge setE , where multi-edges
between a certain pair of nodes are allowed. AnetworkoverG
is denoted asN = (G,S, ρ), whereS ⊂ V is called thesource
nodesand ρ ∈ V\S is called thesink nodeρ. Let s = |S|,
and without loss of generality (WLOG), letS = {1, 2, . . . , s}.
For an edgee = (u, v), we call u the tail of e (denoted by
tail(e)) andv the head ofe (denoted byhead(e)). Moreover,
for each nodeu ∈ V , let Ei(u) = {e ∈ E : head(e) = u}
and Eo(u) = {e ∈ E : tail(e) = u) be the set of incoming
edges and the set of outgoing edges ofu, respectively. Fix
an order of the vertex setV that is consistent with the partial
order induced by the directed graphG. This order naturally
induces an order of the edge setE , where edgese > e′ if
either tail(e) > tail(e′) or tail(e) = tail(e′) and head(e) >
head(e′). WLOG, we assume thatEi(j) = ∅ for all source
nodesj ∈ S, andEo(ρ) = ∅. We will illustrate in Section III-C
how to apply our results on a network withEi(j) 6= ∅ for
certainj ∈ S.

The network defined above is used to compute a function,
where multiple inputs are generated at the source nodes and
the output of the function is demanded by the sink node.
The computation units with unbounded computing ability are
allocated at all the network nodes. However, the computing
capability of the network will be bounded by the network
transmission capability. Denote byB a finite alphabet. We
assume that each edge can transmit a symbol inB reliably for
each use.

Denote byA andO two finite alphabets. Letf : As → O
be thetarget function, which is the function to be computed
via the network and whoseith input is generated at theith
source node. We may use the network to compute the function
multiple times. Suppose that thejth source node consecutively
generatesk symbols inA denoted byx1j , x2j , . . . , xkj , and
the symbols generated by all the source nodes can be given as
a matrixx = (xij)k×s. We denote byxj thejth column ofx,
and denote byxi the ith row of x. In other words,xj is the
vector of the symbols generated at thejth source node, and
xi is the input vector of theith computation of the function
f . Define forx ∈ Ak×s

f (k)(x) =
(

f(x1), f(x2), . . . , f(xk)
)⊤
.

For convenience, we denote byxJ the submatrix ofx formed
by the columns indexed byJ ⊂ S, and denote byxI the sub-
matrix of x formed by the rows indexed byI ⊂ {1, 2, . . . , k}.
We equateA1×s with As in this paper.

For two positive integersn and k, a (n, k) (function-
computing) network code over networkN with target function

f is defined as follows. Letx ∈ Ak×s be the matrix formed
by symbols generated at the source nodes. The purpose of the
code is to computef (k)(x) by transmitting at mostn symbols
in A on each edge inE . Denote the symbols transmitted on
edgee by ge(x) ∈ Bn. For a set of edgesE ⊂ E we define

gE(x) = (ge(x)|e ∈ E)

where ge1(x) comes beforege2(x) whenevere1 < e2. The
(n, k) network code contains the encoding function for each
edgee, define:

he :

{

Ak → Bn, if u ∈ S;
∏

e′∈Ei(tail(e))
Bn → Bn, otherwise.

Functionshe, e ∈ E determine the symbols transmitted on the
edges. Specifically, ife is an outgoing edge of theith source
node, then

ge(x) = he(xi);

if e is an outgoing edge ofu ∈ V \ (S ∪ {ρ}), then

ge(x) = he
(

gEi(u)(x)
)

.

The (n, k) network code also contains a decoding function

ϕ :
∏

e′∈Ei(ρ)

Bn → Ok.

Define
ψ(x) = ϕ

(

gEi(ρ)(x)
)

.

If the network codecomputesf , i.e., ψ(x) = f (k)(x) for all
x ∈ Ak×s, we then callkn log|B| |A| an achievablecomputing
rate, where we multiplykn by log|B| |A| in order to normalize
the computing rate for target functions with different input
alphabets. Thecomputing capacityof networkN with respect
to a target functionf is defined as

C(N , f) = sup

{

k

n
log|B| |A|

∣

∣

∣

k

n
log|B| |A| is achievable

}

.

B. Cut Sets and Special Cases

For two nodesu and v in V , denote the relationu → v
if there exists a directed path fromu to v in G. If there is
no directed path fromu to v, we sayu is separatedfrom v.
Given a set of edgesC ⊆ E , IC is defined to be the set of
source nodes which are separated from the sink nodeρ if C
is deleted fromE . SetC is called acut set if IC 6= ∅, and
the family of all cut sets in networkN is denoted asΛ(N).
Additionally, we define the setKC as

KC = {i ∈ S|∃v, t ∈ V , i→ v, (v, t) ∈ C} .

It is reasonable to assume thatu → ρ for all u ∈ V . Then
one can easily see thatKC is the set of source nodes from
which there exists a path to the sink node throughC. Define
JC = KC\IC .

The problem also becomes simple whens = 1.

Proposition 1. For a networkN with a single source node
and any target functionf : A → O,

C(N , f) = min
C∈Λ(N)

|C|

log|A| |f [A]|
,

wheref [A] is the image off on O.

Proof: We first show that the right hand side in the above
equation could be achieved. Let

M = min
C∈Λ(N)

|C|.

Fix integersk and n such thatk/n log|B| |A| ≤ C(N , f),
which implies

|f [A]|k ≤ |B|nM . (1)

By the max-flow min-cut theorem of directed acyclic graphs,
there must existM edge-disjoint paths from the source node
to the sink node, and each of them can transmit one symbol
in B. We can apply the following network computing code to
computef (k): The source node first computesf (k)(x), and
then encodesf (k)(x) into a unique sequencey in BnM using
a one-to-one mappingm, whose existence is guaranteed by
(1). The network then forwardsy from the source node to the
sink node byn uses of theM paths. The sink node decodes
by m−1(y).

We then prove the converse. Suppose that we have a(n, k)
code withk/n log|B| |A| > C(N , f), which implies

|f [A]|k > |B|nM . (2)

Fix a cut setC with |C| =M . It can be shown that

ψ(x) = ψC(gC(x)),

for certain functionψC (see Lemma 5 in Section IV). By (2)
and the pigeonhole principle, there must existx, x′ ∈ Ak×s

such that

f (k)(x) 6= f (k)(x′),

gC(x) = gC(x′),

where the second equality impliesψ(x) = ψ(x′). Thus
this network code cannot compute bothf (k)(x) andf (k)(x′)
correctly. The proof is completed.

C. Upper Bounds

In this paper, we are interested in the general upper bound
on C(N , f). The first upper bound is induced by Proposition 1

Proposition 2. For a networkN with target functionf ,

C(N , f) ≤ min
C∈Λ(N):IC=S

|C|

log|A| |f [A
s]|
.

Proof: Build a networkN ′ by joining all the source nodes
of N into a single “super” source node. Since a code for
networkN can be naturally converted to a code for network

N ′ (where the super source node performs the operations of
all the source nodes inN), we have

C(N , f) ≤ C(N ′, f).

The proof is completed by applying Proposition 1 onN ′ and
Λ(N ′) = {C ∈ Λ(N) : IC = S}.

The above upper bound only uses the image of function
f . We propose an enhanced upper bound by investigating
an equivalence relation on the input vectors off . We will
compare this equivalence relation with similar definitions
proposed in [2], [3] in the next section.

Definition 1 (Equivalence Class). For any functionf : As →
O, any two disjoint index setsI, J ⊆ S, and anya, b ∈

A|I|, c ∈ A|J|, we saya
(c)
≡ b|I,J if for every x, y ∈ A1×s, we

havef(x) = f(y) wheneverxI = a, yI = b, xJ = yJ = c and

xS\(I∪J) = yS\(I∪J). Two vectorsa andb satisfyinga
(c)
≡ b|I,J

are said to be(I, J, c)-equivalent. WhenJ = ∅ in the above
definition, we use the convention thatc is an empty matrix.

Note that the equivalence as defined above does not depend
on the structure of the network. However, it will soon be
clear that with a network, the division of equivalence classes
naturally leads to an upper bound of the network function-
computing capacity based on cut sets.

For everyf , I, J andc ∈ A|J|, let W (c)
I,J,f denote the total

number of equivalence classes induced by
(c)
≡ |I,J . Given a

networkN and a cut setC, letWC,f = maxc∈A|JC | W
(c)
IC ,JC,f .

Our main result is stated as following. The proof of the
theorem is presented in Section IV).

Theorem 3. If N is a network andf is a target function, then

C(N , f) ≤ min
C∈Λ(N)

|C|

log|A|WC,f
:= min-cut(N , f).

III. D ISCUSSION OFUPPERBOUND

In this section, we first give an example to illustrate the
upper bound. We compare our result with the existing ones,
and proceed by a discussion about the tightness of the bound.

A. An Illustration of the Bound

First we give an example to illustrate our result. Con-
sider the networkN1 in Fig. 1 with the object function
f(x1, x2, x3) = x1x2 + x3, whereA = B = O = {0, 1}.

Let us first compare the upper bounds in Theorem 3 and
Proposition 2. LetC0 = {e6, e7}. Here we have

• |C0| = 2, IC0 = {3}, JC0 = {1, 2} ; and
• For any given inputs of nodes1 and 2, different inputs

from node3 generate different outputs off . Therefore
W

(c)
IC0 ,JC0 ,f

= 2 for any c ∈ A2 and henceWC0,f = 2.

By Theorem 3, we have

C(N1, f) ≤ min-cut(N1, f) ≤
|C0|

log|A|WC0,f
= 2.

1 2 3

v ρ

e1

e2 e3e4 e5
e6

e7

Fig. 1. NetworkN1 has three source nodes,1, 2 and3, and one sink node
ρ that computes the nonlinear functionf(x1, x2, x3) = x1x2 + x3, where
A = B = O = {0, 1}.

While Proposition 2 induces that

C (N1, f) ≤ min
C∈Λ(N1):IC=S

|C|

log|A| |f [A
s]|

= min
C∈Λ(N1):IC=S

|C|

= 4,

where the first equality follows fromf [As] = {0, 1}, and the
second equality follows from

min
C∈Λ(N1):IC=S

|C| = | {e4, e5, e6, e7} | = 4.

Therefore, Theorem 3 gives a strictly better upper bound than
Proposition 2.

The upper bound in Theorem 3 is actually tight in this case.
We claim that there exists a(1, 2) network code that computes
f in N1. Consider an input matrixx = (xij)2×3. Node i
sendsx1i to nodev and sendsx2i to nodeρ for i = 1, 2, 3
respectively, i.e., fori = 1, 2, 3

gei = x1i, gei+3 = x2i.

Node v then computesf(x1) = x11x12 + x13 and sends it
to nodeρ via edgee7. Node ρ receivesf(x1) from e7 and
computesf(x2) = x21x22 + x23 using the symbols received
from edgese4, e5 ande6.

B. Comparison with Previous Works

Upper bounds on the computing capacity have been studied
in [2], [3] based on a special case of the equivalence class
defined in Definition 1. However, we will demonstrate that
the bounds therein do not hold for the example we studied in
the last subsection.

In Definition 1, whenJ = ∅, we will saya ≡ b|I , or a andb
areI-equivalent. That isa ≡ b|I if for everyx, y ∈ A1×s with
xI = a, yI = b andxS\I = yS\I , we havef(x) = f(y). For
target functionf andI ⊂ S, denote byRI,f the total number
of equivalence classes induced by≡ |I . For a cutC ∈ Λ(N),
let RC,f = RIC ,f . For J ⊆ S, let iJ : J → {1, . . . , |J |}
be the one-to-one mapping preserving the order onJ , i.e.,
iJ(i) < iJ(j) if and only if i < j. Then we have the following
lemma:

Lemma 1. Let I, J be disjoint subsets ofS andJ ′ ⊆ J . Then

for a, b ∈ A|I| and c ∈ A|J|, we have thata
(c′)
≡ b|I,J′ implies

a
(c)
≡ b|I,J where c′ = ciJ (J′). In particular, a ≡ b|I implies

a
(c)
≡ b|I,J for all J ⊆ S \ I and c ∈ A|J|.

Proof: Assume thata
(c′)
≡ b|I,J′ where I ⊆ S, J ⊆ S \

I, J ′ ⊆ J , a, b ∈ A|I|, c ∈ A|J| and c′ = ciJ (J′). We want to

prove thata
(c)
≡ b|I,J .

It suffices to show thatf(x) = f(y) for all x, y ∈ As

satisfyingxI = a, yI = b, xJ = yJ = c, xS\(I∪J) = yS\(I∪J).
We know thatxJ′ = (xJ)iJ (J′) = ciJ (J′) = c′ by definition
of the functioniJ . ThereforexI = a, yI = b, xJ′ = yJ′ = c′

andxS\(I∪J′) = yS\(I∪J′), which impliesf(x) = f(y). The
proof is finished.

Lemma 2. Let I ⊂ I ′ ⊂ S andJ = I ′ \ I. For all c ∈ A|J|,
a ≡ b|I implies a′ ≡ b′|I′ wherea′

iI′ (I)
= a, b′

iI′(I)
= b and

a′
iI′ (J)

= b′
iI′(J)

= c.

Proof: We havea ≡ b|I implies a
(c)
≡ b|I,J by Lemma 1,

anda′ ≡ b′|I′ is equivalent toa
(c)
≡ b|I,J by definition.

Lemma 3. Fix networkN and functionf . Then, i) for any
C ∈ Λ(N), we haveRC,f ≥WC,f ; ii) for any C,C′ ∈ Λ(N)
with C′ ⊂ C and IC′ = IC , we haveWC′,f ≥WC,f .

Proof: Let I = IC , J = JC andJ ′ = JC′ . Apparently,
JC′ ⊆ JC . By Lemma 1, forc ∈ A|JC |, we have

W
(c′)
I,J′,f ≥W

(c)
I,J,f ,

wherec′ = ciJ (J′). In particular,

RI,f ≥W
(c)
I,J,f .

ThenRI,f ≥ maxc∈A|J| W
(c)
I,J,f =WC,f .

Fix c∗ ∈ A|JC | such thatW (c∗)
I,J,f = WC,f . Then,WC′,f ≥

W
(c′′)
I,J′,f ≥W

(c∗)
I,J,f =WC,f wherec′′ = c∗

iJ (J′).
Define

min-cutA(N , f) = min
C∈Λ(N)

|C|

log|A|RC,f
.

By Lemma 3, we have min-cut(N , f) ≥ min-cutA(N , f). It
is claimed in [2, Theorem II.1] that min-cutA(N , f) is an
upper bound onC(N , f). We find, however, min-cutA(N , f)
is not universally an upper bound for the computing capacity.
Consider the example in Fig. 1. For cut setC1 = {e4, e6, e7},
we haveIC1 = {1, 3}. On the other hand, it can be proved
that RC1,f = 4 since i) f is an affine function ofx2 given
that x1 and x3 are fixed, and ii) it takes2 bits to represent
this affine function over the binary field. Hence

min-cutA(N1, f) ≤
|C1|

log|A|RC1,f
=

3

2
< 2 = C(N1, f).

For a networkN as defined in Section II-A, we say a subset
of nodesU ⊂ V is a cut if |U ∩ S| > 0 andρ /∈ U . For a cut
U , denote byE(U) the cut set determined byU , i.e.,

E(U) = {e ∈ E : tail(e) ∈ V, head(e) ∈ V \ U}.

Let
Λ∗(N) = {E(U) : U is a cut inN}.

Define

min-cutK(N , f) = min
C∈Λ∗(N)

|C|

log|A|RC,f
.

SinceΛ∗(N) ⊂ Λ(N), min-cutK(N , f) ≥ min-cutA(N , f).
It is implied by [3, Lemma 3] that min-cutK(N , f) is an
upper bound onC(N , f). However, min-cutK(N , f) is also
not universally an upper bound for the computing capacity.
Consider the example in Fig. 1. For the cutU1 = {1, 3, v},
the corresponding cut setE(U1) = C1 = {e4, e6, e7}. Hence,

min-cutK(N1, f) ≤
|C1|

log|A|RC1,f
=

3

2
< 2 = C(N1, f).

Though in general the upper bounds in [2], [3] are not valid,
for various special cases discussed in [2], e.g., multi-edge tree
networks, these bounds still hold.

C. Tightness

The upper bound in Theorem 3 is tight when the network is
a multi-edge tree. We may alternatively prove the same result
using [2, Theorem III.3], together with the facts that

min-cut(N , f) = min
C∈Λ∗(N)

|C|

log|A|WC,f

and that for a multi-edge tree network,WC,f = RC,f for
C ∈ Λ∗(N).

Theorem 4. If G is a multi-edge tree, for networkN =
(G,S, ρ) and any target functionf ,

C(N , f) = min-cut(N , f).

Proof: Fix a pair of (n, k) such that k
n log|B| |A| ≤

min-cut(N , f). It suffices to show that there exists an(n, k)
code computingf on N . We have

W k
C,f ≤ |B|n|C| (3)

for all C ∈ Λ(N). For nodeu, define

P (u) = {v ∈ S|v → u} ,

prec(u) = {v ∈ V|(v, u) ∈ E} .

For all u ∈ G, Eo(u) is a cut set, and

IEo(u) = P (u), JEo(u) = ∅,

Rk
Eo(u),f

≤ |B|n|Eo(u)|. (4)

We assign eachu a function

γu : A|P (u)| →
{

1, 2, . . . , RP (u),f

}

such that
γu(x) = γu(y) ⇔ x ≡ y|P (u).

For anys ∈ A|P (u)|, the valueγu(s) determines the equiva-
lence classs lies in. Forx ∈ Ak×|P (u)|, let

γku(x) = (γu(x
1), γu(x

2), . . . , γu(x
k))⊤.

Then consider the following(n, k) code, where we claim
that γku(xP (u)) can be computed by all nodesu, given the
initial input x ∈ Ak×s. This claim is proved inductively with
the outline of the code.

Each source nodei ∈ S computesγki (xi). Note that there
are onlyRk

{i},f ≤ |B|n|Eo(i)| possible outputs ofγki . So we
can encode each output into a distinct string ofBn|Eo(i)|, and
send then|Eo(i)| entries of the string inn uses of the edges
in Eo(i). Thus the claim holds for all source nodesi.

For an intermediate nodeu, let m = |prec(u)| and denote
prec(u) = {v1, . . . , vm}. Assume that the claim holds for
all v ∈ prec(u). Node u first recoversγkv (xP (v)) for all
v ∈ prec(u) using the symbols received fromEi(u). This is
possible by the induction hypothesis andEo(v) ⊂ Ei(u) for
all v ∈ prec(u). Then nodeu fixes s ∈ Ak×|P (u)| such that
γkvj (siP (u)(P (vj))) = γkvj (xP (vj)) holds for all1 ≤ j ≤ m, i.e.

si
iP (u)(P (vj))

≡ xiP (vj)
|P (vj), ∀1 ≤ j ≤ m, 1 ≤ i ≤ k. (5)

Such ans can be found by enumerating the matrices in
Ak×|P (u)|.

By (4), we can encode each output ofγku into a distinct
string ofBn|Eo(u)|. In this (n, k) code, nodeu encodesγku(s)
and sends then|Eo(u)| entries of the string inn uses of the
edges inEo(u).

We claim thatγku(s) = γku(xP (u)). As G is a tree, we have

P (u) = ∪1≤j≤mP (vj)

whereP (v)∩P (v′) = ∅ if v 6= v′. Then define a sequence of
strings{aj}

m
j=0 , aj ∈ A1×P (u) as follows:

a0 = si, am = xiP (u),

(aj)iP (u)(P (vl)) =

{

si
iP (u)(P (vl))

, l > j;

xiP (vl)
, l ≤ j.

Consider stringsaj−1 and aj , for all 1 ≤ j ≤ m. In
Lemma 2, let

a′ = aj−1,
b′ = aj ,
a = (a′)iP (u)(P (vj)) = (si)iP (u)(P (vj)),

b = (b′)iP (u)(P (vj)) = (xi)P (vj),

c = (a′)iP (u)(P (u)\P (vj)) = (b′)iP (u)(P (u)\P (vj)),

(6)

we havea′ ≡ b′|P (u), i.e. aj−1 ≡ aj |P (u) for all 1 ≤ j ≤ m.
The equivalence then extends to

a0 = si ≡ am = xiP (u)|P (u)

for all 1 ≤ i ≤ k. Thereforesi ≡ xiP (u)|P (u) always holds,
and we have

γku(s) = γku(xP (u)),

finishing the induction.
The sink node can computeγkρ (x), identifying f (k)(x).
The upper bound in Theorem 3 is not tight for certain cases.

Consider the networkN2 in Fig. 2(a) provided in [2]. Note

3

1 2

ρ

e1 e3

e2 e4

(a) NetworkN2

3

1′ 2′

ρ

e1 e3

e2 e4

1 2

(b) NetworkN ′

2

Fig. 2. NetworksN2 and N ′

2
have three binary sources,{1, 2, 3} and

one sinkρ that computes the arithmetic sum of the source messages, where
A = B = {0, 1}. In N ′

2
, the number of edges from nodei to nodei′ is

infinity, i = 1, 2.

that in N2, source nodes1 and 2 have incoming edges. To
match our model described in Section II-A, we can modify
N2 to N ′

2 shown in Fig. 2(b), where the number of edges
from nodei to nodei′ is infinity, i = 1, 2. Every network
code inN ′

2 naturally induces a network code inN2 and vise
versa. Hence, we have

C(N2, f) = C(N ′
2, f).

We then evaluate min-cut(N ′
2, f). Note that

|C|

log|A|WC,f
<∞

holds only if |C| < ∞, and we can thus consider only the
finite cut sets. For a finite cut setC, we denote byC′ =
C ∩ {e1, . . . , e4}. We have|C′| ≤ |C| and JC′ ⊆ JC , and
we claim IC′ = IC . Note thatIC′ ⊆ IC . Suppose that there
existsi ∈ IC \ IC′ , then there exists a path fromi to ρ which
is disjoint with C′, but shares a subsetD of edges withC.
ThenD ⊂ Eo(i) and hence|D| = 1. We simply replace the
edge inD by an arbitrary edge inEo(i) \ C and form a new
path fromi to ρ. This is always possible, sinceC ∩ Eo(i) is
finite while Eo(i) is not. The newly formed path is disjoint
with C, and then we havei /∈ IC , a contradiction.

According to Lemma 3, we haveWC′,f ≥WC,f and hence
|C′|

log|A| WC′,f
≤ |C|

log|A| WC,f
. Therefore we can consider only cut

setsC′ ⊆ {e1, e2, e3, e4}. We then have min-cut(N ′
2, f) = 1,

where the minimum is obtained by the cut set{e2, e4}. While
for network N2, it has been proved in [2] thatC(N2, f) =
log6 4 < 1. Hence min-cut(N ′

2, f) = 1 > C(N ′
2, f).

IV. PROOF OFMAIN THEOREM

To prove Theorem 3, we first give the definition of F-
extension and two lemmas.

Definition 2. [F-Extension] Given a networkN and a cut set
C ∈ Λ(N), defineD(C) ⊆ E as

D(C) =
⋃

i/∈IC

Eo(i).

Then the F-extension ofC is defined as

F (C) = C ∪D(C).

Lemma 4. For every cut setC, F (C) is a global cut set, i.e.

∀C ∈ Λ(N), IF (C) = S.

Proof: Clearly, IC ⊆ IF (C), then it suffices to show that
for all i /∈ IC , we havei ∈ IF (C). This is true, sinceEo(i) ⊆
F (C) and i ∈ IEo(i) imply i ∈ IF (C).

Lemma 5. Consider a(n, k) network code inN = (G,S, ρ).
For any global cut setC, ψ(x) is a function ofgC(x), i.e.,
ψ(x) = ψC(gC(x)) for certain functionψC .

Proof: For a global cut setC of N . Let GC be the
subgraph ofG formed by the (largest) connected component
of G includingρ after removingC from E . Let SC be the set
of nodes inGC that do not have incoming edges. SinceGC

is also a DAG,SC is not empty. For each nodeu ∈ SC , we
have i)u is not a source node inN since otherwiseC would
not be a global cut set, and ii) all the incoming edges ofu in
G are inC since otherwiseGC can be larger. For each node
u in GC but not in SC , the incoming edges ofu are either
in GC or in C, since otherwise the cut setC would not be
global. If we can show that for any edgee in GC , ge(x) is
a function ofgC(x), thenψ(x) = ϕ(Ei(ρ)) is a function of
gC(x).

Suppose thatGC hasK nodes. Fix an order on the set of
nodes inGC that is consistent with the partial order induced
by GC , and number these nodes asu1 < . . . < uK , where
uK = ρ. Denote byEo(u|GC) the set of outgoing edges of
u in GC . We claim thatgEo(ui|GC)(x) is a function ofgC(x)
for i = 1, . . . ,K, which implies that for any edgee in GC ,
ge(x) is a function ofgC(x). We prove this inductively. First
gEo(u1|GC)(x) is a function ofgC(x) sinceu1 ∈ SC and hence
all the incoming edges ofu1 in G are inC. Assume that the
claim holds for the firstk nodes inGC , k ≥ 1. For uk+1, we
have two cases: Ifuk+1 ∈ SC , the claim holds since all the
incoming edges ofuk+1 in G are inC. If uk+1 /∈ SC , we
know thatEi(uk+1) ⊂ ∪k

i=1Eo(ui|GC) ∪ C. By the induction
hypothesis, we have thatEo(uk+1|GC) is a function ofgC(x).
The proof is completed.

In the following proof of Theorem 3, it will be handy to
extend the equivalence relation for a block of function inputs.
For disjoint setsI, J ∈ S and c ∈ A1×|J| we saya, b ∈
Ak×|I| are (I, J, c)-equivalent if for anyx, y ∈ Ak×s with
xI = a, yI = b, xJ = yJ =

(

c⊤, c⊤, . . . , c⊤
)⊤

andxS\I∪J =
yS\I∪J , we havef (k)(x) = f (k)(y). Then for the setAk×|I|,
the number of equivalence classes induced by the equivalence

relation is
(

W
(c)
I,J,f

)k

.

Proof of Theorem 3:Suppose that we have a(n, k) code
with

k

n
log|B| |A| > min-cut(N , f). (7)

We show that this code cannot computef(x) correctly for all
x ∈ Ak×s. Denote

C∗ = arg min
C∈Λ(N)

|C|

log|A|WC,f
(8)

and
c∗ = arg max

c∈A|JC∗ |
W

(c)
IC∗ ,JC∗ ,f . (9)

By (7)-(9), we have

k

n
log|B| |A| >

|C∗|

log|A|W
(c∗)
IC∗ ,JC∗ ,f

,

which leads to

|B||C
∗|n <

(

W
(c∗)
C∗,f

)k

. (10)

Note thatgC
∗

(x) only depends onxKC∗ . By (10) and the
pigeonhole principle, there exista, b ∈ Ak×|IC∗ | such that i)
a and b are not(IC∗ , JC∗ , c∗)-equivalent and ii)gC

∗

(x) =
gC

∗

(y) for any x, y ∈ Ak×s with

xIC∗ = a, yIC∗ = b,
xJC∗ = yJC∗ = (c∗⊤, c∗⊤, . . . , c∗⊤)⊤,
xS\KC∗ = yS\KC∗ .

(11)

Fix x, y ∈ Ak×s satisfying (11) andf (k)(x) 6= f (k)(y). The
existence of suchx andy is due to i). SinceC∗ andD(C∗)
are disjoint (see Definition 2) and for anyi /∈ IC∗ , xi = yi,
together with ii), we have

gF (C∗)(x) = gF (C∗)(y).

Thus, applying Lemma 5 we haveψ(x) = ψ(y). Therefore,
the code cannot computes bothf (k)(x) andf (k)(y) correctly.
The proof is completed.

REFERENCES

[1] A. Giridhar and P. Kumar, “Computing and communicating functions
over sensor networks,”Selected Areas in Communications, IEEE Journal
on, vol. 23, no. 4, pp. 755–764, April 2005.

[2] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,”Information Theory,
IEEE Transactions on, vol. 57, no. 2, pp. 1015–1030, Feb 2011.

[3] H. Kowshik and P. Kumar, “Optimal function computation in directed
and undirected graphs,”Information Theory, IEEE Transactions on,
vol. 58, no. 6, pp. 3407–3418, June 2012.

[4] A. Ramamoorthy and M. Langberg, “Communicating the sum of sources
over a network,”Selected Areas in Communications, IEEE Journal on,
vol. 31, no. 4, pp. 655–665, April 2013.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[6] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[7] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[8] R. Appuswamy and M. Franceschetti, “Computing linear functions by
linear coding over networks,”Information Theory, IEEE Transactions
on, vol. 60, no. 1, pp. 422–431, Jan 2014.

[9] B. Rai and B. Dey, “On network coding for sum-networks,”Information
Theory, IEEE Transactions on, vol. 58, no. 1, pp. 50–63, Jan 2012.

	I Introduction
	II Main Results
	II-A Function-Computing Network Codes
	II-B Cut Sets and Special Cases
	II-C Upper Bounds

	III Discussion of Upper Bound
	III-A An Illustration of the Bound
	III-B Comparison with Previous Works
	III-C Tightness

	IV Proof of Main Theorem
	References

