
Science in China Series F: Information Sciences

© 2007 Science in China Press

 Springer-Verlag

*This article was recommended by Prof. Francis C.M. LAU, member of editorial board of Science in China.
Received October 12, 2005; accepted September 1, 2006
doi: 10.1007/s11432-007-0006-9
†Corresponding author (email: xk02@mails.tsinghua.edu.cn)
Supported by the National Natural Science Foundation of China (Grant Nos. 60604033 and 60553001)

Formal verification technique for grid
service chain model and its application*

XU Ke†, WANG YueXuan & WU Cheng

Automation Department, Tsinghua University, Beijing 100084, China

Ensuring the correctness and reliability of large-scale resource sharing and com-
plex job processing is an important task for grid applications. From a formal
method perspective, a grid service chain model based on state Pi calculus is pro-
posed in this work as the theoretical foundation for the service composition and
collaboration in grid. Following the idea of the Web Service Resource Framework
(WSRF), state Pi calculus enables the life-cycle management of system states by
associating the actions in the original Pi calculus with system states. Moreover,
model checking technique is exploited for the design-time and run-time logical
verification of grid service chain models. A grid application scenario of the dynamic
analysis of material deformation structure is also provided to show the effective-
ness of the proposed work.

grid, grid service chain, formal method, model checking, state Pi calculus

1 Introduction

The emergence of grid technique[1] provides a revolutionary solution to the sharing and collabo-
ration of geographically distributed resources. The proposal of the grid services and the Web
Service Resource Framework (WSRF) (http://www.globus.org/wsrf/specs/ws-wsrf.pdf) inte-
grates grid technique with existing web service technique and provides standard interfaces for
the access and management of heterogeneous grid resources. A grid application is supposed to
handle the management of large-scale resources and the process of complicated tasks. Therefore,
a grid application is not just the invocation of a single service entity. It is the composition and
cooperation of various grid services. As a result, the modeling and implementation of grid ser-
vice flows is also becoming an important research topic. The service composition and coopera-
tion in grid has two important features:

1) High complexity. Grid application involves the cooperation of multiple services and the
manipulation of large volume data. For example, the application of the dynamic analysis of ma-
terial deformation structure involves the cooperation of services including SEM (Scan Electron

www.scichina.com www.springerlink.com Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

Microscope) Observation, Material Stretching, Image Collection, Enhancement, Noise Reduction,
3D Reconstruction, Animation, etc. On the one hand, due to the diversity and heterogeneity of
different grid resources, it is hard for users to have a comprehensive and detailed understanding
of the service interactions and global states in such a complex application. On the other hand,
since users purchase various grid resources and services with expected goals, the whole service
flow must be correctly implemented to fulfill the requirements from users. For example, it is de-
sired in the previous application that concurrent access to the SEM equipment must be avoided
and the return of corresponding observation result must be guaranteed in the application. Other-
wise it may cause not only the failure in satisfying desired requirements from grid users, but also
the chaos in the management of grid resources. Therefore, how to ensure the correct design and
reliable implementation of grid applications is becoming a critical task in the development of grid
systems.

2) State/action hybrid. Grid application can be regarded as a state/action hybrid system[2]. For
example, in the equipment grid[3,4] the request for equipment resources (action) depends on the
current state of resources themselves and the historical information of users (state). This feature is
most obvious in the proposal of WSRF. Traditionally, the cooperation between web services is
formed via their internal behaviors (sending/receiving SOAP messages) and external event inter-
actions. The introduction of stateful resources enables the access, query and update of system
state information with web services. It is the life-cycle management of these stateful resources
that realizes the dynamic interaction between service behaviors and system states.

Although the importance of service cooperation has been widely recognized, new difficulties
have also arisen during the development of grid techniques which include: 1) How to develop a
sophisticated formal model to precisely capture the behavior and state evolution in grid service
cooperation? Now that existing grid systems have their service orchestration languages with dif-
ferent syntaxes and semantics, it hinders the mutual understanding of their service cooperation
models and the integration of these systems; 2) compared to the existing works on grid workflow
enactment, less research has been done on the corresponding ensuring techniques such as data
flow analysis, temporal verification, etc., in the grid domain[3,4]. These works, however, are the
key techniques for the correctness and reliability of the whole grid application.

A grid service chain model is developed in this work to address the above issues. A state Pi
calculus is proposed as the theoretical foundation for grid service chain to model and analyze the
composition and cooperation of grid services (see Figure 1). The grid service chain model can be
understood as the integration of BPEL4WS (BPEL4WS Version 1.1, http://www-106.ibm.com/
developerworks/webservices/library/ws-bpel, 2003) and WSRF. The behavior and state life-cycle
management is formally defined in grid service chain based on its state Pi calculus formalism. An
application scenario is also given to show how model checking[5] can be exploited for the de-
sign-time and run-time temporal verification of grid service chain models. Note that the purpose
of this work is not to define another grid workflow language, but to extend a suitable formal the-
ory to capture the operational semantics of grid service cooperation, and develop the correspond-
ing analysis techniques to ensure its correctness. As illustrated in Figure 1, grid service chain can
be regarded as a supplemental service to the traditional grid workflow system, which serves for
the formal definition and property analysis of grid workflows.

It is already a general idea that some formal models should be used as a basis for complex web
service composition languages like BPEL4WS. In the grid domain, formal models are not only

2 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

the bases for the precise definition of grid systems, but also the accelerator for the design and
analysis of grid applications[6,7]. Among existing formal methods, the Pi calculus proposed by
Milner[8] has drawn much attention in the field of service composition[9] and business process
modeling[10] because of its compositionability, mobility and theoretical soundness. In fact, previ-
ous works[9,11,12] have already proved the suitability of Pi calculus as a service composition lan-
guage. However, in grid systems the execution of grid service chains is not just the static interac-
tion among web services. It also involves the mutual influence between service interactions and
the states of the grid service chain. Therefore, the capability of system state creation, destruction,
update and association is extended into the original semantics of Pi calculus in the work. The re-
sult is named the state Pi calculus, because it makes it possible for Pi calculus to manage the life
cycle of system states.

Figure 1 The structure of grid service chain model.

The organization of the paper is as follows. Section 2 concludes the related works on both grid

workflows and state/action hybrid systems. Section 3 defines and analyzes the syntax, operational
semantics and bi-simulation relations in state Pi calculus. Section 4 implements the grid service
chain model based on state Pi calculus. The introduction of our grid service chain verification
system can be found in section 5 with a grid application scenario. Section 6 concludes the paper.

2 Related works

In the past few years, various grid workflow models have been proposed with different expres-
siveness, syntaxes and semantics[13―17]. The diversity hinders the understanding and integration of
these models. To address this issue, there are works[18] that try to extend BPEL4WS, the de facto
standard for web service composition, to support the OGSI or WSRF specification. Contrary to
the above works, it is not our intention to develop another grid workflow language. This work is
devoted to the design of a formal model so that: 1) the key features and operations in grid service
cooperation can be precisely defined and understood; 2) the integration of various grid workflow
systems can be easier based on this unified model; 3) the interrelation between service interac-
tions and states in grid service chain can be further clarified; 4) formal verification techniques can
be applied to analyze the logical properties of the whole grid service chain.

As for the application of formal methods[5,19,20] in the grid domain, ref. [6] first established the

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 3

importance of formal definitions for grid systems. Based on the abstract state machine, it for-
mally distinguished the fundamental differences between grid and traditional distributed systems.
In ref. [21], a Gamma calculus is applied to formalize the grid workflow engine to provide it an
implementation framework. The difference in our work lies in three aspects: the target (instead of
the grid system, it is the grid applications built on the system that are formalized); the purpose
(the formalism is used to analyze the correctness and reliability of grid applications, not just to
define their behaviors); the approach (a state Pi calculus is extended for the formalization pur-
pose). Note that we based on Pi calculus not only because its compositionability and mobility
offers grid service chain models a flexible and natural description, but also because its effective-
ness has been proved in the field of web service composition and analysis[9,11,12]. In fact, our pre-
vious works[3,4] have already given a preliminary discussion on the framework of ensuring reli-
able grid applications based on Pi calculus. This work goes further by having a detailed and com-
prehensive investigation in its theoretical foundation and implementation scenario.

On the other hand, with the proposal of WSRF, how to formulate the dynamic interaction be-
tween web services and resource states and how to formally manage the life-cycle of system
states are becoming important tasks. This motivates the design of state Pi calculus, which extends
the original Pi calculus with the capability of dynamic modeling and association of system states.
In the formal method domain, the modeling and reasoning of state/action hybrid systems have
already been a hot research topic[2,22]. Ref. [22] proves that state/action hybrid modeling can ef-
fectively reduce the complexity of system models. The concept of fluent is proposed in ref. [23],
which contains two distinguished actions to flip a system state between true and false. Ref. [24]
follows the idea of integrated formal methods. It integrates the state transition semantics of Ob-
ject-Z with the process reduction rules in Pi calculus. The result is a state/action hybrid modeling
language—PiOZ. Unlike ref. [22], state Pi calculus is not just a static representation of a
state/action hybrid model based on extension of existing formal methods (i.e. the extended la-
beled transition system in section 3.3). It further defines the dynamic semantics between the
changes in system states and system behaviors. From this perspective, state Pi calculus can be
regarded as the generalization of refs. [23, 24] because it realizes the action driven life-cycle
management of system states. For example, the approach of ref. [23] only supports the discovery
of new system states (which are Boolean valued states through the definition of fluents), but no
corresponding operations are available for the destruction of existing system states.

3 State Pi calculus

3.1 State definition

State Pi calculus is a process algebra extended from Milner’s (polyadic) Pi calculus[8] for model-
ing state/action hybrid systems. Figure 2 illustrates the syntax of Pi calculus. The most basic
concept in Pi calculus is the names, which are used to express the atomic interactive actions in a
system. A system in Pi calculus evolves through the operators including composition ‘|’, choice
‘+’, guard ‘.’, match ‘[]’, restriction ‘new’ and replication ‘!’. Process algebras like Pi calculus
have an explicit description of system behaviors and interactions, but they model the states in a
system implicitly. Therefore, to realize the life-cycle management of system states, it is needed to
enabling the modeling of: 1) the creation and destruction of states; 2) the access and update of
states; and 3) the association of states with system behaviors.

4 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

1 1:: | () | ! | | | | (,...,) | 0
:: | () | :: [] | |

n
i i i n

i

P P new x P P P Q P A y y
x y x y x y

π φ

π τ φ φ φ φ
== Σ

= < > = = ∧ ¬

Figure 2 The syntax of Pi calculus.

In state Pi calculus, a state S is defined as a finite set of system propositions PROP.
Definition 1 (system proposition). A system proposition PROP=(ident, set) ranged over a

universe D is a pair, where ident is a unique identifier of PROP and set is the set of all valuations
that make PROP to be true.

Consequently, a state is S={p1,…, pn}, where pi (i=1,…, n) is the system proposition PROP
ranged over D. To enhance the capability for the states to express their relations among different
components in a system, in state Pi calculus the identifier ident is defined by the following hier-
archical structure: ident::=atom | atom.ident. Here atom indicates a symbolic constant value and
‘.’ indicates a separator for the atoms. Consequently, a prefix/suffix relation is used to define the
hierarchical structure of ident:

 : ' ''
(, ') '' iff ''. '

prefix ident ident ident
prefix ident ident ident ident ident ident

× →
= =

 : ' ''
(, ') '' iff '. ''

suffix ident ident ident
suffix ident ident ident ident ident ident

× →
= =

Take S={(AvailableService, {Srv1, Srv2}), (Srv1.Status, {Running}), (Srv2.Status, {receive_
waiting})} for an example. It can be used to indicate that in state S, there are two available ser-
vices Srv1 and Srv2 in the system, where Srv1 is running and Srv2 is waiting for its input. The
identifier Status is the suffix of Srv1 and Srv2. To complete the static semantics of states and sys-
tem propositions, three functions are further defined. Function range : PROP set returns the
set of all valuations that make PROP to be true; Function eval : PROP× value {true, false}
determines whether PROP is true for a given valuation; Function proposition : S × ident
{p1, …, pm} returns the corresponding system propositions according to the given identifier.
Since the semantics of range and eval is quite straightforward, here we focus on the implementa-
tion of proposition. Note that due to the hierarchical structure of identifiers ident, the function of
proposition should also be able to get all system propositions identified by the prefix of an ident.

1 1

1

(,) if (,)
(, .*) { ,..., } if { ,..., } and

 { ,..., }, ' s.t. (,
m m

m

proposition STATE ident p p ident set S
proposition STATE ident p p p p S

p p p ident suffix p ident

= ∃ = ∈
= ⊂
∀ ∈ ∃

) 'ident=

3.2 State operational semantics

Now that the static definition of system states and proposition are defined, we now determine the
dynamic operational semantics of the creation, destruction and update of states based on system
actions. Different from the original Pi calculus, a group of state operators are introduced into the
syntax of state Pi calculus as shown in Figure 3. The basic idea of state Pi calculus is to create the
dynamic association between states and the actions in Pi calculus via the state operators. The
creation, destruction and update of states can thus be enabled by integrating the operational se-
mantics of the original Pi calculus and the semantics of state operators. Therefore, the intention of
state Pi calculus is not to revise the core theory of Pi calculus, but to reuse the existing properties
and analysis techniques in Pi calculus.

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 5

11:: | () | ! | | | | (,...,) | 0
:: { } | (){ } | { } :: [] | |

:: (,) | [] | ,

n
i i ni

i

P P new x P P P Q P A y y
x y StateExpr x y StateExpr StateExpr x y

StateExpr StateOp STATE ConditionExpr StateExpr StateExpr StateExpr StateExpr
StateO

α φ

α τ φ
=

=

= < > = = ∧ ¬
=

∑

？
:: | | |p = + − ++ − −

φ φ φ

2

2

Figure 3 The syntax of state Pi calculus.

As shown in Figure 3, in state Pi calculus each input/output action can be associated with mul-
tiple state expressions StateExpr. StateExpr depicts the possible state operations StateOp that a
system action can do to a state. The choice operator ‘?’ is also support in StateExpr. Conse-
quently, the expression of [ConditionExpr]StateExpr?StateExpr describes that when condition
ConditionExpr is (not) satisfied, a system action will be associated with the state expression of
the former (latter) StateExpr. Four state operators are provided in state Pi calculus: state creation
(+), state destruction (−), state association (++), state removal (−−). An additional operation of
state update is also included in the state creation (+) operator. To be more intuitive, each state
operator can be regarded as an association relation between states: ℜ: SysState × StateOp × S
SysState. That is, a new system state is determined by the current system state (SysState) and the
target state operation (StateOp × S). In state Pi calculus, a system state is the set of all existing
states and their valuation in the system. Therefore, the semantics of the state operators are the
keys to state Pi calculus. They define how the association between system action and system state
(whose initial value is an empty set) is formed, and how the life-cycle of the system states is
managed.

Before formally giving the operational semantics of the state operators, some basic relations
between states and the concept of well-formed state are defined first as follows.

Definition 2 (irrelevant state and conflict state). Two states S1 and S2 are called conflict
(S1 ◊ S2) if ∃p1=(ident1, set1)∈S1 and p2=(ident2, set2)∈S2 s.t. ident1=ident2. Meanwhile the
system propositions p1 and p2 are called overlapped (p1 ◊ p2); S1 and S2 are called irrelevant
(S1∇ S2) if they are not conflict.

A preorder relation can be further defined for any two conflict states.
Definition 3 (state preorder). For any two non-conflict states S1 and S2, write if

∀p=(ident, set)∈S1, ∃p’=(ident’, set’)∈S2, s.t. ident=ident’ and set⊂set’. Write S1=S2 if
 and .

1S S≺

1S S≺ 2 1S S≺
Definition 4 (well-formedness). A state S is well-formed, iff the following two conditions

are satisfied: (1) ∀ p1, p2∈S, there is no p1 ◊ p2; (2) ∀ p=(ident, set)∈S, set is not empty.
The well-formedness of a state ensures that every two propositions in the state will not have

conflict semantics and each proposition in the state will not always be false. Denote the current
system state SysState ={p11,…,p1n}, the state associated with the state operator StateOp is
S={p21,…,p2m}. The following gives the formal semantics of each state operator, which are de-
fined over well-formed states.

1. State Creation (+): Define a new state and overwrite the existing one in the current system;

11 1 21 2
,

{ ,..., , ,..., }n m

SysState SCREATE
S p p p p

∇
+ =

6 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

1 1

11 1 1 1 1 1 21 2

, s.t.
.

{ ,..., , ,..., , ,..., }
i i

i i n m

SysState S p SysState p S p p
UPDATE

S p p p p p p− +

◊ ∃ ∈ ∈ ◊
+ =

2. State Destruction (−): Removes a specific state from the current system states;

11 1

1 1

11 1 1 1 1 1

_ ,
{ ,..., }

, s.t.
.

{ ,..., , ,..., }

n

i i

i i n

SysState SDESTROY VOID
S p p

SysState S p SysState p S p p
DESTROY

S p p p p− +

∇
− =

◊ ∃ ∈ ∈ ◊
− =

3. State Association (++): Insert a state in the current system states;

1 1

11 1 1 1 1 1 1 21 2 1

11 1 21 2

, s.t.
{ ,..., , ', ,..., , ,..., } (') () ()

_
{ ,..., , ,..., }

i i

i i i n m i i

n m

SysState S p SysState p S p p
S p p p p p p p range p range p range p

SysState SINSERT VOID
S p p p p

INSERT
− +

◊ ∃ =∈ ∈ ◊

+ + = = ∪

∇
+ + =

4. State Removal (−−): Remove the specific propositions from a state in the current system
states;

11 1

1 1 1

11 1 1 1 1 1 1 21 2 1

_
{ ,..., }

, s.t. () / ()_ ,
{ ,..., , ', ,..., , ,..., } (') () / ()

_

n

i i i

i i i n m i i

SysState SREMOVE VOID
S p p

SysState S p SysState p S p p range p range pREMOVE SHALLOW
S p p p p p p p range p range p range p

REMOVE

φ

− +

∇
− − =

◊ ∃ =∈ ∈ ◊ ≠
− − = =

1 1 1

11 1 1 1 1 1 21 2

, s.t. () / () .
{ ,..., , ,..., , ,..., }

i i i

i i n m

SysState S p SysState p S p p range p range pDEEP
S p p p p p p

φ

− +

◊ ∃ =∈ ∈ ◊ =
− − =

As previously mentioned, the above semantics form a basis for implementation the state rela-
tion ℜ, i.e.,
ℜ : SysState × StateOp × S SysState
ℜ（SysState, StateOp, S）=SysState’ where SysState’ if determined by the above 9 seman-

tic rules
The following proposition proves that in the above state operators, the semantics of UPDATE

can be directly implied by the combination of DESTROY and CREATE (i.e., destroy first and then
create).

Proposition 1. If ∃p∈SysState and p’∈S s.t. p◊ p’, then ℜ(SysState, +, S) = ℜ(ℜ(SysState, −,
S), +, S).

Proof. Based on the semantics of state destruction (−), we have ℜ(SysState, −, S) ∇ S. There-
fore following the rules of CREATE and UPDATE we have ℜ(SysState, +, S) = (SysState∪S) / p
= ℜ(ℜ(SysState, −, S), +, S).

Proposition 2. ℜ is a preorder relation between states, if the semantic rule of UPDATE is not
used.

Proof. If SysState∇S, we have (, ,)SysState SysState Sℜ +≺ , (, ,)SysState SysState S= ℜ − ,

; Otherwise (i.e. SysState ◊S) we have(,SysState SysState Sℜ +≺ ,)+ (, ,)SysState S SysStateℜ − ≺ ,

, . Therefore for each scenario of ℜ,
a preorder relation can be formed.

(, ,SysState SysState Sℜ ++≺ (, ,)SysState S SysStateℜ − − ≺)

3.3 Extended operational semantics

In this section we integrate the previous state operators with the operational semantics of the

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 7

original Pi calculus. The result is the extended operational semantics for state Pi calculus, which
interprets how system states and actions are mutually operated. Traditionally the behavior of Pi
calculus is modeled on a standard Labeled Transition System (LTS). However, for the modeling
and reasoning of state/action hybrid systems, LTS should be extended to model both system ac-
tions (i.e. the transition labels) and system states (i.e. state labels) at the same time. Typical ex-
amples of these extensions can be found in the Labeled Kripke Structures[22] and the Doubly La-
beled Transition Systems[25]. Based on the previous definition of states, an Extended Labeled
Transition System (ELTS) is also developed here for interpreting the behavior of state Pi calculus.

Definition 5 (extended labeled transition system). An ELTS { }(, ,{ a StateExprSP M ⎯⎯⎯⎯⎯⎯⎯→
 consists of a set SP of state/process pairs, a set M of transition labels, and a set | a M∈ })

}{ }{ a StateExpr
⎯⎯⎯⎯⎯⎯⎯→ of transitions where a{ }a StateExpr S S⎯⎯⎯⎯⎯⎯⎯→ ⊆ × M∈ .

In an ELTS, a transition is denoted as { }(,) (', ')a StateExprP SysState P SysState⎯⎯⎯⎯⎯⎯⎯→ . It means “the
current process and state of the system is P and SysState. By executing action a which is associ-
ated with the state expression of StateExpr, the system process will evolve to P’ and the system
state will be updated to SysState’ accordingly”. According to ELTS and the syntax in Figure 3, a
static association transState can be defined between the system state SysState and its possible
modification (StateExpr):

 : '
(, ,) (,)
(, ', ')

[](', ')?('', '') |
(,)

(, ''

transState SysState StateExpr SysState
SysState Op S StateExpr Op S
SysState Op S
StateExpr ConditionExpr Op S Op S ConditionExpr True

transState SysState StateExpr
SysState Op

× →

ℜ =
ℜ

= =
=

ℜ , '')
[](', ')?('', '') |

 is empty

S
StateExpr ConditionExpr Op S Op S ConditionExpr False

SysState StateExpr

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ = =
⎪
⎪⎩

 Consequently, the extended operational semantics of state Pi calculus is defined in Figure 4
based on the early transitional semantics[8] of Pi calculus. In Figure 4 ϕ and δ are shortcut nota-
tions for StateExpr and SysState respectively; α denotes an arbitrary action in state Pi calculus,
whose definition can be referred back to Figure 3; fn and bn are used to indicate the set of all free
names and bounded names.

Note that state Pi calculus does not tend to change the fundamental definition of Structural
Congruence in Pi calculus, and the reduction rules can also be extended similarly as in Figure 4
for state Pi calculus. Therefore, the above operational semantics in state Pi calculus can be re-
garded as a further extension to the ones in Pi calculus for integrating the system states with ac-
tions and the management of these states.

3.4 State bi-simulation

Bi-simulation analysis is an important tool in process algebras to define the equivalence between
processes. In state Pi calculus, the system states and their changes need to be further considered
into the original strong (weak) bi-simulation relation in Pi calculus to define the (observable) be-
havior equivalence between state / action hybrid systems. Denote τ⇒ to be a transition sequence

triggered by invisible action τ. Denote and â⇒ τ⇒ to be a transition sequence triggered by

arbitrary action a where a τ≠ and a τ= respectively; Denote to be either or ⇒ a
⇒

τ⇒

and to be the abbreviation for . A hybrid bi-simulation is defined below as a a
⇒

a
⎯⎯→⇒ ⇒

8 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

{ }({ }. ,) (, (,))x y
OUT

x y P P transStateϕϕ δ δ ϕ< >< > ⎯⎯⎯→

(){ }((){ }. ,) ({ / }, (,))x y
INP

x z P P y z transStateϕϕ δ δ ϕ⎯⎯⎯→

{ }({ }. ,) (, (,))
TAU

P P transStateτ ϕτ ϕ δ δ ϕ⎯⎯⎯→

(,) (', ')

(,) (', ')

P P
SUM L

P Q P

α

α

δ δ

δ δ
−

+

⎯⎯→
⎯⎯→

(. ,) (', ')

([] . ,) (', ')

P P
MAT

x x P P

α

α

α δ δ

α δ δ=

⎯⎯→
⎯⎯→

(,) (', ')
() ()

(| ,) (' | , ')

P P
PAR L bn fn Q

P Q P Q

α

α

δ δ
α

δ δ
− ∩ =

⎯⎯→
⎯⎯→

∅

{ , '}

{ } (){ '}(,) (', (,)) (, ') (', (', '))

(| , '') (' | ', (('',), '))

x y x zP P transState Q Q transState
COMM L

P Q P Q transState transStateτ ϕ ϕ

ϕ ϕδ δ ϕ δ δ ϕ

δ δ ϕ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→
< >

−
⎯⎯⎯→

{ , '}

{ } (){ '}(,) (', (,)) (, ') (', (', '))
()

(| , '') ()(' | ', (('',), '))

x z x zP P transState Q Q transState
CLOSE L z fn Q

P Q new z P Q transState transStateτ ϕ ϕ

ϕ ϕδ δ ϕ δ δ ϕ

δ δ ϕ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→
< >

− ∉
⎯⎯⎯→

(,) (', ')
()

(() ,) (() ', ')

P P
RES z n

new z P new z P

α

α

δ δ
α

δ δ
∉

⎯⎯→
⎯⎯→

(,) (', ')

(! ,) (' | ! , ')

P P
REP ACT

P P P

α

α

δ δ

δ δ
−

⎯⎯→
⎯⎯→

{ }

{ }

(,) (', (,))

(() , ') (', (',))

x z

x z

P P transState
OPEN z x

new z P P transState

ϕ

ϕ

δ δ ϕ

δ δ ϕ

< >

< >
≠

⎯⎯⎯→
⎯⎯⎯→

{ } (){ '}

{ , '}

(,) (', (,)) (, ') ('', (', '))

(! , '') ((' | '') | ! , (('',), '))

x y x yP P transState P P transState
REP COMM

P P P P transState transState

ϕ ϕ

τ ϕ ϕ

δ δ ϕ δ δ ϕ

δ δ ϕ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→

< >

−

{ } (){ '}

{ , '}

(,) (', (,)) (, ') ('', (', '))
()

(! , '') (()(' | '') | ! , (('',), '))

x z x zP P transState P P transState
REP CLOSE z fn P

P new z P P P transState transState

ϕ ϕ

τ ϕ ϕ

δ δ ϕ δ δ ϕ

δ δ ϕ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→

< >

− ∉

Figure 4 The extended operational semantics of state Pi calculus.

bi-simulation relation which considers both system states and actions.

Definition 6 (hybrid Bi-simulation). A symmetric binary relation R is a strong (weak) hy-
brid bi-simulation relation, iff for any (,) (,)p QP SysState R Q SysState and substitution σ :

If { }(,) (', ')a StateExprP SysStatep P SysStatep⎯⎯⎯⎯⎯→ (() (,))bn a fn P Qσ σ∉ , then ∃Q’ s.t. (,)Q SysStateQ

(', ')a Q SysStateQ⎯⎯→ (or), ˆ(,) (', ')aQ SysStateQ Q SysStateQ⇒ (', ')P SysStatep (', ')R Q SysStateQ

and . ' 'SysStatep SysStateQ=

As an independent dimension for system description, we can also exclusively follow the lead
of states to define the equivalence between systems.

Definition 7 (state simulation). A symmetric binary relation R is a state simulation relation,
iff for any (,) (,)P SysStatep R Q SysStateQ , if ({ }(,) (', ')a StateExprP SysStatep P SysStatep⎯⎯⎯⎯⎯→ ()bn a ∉

(,)fn P Qσ σ), then ∃Q’ s.t. and . (,) (', ')Q SysStateQ Q SysStateQ⇒ ' 'SysStatep SysStateQ≺
Definition 8 (state bi-simulation). A symmetric binary relation R is a state bi-simulation re-

lation, iff R and its reverse are both state simulation relations.
The following concludes two propositions for the bi-simulation relation in state Pi calculus.
Proposition 3. If process P and Q are hybrid bi-similar, they must be state bi-similar.
Proof. A direct result of the definition of hybrid bi-simulation and state bi-simulation.
Proposition 4. Two processes in state Pi calculus are called independent if no interactions

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 9

can be formed between the two processes. If process P and Q are independent, then (P|Q,
SysState) state-simulates (P;Q, SysState) where ‘;’ is the sequence operator defined in ref. [26].
The opposite does not hold.

Proof. Since P and Q are independent, P|Q has the interleaving transitions (TS) from both P,
Q. Therefore, denote the possible transition sequence of P;Q to be TS’, then TS’⊂TS. Besides,
since the initial system states for both P|Q and P;Q are SysState, the corresponding binary rela-
tion R for TS’ is thus the state bi-simulation relation from P|Q to P;Q. However, the reverse of R
is obviously not.

4 Grid service chain model based on state Pi calculus

BPEL4WS has become the de facto standard for web service composition and execution. WSRF,
on the other hand, extends the state life-cycle management in web services according to the fea-
tures of grid. The two specifications provide standards for the reuse of web service techniques in
the implementation of grid service flows. Therefore in this section a grid service chain model is
proposed based on the integration of BPEL4WS and WSRF. The previous state Pi calculus is
used as a formal definition for the service cooperation and execution in grid service chain.

4.1 Formalism of services

A key feature of WSRF is to define the associations and life-cycle management of states based on
the behavior of web services. According to the state definition for grid jobs in the Grid Resource
Allocation and Management (GRAM) component of Globus Toolkit 4, the job status for grid ser-
vices is uniformly abstracted in Figure 5. Note that Figure 5 only shows a minimum set of re-
quired job status for grid services. Since state Pi calculus provides general operations for state
creation, destruction, association and removal, any other state besides the ones in Figure 5 can
also be modeled by modifying the state declarations in the service formalisms with state Pi cal-
culus.

Figure 5 Job state abstraction for grid services.

In Figure 5, each service can be pended for staging in required input data. After the service is

executed (i.e. being active), it stages out the results and cleans any unnecessary data, or otherwise
the execution of service can be failed. Therefore, based on state Pi calculus the service formalism
in grid service chain is as follows:
{ . ,{ }}; # { . ,{
{ . ,{ }}; # { . ,{ }}
{ . ,{ }};

STATE srvpending A status pending STATE srvsta }}gingin A status stagingin
STATE srvactive A status active STATE srvfailed A status failed
STATE srvdone A status done S

= =
= =
= { . ,{ }}

{ . ,{ }}; # { ,{ }};
TATE srvstagingout A status stagingout

STATE srvcleaning A status cleaning STATE execsrv ExecutingSrv A
=

= =

10 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

1
(, , , , ,) ((){(,),(,)}.(|
..... {(,)}. (, | .(| { , }.

{(,

n
i

i

ServiceA port execute set get succ fail new ack port v srvpending execsrv StageIn
ack ack srvactive new t f execute t f t StageOut ack srcdone

port succ execsrv

=
= + ++

+ < > +

< > −−

∏

)}.) {(,)}. {(,)}.)))
(,) (){(,)}. {(,)}

(,) ({(,)}. | (){(

SeriveA f srvfailed port fail execsrv ServiceA
StageIn get ack get v srvstagingin ack srvpending
StageOut set ack new v clean set v srvstagingout clean v clean v

+ + < > −−
= + +
= < > + < > +,)}.))srccleaning ack

In the above formalism for a service A, ‘#STATE’ is a reserved word for the state declarations.
According to the syntax of state Pi calculus (see Figure 3), when no state declaration is prede-
fined, states can also be alternatively defined in the declaration of actions. Free names port, set
and get are the channels for the interaction of services and variables (their definition will be given
in the next sub-section). Since there are cases in grid systems when the concurrent access to ex-
pensive resources is not desired, here nested process definition is used in the formalism of Ser-
viceA. The purpose is to allow the creation of a new instance of process ServiceA only when the
old instance of ServiceA is finished. When multiple instance of a service is desired, the nested
position of process ServiceA should be changed as in the following:

(, , , , ,) ((){(,),(,)}.(...... |).ServiceA port execute set get succ fail new ack port v srvpending execsrv ServiceA= + ++

4.2 Formalization of activities

Grid service chain borrowed 4 types of basic activities from BPEL4WS: Receive, Send, Invoke
and Assign. In BPEL4WS, data interactions between activities can be realized by the sharing of
variables. Consequently, the activities of Receive and Send can be used to model the passing of
data in a grid service chain and the activity of Assign can be used to model the reproduction of
specific data. Their formal definitions are provided as follows:

1 1 2 2 1 2 1 1 1

2 1 2 3 3 1 2 3 3 2 1 2

(, ,) (). (, , ,) . (, ,)
(, , ,) (). (, , , ,) . (, , ,)

......

Variable set get x set x Variable set get x x get x Variable set get x
Variable set get x x set x Variable set get x x x get x Variable set get x x

Variable Va

= + < >
= + < >

= 1 1(, ,) riable set get x

(, , ,) . (). .Receive start port set done start port v set v done= < >

(, , ,) . (). .Send start get port done start get v port v done= < >

(, , , ,) . (). . (). .Invoke start get port set done start get v port v port u set u done= < > < >

1 2 1 2(, , ,) . (). .Assign start get set done start get v set v done= < >
Here the value access and assignment in Varaibles are realized by the channel get and set. The

Varaible process implements a variable stack with arbitrary depth. In a real grid service chain, the
definition of Variable can also be simplified as the following if its depth is 1.

(, ,) (). (, ,) . (,Variable set get x set y Variable set get y get x Variable set get x= + < > ,)
Moreover, all the above activities use the channel of port to trigger the execution of a desired

service and obtain its result. Note that in BPEL4WS, ‘link name’, ‘partner name’ and ‘operation
name’ are three elements in its activities to define the access of a service. A service in grid service
chain can thus be first defined as an abstract one and later be refined to an executable one by a
service mapping/selection mechanism[6,14]. Therefore the port channel here is used to indicate
both an abstract service interface (e.g. an abstract functional definition of the service), and a con-
crete service invocation interface (e.g. via WS-Addressing). The service mapping / selection in
grid service chain will be further discussed in the next sub-section.

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 11

4.3 Service selection

There is often the case when multiple candidate services are available to implement a desired
abstract function. Thus the semantics of the service selection need to be formally defined. A sim-
ple way to define the interaction with one of the candidate service is the direct composition of
their corresponding state Pi calculus processes. Take the invocation of 1-out-of-n services as an
example. The implementation is as follows.

1| | | nClosedInvocation Invoke Service Service=
The above processes of Invoke, Service1, …, Servicen share the same port channel. In this way

multiple services compete for a single Invoke activity. The competition is resolved by the
non-deterministic choice of one single service from the n services. However, when a specific ser-
vice selection strategy needs to be explicitly modeled, an addition process for service selection
should be implemented:

1 1 1 2

1 1

1

(, ,...,) .
......

(, ,...,) .

'(, , , ,)

select n select

n select n select n

select

Selection port port port port port Selection

Selection port port port port port Selection
Selection Selection
Invoke start get port set done

= < >

= < >
=

=
1

. (). (). . (). .
' | | | |

select

n

start get v port p p v p u set u done
ClosedInvocation Invoke Service Service Selection

< > < >
=

Here the process of Selection stores all the port channels for the desired abstract function. It
selects these ports sequentially by their orders in a queue. The order of the ports, on the other
hand, can be decided by the performance of different corresponding services such as QoS, execu-
tion time, etc. Moreover, the new invocation process Invoke’ no longer interacts directly to a spe-
cific service by the given port. It queries the Selection process first to get what exact service it
should invoke by the naming passing capability of Pi calculus. The interaction between Invoke’
and the target service can thus be dynamically formed.

4.4 Formalism of service flows

Grid service chain borrowed 6 BPEL4WS control structures: Sequence, While, Flow, Switch,
Pick and Link. Since the control relation of Sequence, While, Flow and Pick has a direct semantic
mapping to the basic operations in Pi calculus (see Table 1), in this section we will focus on the
semantics of Switch and Link.

Table 1 The definition of control structures

Structure Mapping to Pi calculus Structure Mapping to Pi calculus
Sequence ‘;’ [26] Flow ‘|’

While ‘[]’ and process nesting Pick ‘.’ and ‘+’

The Switch structure defines a conditional choice structure, which is defined in grid service

chain as
1, 2. ? . [1] {(,{ ,{ 1}})}. [1 2] {(,{ ,{ 2}})}b bstart P start Q b start Branch b P b b start Branch b Q= ++ + ¬ ∧ ++

Here ?b1,b2 is an additional notation in state Pi calculus to present the Switch structure in grid
service chain. It offers a shortcut for the detailed semantics of Switch, i.e. when multiple branch
conditions are overlapped (i.e. b1 and b2 hold at the same time), the branches are taken in the
order (i.e. first P and then Q) in which they appear. Besides, the state of Branch records all the

12 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

chosen paths during the evolution of the process.
On the other hand, the Link structure imposes synchronization constraints on the activities in

grid service chain. Each Link has a source and target activity, which restricts that the target activ-
ity can only be executed after the source activity is done. Besides, when a ‘death-path’ is detected
in the grid service chain (e.g. if a branch in a Switch to which activity A belongs is not selected),
then negative tokens should be propagated through all the outgoing Links of A (i.e. A is the source
activity of these Links). The semantics are also known as the Death-Path Elimination in
BPEL4WS. The formalism of Link is given in the following.

, , ,

(, , , , ,) , (| (. .

(, , ,) . .
(

def

def

in i

i in in i

i in in in in

done pos neg negative

Link done pos neg negative ack nack new pos neg EvalTransCondition pos ack neg nack

EvalTransCondition done pos neg negative done pos negative neg
Links

= +

= +

))

1, , ,

, , , , ,

) (| ... | |

.(... .(. .)... .)) 1,...,

(,

,n links

in in

n

links
n

preceding

ack nack done eliminate

done pos neg negative ack na

new ack nack Link Link

ack ack done nack deathpath nack deathpath i n

ActivityWithLinks done

=

+ + =

, , ,)

.(. (, .(. {(,{ ,{ }})}.

(,)))) .(| ... |

, outlinks

preceding links

out

ck done eliminate negativeevalJoin

done done new t f evalJoin t f t ActImpl f Exception joinFailure

ThrowAct fault joinfailure deathpath negative negativ

=

< > + ++

+))oute

In the above state Pi calculus process, ActivityWithLinks indicates the implementation of the
four types of activities in section 4.2 when Link is considered. ActImpl is a shortcut notation for
the detailed formalism of the Receive, Send, Assign, Invoke activity in section 4.2. In Activity-
WithLinks, the start of an activity not only needs to confirm the finish of its previous activity
(donepreceding), but also needs to confirm its incoming Links (donelinks). The process then starts to
evaluate the execution condition for the corresponding activity (evalJoin). The activity will be
normally executed if the condition is satisfied, or otherwise a JoinFailure exception will be
thrown by the ThrowAct process (see its implementation in the next sub-section) and the excep-
tion will be recorded into the Exception variable in grid service chain. Note that in the above Link
processes, for each received nagetivein token, it will pass the information via the deathpath chan-
nel such that the nagetiveout token can be continue to propagate to the outgoing Links of the cor-
responding activity.

4.5 Handling exception and compensation

Due to the existence of dynamic interactions and long-running services in grid application, the
handling of exceptions and compensations is a critical issue in grid service chain. To correctly
depict this part of semantics in grid service chain, the Invoke activity needs to be further imple-
mented as follows:

''(, , , , , , ,) . (). (). . ().

([] . [] {(,{ ,{ }})}. (,))

(

select selectInvoke start get port set succ fail done fault start get v port p p v p u

u succ set u done u fail Exception invokeFailure ThrowAct fault invokefailure

ThrowAct fa

τ

= < >

= < > + = ++

,)ult faulttype fault faulttype= < >

1

11

1

, ..

(, ,) ().([] ...

[] [](.
I

n i mn i I i n

FaultHandling faulttype type compensate fault faulttype faulttype type Activity

faulttype type Activity faulttype type compensate compensate

Compens

∈ ≠

= = +

+ = + =∑
() . (| .ationHandler compensate compensate new complete Activtiy complete CompensationHandler=

))

)

When the invocation of a service returns a failure ([u=fail]), the ThrowAct process will throw
an invokeFailure exception and record it into state Exception. On the other hand, the FaultHan-

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 13

dling process is responsible for capturing and processing the corresponding exceptions. The
channel of fault is used to receive the exception that ThrowAct throws out. If the type of the re-
ceived exception can be processed by FaultHandling (here type1, …, typen can be the previously
mentioned invokefailure, joinfailure, or other user customized exceptions), corresponding Activity
will be executed to deal with the exception (detailed implementation of Activity is omitted here).
Otherwise FaultHandling will sequentially invoke the compensation activities to compensate the
failure caused by the exception.

5 Automatic verification of grid service chain model

5.1 Verification framework for grid service chain

As argued in the introduction, the correctness and reliability insurance of grid service chain mod-
els is an important task. More specifically, the correctness of a grid service chain refers to that it
must satisfy all the desired properties and constraints from users; the reliability of a grid service
chain refers to that it will loyally fulfill the user requirements without any exceptional cases dur-
ing the execution. Based on the previous formal definition of grid service chain models, in this
section model checking technique[5] is applied to verify the correctness and reliability of grid ser-
vice chain models. Briefly speaking, model checking consists of three steps: system modeling,
property specification and property verification with counter-examples. Following the idea of
model checking, state Pi calculus is used as a formal language for modeling grid service chain,
and the Computation Tree Logic (CTL) and the Linear Temporal Logic (LTL) are used as the
property specification language. An automatic verification prototype, namely the GridPiAnalyzer,
for grid service chain models is thus implemented. Its framework is illustrated in Figure 6.

Figure 6 The framework of GridPiAnalyzer

Our GridPiAnalyzer supports 4 system analysis functions. They are: (1) Service Chain Simula-

tion. Based on the operational semantics of state Pi calculus, GridPiAnalyzer can step the execu-
tion of a grid service chain to enable its simulation (see step 1 of Figure 6); (2) Assertion Check-
ing. Each process in state Pi calculus can be annotated with an assertion declaration. Each asser-
tion is a Boolean expression composed by the basic comparative operators, logical operators (and,
or, not), and the references to the value of existing system variables. For example, in the service
formalism in section 4.1, the assertion of Assert A.Status=done whenever B.Status=active can be
used to check whether service A is finished whenever B is in its execution. The checking of these
assertions is done during step 1 of GridPiAnalyzer (see Figure 6) when the state Pi calculus for-
malism for the grid service chain is mapped to the ELTS; (3) Design-time Model Verification. By

14 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

designing grid application with grid service chain model, users can specify their desired require-
ments on the service chain with temporal logics such that GridPiAnalyzer can automatically ver-
ify these requirements. (4) Run-time Model Verification. This function is similar to 3, with the
difference that the grid service chain will be dynamically reconstructed based on the current grid
system environment (e.g. service availability and etc).

The idea of verification in GridPiAnalyzer is similar to the HD-Automata Laboratory (HAL)
developed by PISA University. The difference is that HAL transforms the system model to an
Automata based on the early transitional semantics of Pi calculus such that the model checking
engine of JACK[27] can be used to the property verification. However, considering the complexity,
dynamic evolution and usability issues in grid systems, GridPiAnalyzer further enables the state/
action hybrid system modeling and its dynamic reconstruction. It also allows the automatic gen-
eration of state Pi calculus formalisms for grid service chain models based on the results of the
previous section. Moreover, before the formalism is finally fed into NuSMV2[28], the model
checking engine used in GridPiAnalyzer, the variable abstraction method in ref. [29] and our re-
gion analysis approach[30] are also implemented to enhance the performance of model checking.
As shown in Figure 6, since step 1 of model checking in GridPiAnalyzer is to map the state Pi
calculus formalism of grid service chain into ELTS based on the operational semantics of state Pi
calculus, the function of system simulation and assertion checking can thus be automatically done
in this step by GridPiAnalyzer. Therefore, the previous function 1, 2 can be regarded as a by-
product of the model checking function of 3, 4. In this work we will focus on the introduction of
the function 3, 4. For related information about GridPiAnalyzer, our previous work in ref. [3] can
be used as a reference.

5.2 Design-time model checking

This section introduces the design-time model checking function of GridPiAnalyzer with a con-
crete grid application of the dynamic analysis of material deformation structure. In reality, since
the Scan Electron Microscope (SEM) and the software package for material image processing are
quite expensive, the dynamic analysis of material deformation structure by the sharing of equip-
ment resources is a practical grid application. Its visualized implementation in grid service chain
model is given in Figure 7.

Figure 7 The Grid Service Chain Model for the dynamic analysis of material deformation structure.

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 15

The whole application includes three phases. Phase 1 involves controlling the SEM and
stretching device to observe the material deformation structure; Phase 2 processes the graphical
result of phase 1 and finishes the final 3D reconstruction of material structure images; Phase 3
further outputs the animation of the 3D reconstruction result in a graphical portal to enable the
analysis of the complete material deformation process. A complete process of the above material
deformation analysis takes about 10―20 h. The final goal of the application is to get the resulted
structure information from the graphical portal, and therefore real-time response is not a neces-
sary requirement for the application. The state Pi calculus formalism for the model in Figure 7
can be directly obtained by the results in sections 3 and 4. GridPiAnalyzer accepts the formalism
as its direct input. Besides, GridPiAnalyzer distinguishes the two concepts of application in-
stances (AppInstance) and their Context for a concrete grid application. AppInstance refers to the
composition of all activities, control structures and compensations in the application, and Context
refers to the composition of all candidate services and service selection strategies. Since the
process of Context reflects the current grid system environment, it can change for different App-
Instances.

:: | | | |
:: | | | |

:: | | | | |
:: |

AppInstance Activity Structure Handler AppInstance AppInstance
Activity Invoke Send Receive Assign Variable
Structure Flow Sequence Switch While Link Pick
Handler FaultHandling CompensationHandle

=
=
=
=

:: | | |
r

Context Service Selection Context Context=

Consequently, the whole model is represented by the process of System as follows:
(|System new fns AppInstance Context=)

&

)

&
=

 where fns represents all the free names in AppIn-
stance and Context

To ensure the correctness and reliability of the model, System must comply with the following
properties.

Property 1 (no concurrent access). For expensive resource like SEM, it cannot be accessed
concurrently by multiple activities (i.e. the activities of Observe, Pace, ZoomIn, Scan in Figure
7);

(. (. ! & . ! & . !)
. (. ! & . ! & . !) &

. (

G Observe Status active Pace Status active ZoomIn Status active Scan Status active
Pace Status active Observe Status active ZoomIn Status active Scan Status active
ZoomIn Status active Obse

= → = = =
= → = = =

= → . ! & . ! & . !) &
. (. ! & . ! & . !))

rve Status active Pace Status active Scan Status active
Scan Status active Observe Status active Pace Status active ZoomIn Status active

= = =
= → = = =

Property 2 (result reachability). The final application result can be presented to users in all
circumstances (i.e., the final Collect activity must be reachable in the grid service chain);

(. .G Observe Status done F Collect Status done= → =
Property 3 (functional constraint). In all circumstances, the activities of both scan graph

and Shape From Shading (SFS) must have already been sequentially executed before any final
result is collected at last.

! [! . .] &
! [! . (. & ! .

([! . (. & ! .)]))]

E Scan Status active U Collect Status active
E Collect Status active U Scan Status active Collect Status active

EX E SFS Status active U Collect Status active SFS Status active

= =
= = =
= =

The corresponding formulae in LTL and CTL for the three properties are also presented in the

16 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

above. Note the implementation of Properties 2 and 3 follows exactly the Response pattern and
Precedence Chain pattern in the property specification patterns[31]. Once the formulae and the
state Pi calculus process of System are inputted into GridPiAnalyzer, it automatically maps Sys-
tem to ELTS based on the operational semantics and NuSMV2 will be invoked for the verifica-
tion. Considering in the application the operation of Shape From Shading (SFS) is the most im-
portant and time consuming operation in the image processing phase, it is assumed that this
scarce service is not available in the initial stage of the verification. Therefore there is no corre-
sponding ServiceSFS service in the Context process of System. After the mapping by GridPiAna-
lyzer, there are totally 2883 reachable states and 5948 transitions in the ELTS. The total number
of state variables is 18 (i.e. 15 states for each activity, 1 ExecutingSrv state, 1 Branch state and 1
Exception state). The process mapping procedure takes 8 sec CPU time, and the verification of
the three properties takes 9 sec CPU time by NuSMV2 (The hardware environment for the veri-
fication in this paper is: Pentium4 1.7 GHz CPU with 2.5G RAM Memory). The verification re-
sult shows that the grid service chain in figure 7 complies with property 1 (No Concurrent Access)
and 3 (Functional Constraint), but it fails to satisfy property 2 (Result Reachability). This makes
the users of the application to doubt that the satisfaction of the Functional Constraint property by
the grid service chain is a false positive proof. Since the Result Reachability is not satisfied (i.e.
the Collect activity is not always reachable), we further verify whether there is a possible case
that the Collect activity can be reachable by the following CTL formula:

(. .)AG Observe Status done EF Collect Status done= → =
The model checking result gives a negative answer, i.e. the Collect activity is in fact never

reachable. By the corresponding counter-example generated by NuSMV2, it is found that the grid
service chain sticks into the execution of SFS activity when its _port sfs channel is waiting for
the corresponding interaction. The reason is that in the current grid system environment there is
no corresponding service that can accept the request from the _port sfs channel to continue the
whole grid service chain model. Therefore, the failure of the Result Reachability property is
caused by the fact that the Collect activity is never finished, and not because the sequential exe-
cution of scan graph and SFS activities has been completed. This reminds the application users to
schedule the reservation of the Shape From Shading (SFS) service immediately.

5.3 Run-time model checking

The previous sub-section illustrates how model checking can be applied to ensure the correctness
and reliability of grid service chain models. However, in reality the grid environment is changing
constantly. Therefore a static checking under a pre-assumed Context is not enough for the verifi-
cation of grid service chain. In GridPiAnalyzer, the dynamic reconstruction of state Pi calculus
models is further supported to address the issue of dynamic verification of grid service chain
based on the run-time grid system information. Observation points (as indicated by a flag in Fig-
ure 7) can be set to the activities in a grid service chain such that the Context process will be re-
generated once the observation points are reached in the service chain. Consequently the corre-
sponding ELTS can be reconstructed based on the current system states.

More specifically, define the function for ELTS reconstruction as TransitionSys (InitialState,
Sys), where InitialState is the current system state when the reconstruction occurs,
Sys=AppInstance|Context is the state Pi calculus model for the grid service chain. The function

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 17

returns the newly reconstructed ELTS transSys based on InitialState and Sys. Define findState:
transSys × Process {SysState1,...,SysStaten} to be the function for all system states SysState
from which the state Pi calculus model can transit to Process in transSys. Denote the Context and
application instance before / after the observation point to be ContextOld/ContextNew and Ap-
pOld / AppNew respectively. Denote the system state before observation as initState. The com-
plete dynamic reconstruction procedure can be concluded as follows.

Step 1. Define transSys = TransitionSys(initState, AppOld|ContextOld).
Step 2. Define states = findState(transSys, AppNew|ContextOld).
Step 3. Merge the same states in states and return a new state set states', s.t. ∀s1, s2 ∈ states',

s1 != s2.
Step 4. For each si ∈ states' (i=1,…,n), define subTransSysi=TransitionSys(si, AppNew|

ContextNew).
Step 5. Create a shared start node (i.e. an empty state variable with no propositions) to con-

nect all the subTransSysi (i=1,…,n).
Step 6. Return the connected ELTS as the result.
Again let’s take the application in Figure 7 as an example, where an observation point is con-

figured at the FindGph activity. Suppose the SFS service is now available because of the timely
reservation that users made as a result of the previous sub-section. The reconstructed ELTS for
the application contains totally 2350 reachable states and 4893 transitions. The number of state
variables remains the same. The reconstruction process takes 7 sec CPU time by GridPiAnalyzer.
The reduction of ELTS size is a certain result because the ELTS reconstruction can be understood
as the partial state space generation of the corresponding grid service chain model after the ob-
servation point. Now for the 3 desired properties in the previous sub-section, Property 1 still
holds because the activities of Observe, Pace, ZoomIn and Scan no longer exists in the recon-
structed ELTS. However, Property 2 (Result Reachability) still does not hold. The
counter-example by NuSMV2 shows that there is an execution path in the application where a
JoinFailure in the Link construct can be thrown out such that the whole application is terminated
before the Collect activity is active. This reminds the application users that their description of
the Result Reachability property is at a rather coarse granularity. The following shows the modi-
fied LTL formula for the property which further refines the condition that exceptional execution
paths in the grid service chain will not be considered.

 (!) (. .G Exception JoinFailure G Observe Status done F Collect Status done= → = → =)
Verification shows that the application in Figure 7 can now satisfy the modified reachability

property and also the Functional Constraint property. Besides, since the Collect activity is always
reachable when exceptional execution paths are not considered now, the above verification result
is not a false positive proof. The verification of the above 4 properties after dynamic reconstruc-
tion takes 18 sec CPU time.

6 Conclusion

A formal grid service chain model is proposed as the method for modeling and analyzing the ser-
vice composition and cooperation in grid. Our contribution can be concluded as follows: (1) A
state Pi calculus is developed based on the idea of WSRF specification to enable the life-cycle
management of system states and their association with system actions in the original Pi calculus.

18 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

(2) A grid service chain model is proposed and its state Pi calculus formalisms are provided. (3) It
is shown how model checking technique can be effectively applied for the design-time/run-time
verification of grid service chain model to ensure its correctness and reliability. As for the verifi-
cation performance, our stereotype of GridPiAnalyzer implements the variable abstraction
method in ref. [29] and our region analysis approach to further accelerate the integrated model
checking engine of NuSMV2. Generally a grid application may involve either complex service
interaction logics (e.g. the example given in section 5 involves the cooperation of multiple ser-
vices and activities and each activity has its different semantics) or large volume data manipula-
tion in scientific computation[17]. Our experience shows that GridPiAnalyzer can finish its verifi-
cation in a reasonable time for grid service chain models with over 103 services.

In our future work, we will continue the work on the performance optimization issue so that
our GridPiAnalyzer itself can be encapsulated as a service to be shared in the grid community.

1 Joseph J, Fellenstein C. Grid Computing. IBM Press, 2003. 3―25
2 Bolognesi T. A conceptual framework for state-based and event-based formal behavioral specification languages. In: Pier-

francesco B, Shawn A B, Bernhard S, eds. Proc. 9th IEEE Int. Conf. on Engineering of Complex Computer Systems. CA:
IEEE Press, 2004. 107―116

3 Xu K, Wang Y X, Wu C. Ensuring secure and robust grid applications – from a formal method point of view. In: Chung Y C,
Moreira J E, eds. Advances in Grid and Pervasive Computing. Lect Notes in Comput Sci, Vol 3947. Beilin: Springer-Verlag,
2006. 537―546

4 Wang Y X, Wu C, Xu K. Study on Pi-calculus based equipment grid service chain model. In: Jin H, Reed D A, Jiang W, eds.
Network and Parallel Computing. Lect Notes in Comput Sci, Vol 3779. Beilin: Springer-Verlag, 2005. 40―47

5 Clarke E M, Grumberg O, Peled D A. Model Checking. Cambridge: MIT Press, 1999. 1―97
6 Németh Z, Sunderam V. Characterizing grids attributes, definitions, and formalisms. J Grid Comput, 2003, 1(1): 9―23
7 Németh Z. Definition of a parallel execution model with abstract state machine. Acta Cybernet, 2002, 15(3): 417―455
8 Sangiorgi D, Walker D. The Pi-calculus: a Theory of Mobile Processes. Cambridge: Cambridge University Press, 1999.

11―154
9 Pahl C. A Pi-calculus based framework for the composition and replacement of components. In: Giannakopoulou D, Leavens

G T, Sitaraman M, eds. Proc. Specification and Verification of Component-Based Systems. USA: ACM Press, 2001.
97―107

10 Manuei M, Sergio G. A case study of web services orchestration. In: Jacquet J M, Picco G P, eds. Coordication Models and
Languages. Lect Notes in Comput Sci, Vol 3454. Beilin: Springer-Verlag, 2005. 1―16

11 Nierstrasz N, Meijler T D. Requirements for a composition language. In Ciancarini P, Nierstrasz O, Yonezawa A, eds. Ob-
ject-Based Models and Languages for Concurrent Systems. Lect Notes in Comput Sci, Vol 924. Beilin: Springer-Verlag,
1995. 147―161

12 Salaun G, Bordeaux L, Schaerf M. Describing and reasoning on web services using process algebra. In: Zhang L J, Jain H,
Liu L, eds. Proc. IEEE Int. Conf. on Web Services. CA: IEEE Press, 2004. 43―50

13 Deelman E, Blythe J, Gil Y, et al. Mapping abstract complex workflows onto grid environments. J Grid Comput, 2003, 1(1):
25―39

14 Fahringer T, Qin J, Hainzer S. Specification of grid workflow applications with AGWL: An abstract grid workflow language.
In: Walker D W, Kesselman C, eds. Proc. IEEE Int. Symp. on Cluster Computing and the Grid. Vol 2. UK: IEEE Press, 2005.
676―685

15 Long Y, Lam H, Su Y W. Adaptive grid service flow management: Framework and model. In: Zhang L J, Jain H, Liu L, eds.
Proc. IEEE Int. Conf. on Web Services. CA: IEEE Press, 2004. 558―565

16 Pllana S, Fahringer T, Testori J, et al. Towards an UML based graphical representation of grid workflow applications. In:
Dikaiakos M D, ed. Grid Computing. Lect Notes in Comput Sci, Vol 3165. Beilin: Springer-Verlag, 2004. 149―158

17 Pautasso C, Alonso G. The JOpera visual composition language. J Visual Lang Comput, 2005, 16: 119―152
18 Amnuaykanjanasin P, Nupairoj N. The BPEL orchestrating framework for secured grid services. In: Selvaraj H, ed. Proc. Int.

 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20 19

Conf. on Information Technology: Coding and Computing. CA: IEEE Press, 2005. 348―353
19 Qing S H, Li G C. A formal model of fair exchange protocols. Sci China Ser F-Inf Sci, 2005, 48(4): 499―512
20 Su K L, Lu G F, Chen Q L. Knowledge structure approach to verification of authentication protocols. Sci China Ser F-Inf Sci,

2005, 48(4): 513―532
21 Németh Z, Pérez C, Priol T. Workflow enactment based on a chemical metaphor. In: Aichernig B K, Beckert B, eds. Proc. 3rd

IEEE Int. Conf. on Software Engineering and Formal Methods. CA: IEEE Press, 2005. 127―136
22 Chaki S, Clarke E M, Ouaknine J, et al. State / event-based software model checking. In Boiten E A, Derrick J, Smith G, eds.

Integrated Formal Methods. Lect Notes in Comput Sci, Vol 2999. Beilin: Springer-Verlag, 2004. 128―147
23 Giannakopoulou D, Magee J. Fluent model checking for event-based systems. In: Paakki J, ed. Proc. 11th ACM SIGSOFT

Int. Symp. on Foundations of Software Engineering. NY: ACM Press, 2003. 257―266
24 Taguchi K, Dong J S, Ciobanu G. Relating Pi calculus to Object-Z. In: Bellini P, Bohner S, Steffen B, ed. Proc. 9th IEEE

Conference on Engineering Complex Computer Systems. CA: IEEE Press, 2004. 97―106
25 Nicola R D, Vaandrager F. Three logics for branching bisimulation. J ACM, 1995, 42(2): 458―487
26 Milner R. Communicating and Mobile Systems: the Pi-calculus. Cambridge: Cambridge University Press, 1999. 49―50
27 Cinzia B, Alessandro F, Stefania G, et al. A formal verification environment for railway signaling system design. Form

Method Syst Des, 1998, 12(2): 139―161
28 Cimatti A, Clarke E, Giunchiglia E, et al. NuSMV 2: an OpenSource tool for symbolic model checking. In: Brinksma E,

Larsen K G, eds. Computer Aided Veriifcation. Lect Notes in Comput Sci, Vol 2404. Beilin: Springer-Verlag, 2002.
359―364

29 Heitmeyer C, Kirby J, Labaw B, et al. Using abstraction and model checking to detect safety violations in requirements
specifications. IEEE T Software Eng, 1998, 24(11): 927―948

30 Xu K, Wang Y X, Wu C. Aspect oriented region analysis for efficient grid application reasoning. In: Xiao N, Rajkumar B,
Liu Y H, eds. Proc. 5th Int. Conf. on Grid and Cooperative Computing. CA: IEEE Press, 2006. 28―31

31 Dwyer M B, Avrunin G S, Corbett J C. Patterns in property specifications for finite-state verification. In: Boehm B, Garlan D,
Kramer J, eds. Proc. 21th Int. Conf. on Software Engineering. CA: IEEE Press, 1999. 411―431

20 XU Ke et al. Sci China Ser F-Inf Sci | February 2007 | vol. 50 | no. 1 | 1-20

http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bGiannakopoulou%2C+Dimitra%7d§ion1=AU&database=1&startYear=1884&endYear=2006&yearselect=yearrange&sort=yr

	Formal verification technique for grid service chain model and its application*
	XU Ke†, WANG YueXuan & WU Cheng
	grid, grid service chain, formal method, model checking, state Pi calculus
	1 Introduction
	2 Related works
	3 State Pi calculus
	3.1 State definition
	3.2 State operational semantics
	3.3 Extended operational semantics
	3.4 State bi-simulation

	4 Grid service chain model based on state Pi calculus
	4.1 Formalism of services
	4.2 Formalization of activities
	4.3 Service selection
	4.4 Formalism of service flows
	4.5 Handling exception and compensation

	5 Automatic verification of grid service chain model
	5.1 Verification framework for grid service chain
	5.2 Design-time model checking
	5.3 Run-time model checking

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

