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Abstract—Motivated by the increasing popularity of learning
and predicting human user behavior in communication and
computing systems, in this paper, we investigate the funda-
mental benefit of predictive scheduling, i.e., predicting and
pre-serving arrivals, in controlled queueing systems. Based on a
lookahead-window prediction model, we first establish a novel
queue-equivalence between the predictive queueing system with
a fully efficient scheduling scheme and an equivalent queueing
system without prediction. This result allows us to analytically
demonstrate that predictive scheduling necessarily improves
system delay performance and drives it to zero with increasing
prediction power. It also enables us to exactly determine the re-
quired prediction power for different systems and study its impact
on tail delay. We then propose the Predictive Backpres-
sure (PBP) algorithm for achieving optimal utility performance
in such predictive systems. PBP efficiently incorporates prediction
into stochastic system control and avoids the great complication
due to the exponential state space growth in the prediction window
size. We show that PBP achieves a utility performance that is
within of the optimal, for any , while guaranteeing
that the system delay distribution is a shifted-to-the-left version
of that under the original Backpressure algorithm. Hence, the
average delay under PBP is strictly better than that under Back-
pressure, and vanishes with increasing prediction window size.
This implies that the resulting utility-delay tradeoff with predic-
tive scheduling can beat the known optimal
tradeoff for systems without prediction. We also develop the
Predictable-Only PBP (POPBP) algorithm and show that it
effectively reduces packet delay in systems where traffic can only
be predicted but not pre-served.

Index Terms—Backpressure, human behavior, mobile, optimal
control, prediction, queueing.
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I. INTRODUCTION

D UE TO the rapid development of powerful handheld de-
vices, e.g., smartphones or tablet computers, human users

now interact much more easily and frequently with the commu-
nication and computing infrastructures, e.g., E-commerce web-
sites, cellular networks, and crowdsourcing platforms. Thus, in
order to provide high-level quality of service, it is important
to understand human behavior features and to utilize such in-
formation in guiding system control algorithm design. There-
fore, various studies have been conducted to learn and predict
human behavior patterns, e.g., online social networking [1], on-
line searching behavior [2], and online browsing [3].
In this paper, we take one step further and ask the following

important question: What is the fundamental system benefit
of having such user-behavior information? Our objective is
to obtain a theoretical quantification of this gain. To mathe-
matically carry out our investigation, we consider a multiuser
single-server queueing system. At every time, user workload
arriving at the system will first be queued at corresponding
buffer space. Then, the server allocates resources and decides
the scheduling for serving the jobs. These operations allow
the server to serve certain amount of workload for each user,
but also result in a system cost due to resource utilization.
Different from most existing work in multiqueue systems, here
we assume that the server can predict and serve future arrivals
before they arrive at the system. Hence, at every time, the
server updates his prediction of future arrivals and adapts his
control action. The objective is to serve all user workload with
minimum cost, and to ensure small job latency for each user.
This is an important problem and can be used to model many

practical systems where traffic prediction and pre-serving can
be performed. The first example is scheduling in online video
watching. In this case, an online video site, e.g., Youtube, serves
users' video demand. Instead of waiting for a user to click on
video clips and then start transmitting them, in which case the
user may need to wait for the video to load and experience de-
graded quality of service, the server can guess what the user
wants and preload part of the videos to the user's device first.
The second example scenario is prefetching in computing sys-
tems, e.g., [4] and [5]. Here, data or instructions are preloaded
into memory before they are actually requested. Doing so en-
ables faster access or execution of the commands and enhances
system performance. Another example is computing manage-
ment, e.g., in computers. In this case, each user represents a soft-
ware application, and the server represents a workload manage-
ment unit. Then, according to the needs of the applications, the
managing unit precomputes certain information in case some
later applications request them, e.g., branch prediction in com-
puter architecture [6], [7].
There have been many previous works studying multiqueue

system scheduling with utility optimization. Reference [8]
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studies the fundamental tradeoff between energy consumption
and packet delay for a single-queue system. Reference [9]
extends the results to a downlink system and designs algo-
rithms to achieve the optimal tradeoff. Reference [10] designs
algorithms for minimizing energy consumption of a stochastic
network. Reference [11] designs energy optimal scheme for
satellites. Reference [12] looks at the problem of quality-of-ser-
vice guaranteed energy-efficient transmission using a calculus
approach. Reference [13] studies the tradeoff between energy
and robustness for downlink systems. References [14] and
[15] develop algorithms for achieving the optimal utility-delay
tradeoff in multihop networks.
However, we note that all the aforementioned works assume

that the system only takes causal scheduling actions, i.e., the
server will start serving packets only after they enter the system.
While this is necessary in many systems, pre-serving future
traffic can actually be done in systems that have highly pre-
dictable traffic. While predictive scheduling approaches have
been investigated, e.g., [7], not much analytical study has been
conducted. Closest to our work are [16] and [17], which study
the benefit of proactive scheduling, and [18], which studies
the impact of future arrival information on queueing delay in

queues. However, we note that [16] and [17] do not
consider the effect of queueing, which very commonly appears
in communication and computing systems, whereas [18] does
not consider controllable rates and scheduling. Indeed, due to
the joint existence of prediction and controlled queueing, the
problem considered here is very complicated.
Delay problems in stochastic controlled queueing systems are

known to be hard. Moreover, arrival prediction advances in a
sliding-window pattern over time, i.e., at every time, the system
can predict slightly further into the future. Designing control
algorithms for such systems often involves dynamic program-
ming (DP). However, since the state-space size grows exponen-
tially with the prediction window size, the DP approach may
not be computationally practical even for small systems. Even
without prediction, the complexity of DP can still be very high
due to the large queue state space. Moreover, since the system
prediction evolves according to a sliding-window pattern, it is
also not possible to apply the frame-based Lyapunov technique
as in [19] and [20].
To resolve the above difficulties, we first establish a novel

equivalence between the queueing system under prediction
and a class of fully efficient scheduling scheme and a queueing
system without prediction but with a different initial condition
and an equivalent scheduling policy. This connection is made
by carrying out a sample-path queueing argument and enables
us to analytically quantify the delay gain due to predictive
scheduling for general multiqueue single-server systems. Our
result shows that for such systems, the packet delay distribution
is shifted-to-the-left under predictive scheduling. Hence, the
average delay necessarily decreases and approaches zero as
the prediction window size increases. Based on this result,
we further propose a low-complexity Predictive Back-
pressure (PBP) scheduling policy for utility maximization
in such predictive systems. PBP retains all desired features of
the original Backpressure algorithm [21], e.g., greedy, does not
require statistical information of the system dynamics, and has
strong theoretical performance guarantee.

Fig. 1. Multiqueue system where a server is serving workloads for different
users/applications.

We prove that the PBP algorithm can achieve an average cost
that is of the minimum cost for any , while guaran-
teeing an average delay that is strictly smaller than that under the
original Backpressure algorithm. Hence, the resulting utility-
delay tradeoff with predictive scheduling can beat the known
optimal tradeoff for systems without pre-
diction. We also demonstrate analytically and numerically with
real data trace that when the first-in–first-out (FIFO) queueing
discipline is used, PBP achieves an average packet delay re-
duction that is linear in the prediction window size, and that
when the last-in–first-out (LIFO) discipline is used, a prediction
window of logarithmic size is enough to guarantee that most
packets are pre-served and do not experience any delay at all.
These results demonstrate the power of predictive scheduling
and provide explicit quantification of the benefits, which also
provides useful guidelines for predictive algorithm design.
The rest of the paper is organized as follows. In Section II,

we present our system model and problem formulation. We de-
velop the Predictive Backpressure (PBP) algorithm
in Section III. The analysis of delay performance under general
predictive scheduling andPBP is given in Section IV.We extend
the results to predictable-only systems in Section V. Predictive
scheduling in multistage processing networks is considered in
Section VI. Simulation results are presented in Section VII, fol-
lowed by the conclusions in Section VIII.

II. SYSTEM MODEL

We consider a general multiqueue single-server system
shown in Fig. 1. In this system, a server serves queues,
one for each user that utilizes the service of the server. This
multiqueue system has many applications. For instance, it can
be used to model downlink transmission in cellular networks,
where the server represents the base station and the users are
mobile users. Another example is a task management system
of a mobile device, where each user represents an application
and the server represents the operating system that manages all
computing workloads. We assume that the system operates in
slotted time, i.e., .

A. Traffic Model
We use to denote the amount of new workload arriving

at the system at time (called packets below). Here, the work-
load can represent newly arrived data units that need to be deliv-
ered to their destinations, or new computing tasks that the server
must fulfill eventually. We use to
denote the vector of arrivals at time . We assume that is
i.i.d. with .1 We also assume that for each ,

.

1The arrivals can be arbitrarily correlated among different users.
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B. Service Rate Model

Every time-slot, the server allocates power for serving
the pending packets.2 However, due to the potential system
dynamics, e.g., channel fading coefficient changes, serving
different users at different times may result in different resource
consumption and generate different service rates. We model this
fact by assuming that the server connects to each user with
a time-varying channel, whose state is denoted by . We
then denote as the system link state.
We assume that is i.i.d. and takes values in .3
We use to denote the probability that .
The server's power allocation over link at time is de-

noted by . We denote the aggregate system power alloca-
tion vector by . Under a system link
state , we assume that the power allocation vector must
be chosen from some feasible power allocation set , which
is compact and contains the constraint .
Then, under the given link state and the power alloca-
tion vector , the amount of backlog that can be served for
user is determined by . We assume
that is a continuous function of for all

. Also, we assume that there exists such that
for all , all time , and under any

and .

C. Predictive Service Model

Different from most previous works, we assume that the
server can predict and serve future packet arrivals. Specifi-
cally, we first parameterize our prediction model by a vector

, where is the prediction window
size of user . That is, at each time , the server has ac-
cess to the arrival information in the lookahead window

and can allocate rates to serve
the future arrivals in the current time-slot.4 Such a lookahead
window model approximates practical scenarios and was also
used in [18] and [23]. For notation simplicity, we also use

to denote the case when there is no prediction, in
which case, we will directly work with and .
We then use to denote the rate allocated in

time-slot to serving the arriving packets in time-slot , i.e.,
the rates are allocated to pre-serve the user demand even before
they enter the system, and let denote the rate allocated
for serving the packets that are already in the system. Note that
we always have . Fig. 2 shows the slot
structure and the predictive service model.5

2Our results can be extended to the case where the server consumes multiple
types of resources, e.g., power and CPU cycles.

3Our results can easily be generalized to the case when both arrivals and
channel conditions are Markovian, using the variable-size drift analysis devel-
oped in [22].

4Since we assume that the arrivals in a time-slot can only be served in the
next slot, we also consider to be future arrivals.

5Our model does not explicitly take into account the freshness requirement of
the contents being served, e.g., freshness of daily news. In this case, predictive
scheduling must be done carefully to ensure that users get the most up-to-date
contents.

Fig. 2. What happens in a single time-slot in the case of . The server
predicts and serves the arrivals in time-slots , and , respectively.

D. Queueing
Denote by the number of packets queued at the server

for user (observed at the end of the slot). We assume the fol-
lowing queueing dynamics:

(1)

Here, denotes the number of packets that actually
enter the queue after going through a series of predictive service
phases, i.e., for all 6

(2)

and . In this paper, we say that the system
is stable if the following condition holds:

(3)

E. System Objective
In every time-slot, the server spends certain cost due to power

expenditure. We denote this cost by . One simple
example is , which denotes the total
power consumption. We assume that under any state , there
exists a constant such that . The
special case when is independent of corre-
sponds to the stability scheduling problem [21].
The system's objective is to find a power allocation and sched-

uling scheme for minimizing the time average cost, defined as

(4)

subject to the constraint that the queues in the system must be
stable, i.e., (3) holds. We use to denote the minimum av-
erage cost under any feasible predictive scheduling algorithm
with prediction vector , i.e., those that predict the arrivals for

slots and allocate service rates to serving the arrivals within
the window for each user .We then use to de-
note the minimum average power consumption incurred under
any nonpredictive scheduling policy, i.e., .

F. Discussion of the Model
Note that the lookahead-window model is an idealized model

that assumes the system can perfectly predict future arrivals.
Because of this, our results can be viewed as upper bounds of
the fundamental benefit of predictive scheduling, which provide

6The introduction of here is for simplifying the presentation of the
arrival dynamics.
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important criteria for evaluating predictive control algorithms.
We also investigate the impact of prediction error in Section VII.
We also note that our model is very different from previous

controlled queueing system works, which almost all assume
that the system operates in a causal manner, i.e., only serves
packets after they arrive at the system. Our model is motivated
by prefetching techniques used in memory management [4],
branch prediction in computer architecture [6], as well as re-
cent advancement in data mining for learning user behavior
patterns [3].
Our model is most relevant for modeling problems where fu-

ture workload can be predicted and served before they enter the
system. One such application scenario is scheduling in online
video watching, where an online video site, e.g., Youtube, serves
users' video demand. Instead of waiting for a user to click on
video clips and then start to transmit them, in which case the
user may need to wait for the video to load and experience de-
graded quality of service, the server can guess what the user
wants and preload part of the videos to the user's device first.7
Without such predictive control, the cost minimization

problem has been extensively studied, and algorithms have
been proposed, e.g., [10]. However, very little is known about
the fundamental impact of prediction on system performance,
let alone finding optimal control policies for such predictive
queueing systems. Moreover, due to the existence of prediction
windows and the fact that arrival processes are stochastic, the
system naturally evolves according to a Markov chain whose
state-space size grows exponentially in the prediction window
size. Thus, this problem is challenging to solve.

III. PREDICTIVE BACKPRESSURE
In this section, we present our algorithm, which is designed

by incorporating prediction information into the Backpressure
technique [21]. Note that since future arrival information is
made available in a sliding-window form, prediction couples
the current action with future arrivals in every time-slot. This
prohibits the use of frame-based Lyapunov technique [22] and
makes the problem complicated. Fortunately, as we will see,
with the development of a novel queue-equivalence result,
one can incorporate prediction into system control cleanly and
significantly reduce the complexity in both algorithm design
and analysis.

A. Prediction Queues
For our algorithm development and analysis, we now intro-

duce the notion of a prediction queue, which records the number
of residual arrivals in every slot in time window .
Specifically, we denote as the number of remaining ar-
rivals currently in future slot , i.e., slots into the future, and
denote as the number of packets already in the system.
We see then the queues evolve according to the following dy-
namics:
1) If , then

(5)

7In certain scenarios, one may only be able to pre-serve future user demand
within a very small time window, e.g., in news reading, even if we can predict
that a user will read the daily news starting at a particular time, we can only
pre-push news at most a few minutes ahead of time to ensure the freshness of
the content. How to adapt our results to handle such freshness requirements is
an interesting topic for future research.

Fig. 3. Prediction queues that describe the system evolution.

2) If , then

(6)

3) For , we have

(7)
with .

Fig. 3 shows the definition of the prediction queues. One
can see that are not really queues. They simply
record the residual arrivals going through the timeline, whereas

records the true backlog in the system. Notice that
is exactly the same as in (1).8 Since is

the only actual queue, the system is stable if and only if
is stable.

B. Predictive Backpressure
Here, we construct our algorithm based on the above predic-

tion queues and Backpressure. Ourmain idea is to use the sum of
all the queues for decision making.
To describe the algorithm in detail, we define the no-

tion of queueing discipline for the predictive system, i.e.,
how to select packets to serve from queues .
Specifically, we order the packets in with labels

. Then, the packets in

are ordered from to . When a par-
ticular queueing discipline is applied in the predictive system,
we select packets to serve according to the discipline using the
order of the packets. For instance, if FIFO is used, then the
server will serve the packets from
the queues every time. We now also define the notion of a fully
efficient predictive scheduling policy.
Definition 1: A predictive scheduling policy is called fully

efficient if for every user , we have: (i) ;
and (ii) whenever there exists any such that

, .
In other words, if a policy is fully efficient, it always tries to

utilize all service opportunities and does not allocate more ser-
vice rate to serve any queue unless all other queues are already
fully served.9 Hence, it will not waste any service opportunity
unless there are more. With this definition, we now present our
algorithm, in which is a control parameter used to trade
off utility performance and system delay (see Theorem 5).
Predictive Backpressure (PBP): In every time-slot,

compute for all . Then, observe
the current channel state vector and perform:

8This can be seen by considering in the timeline in Fig. 3
and by equating to . Then, it can be checked that
(2) and coincide with (5) and (6).

9It is equivalent to work-conserving in queue scheduling.
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• Choose the power allocation vector to solve the fol-
lowing problem:

(8)

s.t. (9)

Then, allocate the service rates to the
queues in a fully efficient manner ac-
cording to any prespecified queueing discipline.

• Update the queues according to (5)–(7).
Remark 1: Notice that the PBP algorithm has a very clean

format. Indeed, PBP can be viewed as weighting the predicted
future arrivals for different users into current system control.
One can in principle also design predictive scheduling algo-
rithms based on DP. However, DP suffers from the well-known
curse-of-dimensionality. As an example, suppose each
can take 10 values, then there are at least states in DP,
even when and . Moreover, with the gen-
eral rate-power functions and cost function

, structural properties of the optimal DP-based
scheme are hard to characterized (thus it can also be very hard
to design approximate DP-based schemes). Our algorithm, on
the other hand, offers an efficient way for designing low-com-
plexity predictive control schemes.

IV. PERFORMANCE ANALYSIS

In this section, we first present an important theorem which
states that if a predictive scheduling policy is fully efficient,
then the queueing system under the scheme evolves in the exact
same way as a nonpredictive queueing system with delayed ar-
rivals and a different initial queue state. Using this queue-equiv-
alence result, we obtain an interesting delay distribution shifting
theorem. After that, we present our delay analysis for the PBP
algorithm.

A. Performance of Fully Efficient Scheduling Policies
We start by presenting the theorem regarding the equivalence

between predictive and nonpredictive systems.10
Theorem 1: Let be the queue size of a single-queue

system that: 1) has ; 2) has arrival
; 3) has service ;

and 4) evolves according to

(10)
Then, if the predictive system uses a fully efficient predic-
tive scheduling policy (with any queueing discipline) with

for all , we have for all that

(11)
Proof: See Appendix A.

Theorem 1 provides an important connection between the
predictive system and the system without prediction. Using this
result, we derive the following theorem, which relates the delay
distribution of the predictive system to the equivalent system
without prediction.
Theorem 2: (Delay Distribution Shifting): Denote as

the steady-state probability that a user packet experiences a

10We also show in [24] that this result holds in continuous-time queueing
systems.

delay of slots under a fully efficient predictive scheduling
policy in the predictive system, and let denote the steady-
state probability that a user packet experiences a -slot delay
in . Suppose the set of queues and
use the same queueing discipline. Then, we have for each queue
that11

and (12)

That is, the distribution of the original queue can be viewed as
shifted to the left by slots under predictive scheduling with

-slot prediction.
Proof: See Appendix B.

Theorem 2 is important for the general framework of predic-
tive scheduling. It allows us to compare scheduling with pre-
diction to the original queueing system without prediction, and
enables us to leverage existing results in queueing theory for an-
alyzing predictive systems. To formalize this idea, first notice
that if we start with and have , then

becomes exactly the same as the queueing process in the
original system without prediction. Thus, if the steady-state be-
havior of does not depend on the initial condition and the
shift of the arrival process, e.g., a queue [25], then the
delay performance of the predictive system can be understood
by studying the delay distribution of the original system without
prediction.
Corollary 1: Suppose and use the

same queueing discipline. For any arrival and service processes
under which the delay distribution of does not depend
on and the shift in the arrival process, we have

and (13)

Here, is the steady-state probability that a user packet
experiences a delay of slots in the system without prediction,
i.e., .
Corollary 1 applies to general multiqueue single-server sys-

tems where the steady-state behavior depends only on the statis-
tical behavior of the arrival and service processes. Note that (13)
also quantifies how tail delay changes with predictive sched-
uling. Specifically, we now have in the predictive system that

(14)

This is often drastically smaller compared to that under the non-
predictive system (see Figs. 7 and 8 in simulation).
With Theorem 2, we can now quantify how much delay im-

provement one can obtain via predictive scheduling. This is
summarized in the following theorem, in which we use
to denote the average delay of the original system without pre-
diction, i.e.,

(15)

11Note that due to the queueing dynamic (1), each packet will stay in the
queue for at least one slot in our system. However, we still choose to take the
summation starting from delay zero. This is due to the fact that Theorem 2 is
intended for general fully efficient scheduling policies and it can be shown to
hold for systems with other queueing dynamics where zero delay is possible,
provided that the equivalent nonpredictive system is constructed based on the
same queueing dynamics.
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Theorem 3: Suppose the conditions in Corollary 1 hold. The
delay reduction offered by predictive scheduling with prediction
window vector , denoted by , is given by

(16)
In particular, if , the average system delay goes to
zero as goes to infinity for all queue , i.e.,

(17)

Here, means for all .
Proof: See Appendix C.

Theorems 2 and 3 and Corollary 1 show that systems with
predictive scheduling can be analyzed by studying the original
system without prediction. Also note that the above results hold
under any queueing discipline. The resulting delay distribution,
of course, changes under different disciplines. Hence, the results
also provide an efficient way for deciding how much prediction
power is needed for different systems under different control
policies, e.g., if a system has a delay distribution under which
most packets experience a delay of no more than slots, then
using a prediction window of slots suffices to reap most of
the benefit of predictive scheduling, and further investment on
improving prediction power can readily be saved.

B. Performance of PBP
In this section, we analyze the performance of PBP. We will

assume the slack condition (18), i.e., there exist a set of power
vectors and probabilities , and a constant ,
such that

(18)

Formula (18) is commonly assumed in stochastic queueing
system works and is necessary for system stability [21].
The following theorem states that allowing predictive sched-
uling does not change the optimal average cost.
Theorem 4: For any vector , we have

(19)

Proof: See Appendix D.
Theorem 4 is interesting and shows that predictive scheduling

does not reduce the minimum cost needed for stability. Instead,
the theorem, together with Theorem 5, delivers an important
message that predictive scheduling improves the system delay
given the same utility performance.
We now have the following theorem, which shows that PBP

achieves an average power consumption that is within of
the minimum and guarantees an average congestion bound.
Theorem 5: The PBP algorithm achieves the following:

(20)

Here, is a constant independent of ,
denotes the average expected queue size of ,

and denotes the average expected queue size of the non-
predictive system under Backpressure.

Proof: See Appendix E.

Theorem 5 is similar to the results in previous literature
of Backpressure, e.g., [21]. It states that the average size of

is the same as under Backpressure without
prediction. Since is the total size of the actual queue
and the prediction queues, we see that the actual queue size is
strictly smaller than that under Backpressure. Since the average
queue size under PBP is finite, we can apply Theorem 3 to
obtain the following immediate corollary.
Corollary 2: Suppose there exists a steady-state distribution

of the queue vector under PBP. Then, the average delay under
PBP goes to zero as .
Corollary 2 shows that with predictive scheduling, it is

possible to achieve an performance with an arbitrarily
small average delay. This is fundamentally different from the
nonpredictive case, in which the best utility-delay tradeoff
is [9]. It is also tempting to analyze the
exact delay reduction offered by PBP. However, due to the
complex queueing dynamics under Backpressure, it is chal-
lenging to compute the exact distributions even without
prediction. Thus, in the following, we consider a general class
of cost-minimization problems, and study the delay reduction
due to prediction in this case. For stating the results, we define
the following optimization problem:

(21)

s.t.

(22)
Then, we consider a scaled version of its dual problem of
problem as follows:

s.t. (23)
where is defined as

(24)

Note that (24) does not contain the variables . This is
because the inf operator in (24) ensures that there always exists
an optimal set of values, where for every , there exists
one such that and for .
Hence, removing from the dual function does not affect
its value at any point and properties. This fact is formally shown
in [22].We now state our theorem regarding the average backlog
reduction due to predictive scheduling. In the theorem, we use

to denote an optimal solution of (23).
Theorem 6: Suppose: (i) is unique; (ii)

the -slack condition (18) is satisfied with ; (iii) the dual
function satisfies

(25)
for some constant independent of ; (iv) there exists
a steady-state distribution of under PBP; (v)

for all ; and
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(iv) FIFO is used. Then, under PBPwith a sufficiently large ,
we have

(26)

Proof: See Appendix F.
As shown in [15], conditions (i)–(iii) in Theorem 6 are

satisfied in many practical network optimization problems,
especially when the power allocation sets are finite.
In this case, queue vector mostly
stays close to the fixed point [15]. Using Little's theorem,
Theorem 6 implies that the system delay is reduced roughly
linearly in the prediction window size . Note that the linear
reduction in is due to the use of the FIFO discipline and
the fact that the queue size distribution has a concentration
property as in Theorem 12, which states that the queue sizes
stay close to the optimal Lagrange multipliers . When is
larger than ,
the delay reduction will become sublinear, but more packets
will be pre-served.
Below, we consider the case when LIFO is used in PBP. In

this case, Theorem 7 shows that a small prediction window is
enough to guarantee that most packets experience zero delay. In
the theorem, we define the average rate of the set of packets that
are served before entering , i.e., with delay zero, to be

.
Theorem 7: Suppose conditions (i)–(iv) in Theorem 6 hold,

and that for and for all . Then, under
PBP with LIFO, we have

(27)

Proof: See Appendix G.
Theorem 7 shows that a prediction window of poly-log-

arithmic size in is sufficient for guaranteeing that most
packets experience zero delay under PBP with LIFO. This
is very different from the FIFO case and shows that under
different scheduling policies, one requires different prediction
power for achieving a similar delay reduction.

V. PREDICTABLE-ONLY ARRIVAL

Here, we discuss how PBP can also be applied (with slight
modification) to the case when arrivals can only be predicted
but not pre-served. The idea is to first pretend that the pre-
dictable-only traffic can also be pre-served, and then construct
the algorithm and show that pre-serving rarely happens.
Predictable-Only PBP (POPBP): In every time-slot,

run PBP. In addition, for each queue , do:
• (Marking) Mark all packets in that are
served in the current time-slot as mistaken packets.

• (Dropping) Drop all mistaken packets when they enter
.

Here, “run PBP” means carrying out all the steps in PBP in-
cluding choosing and implementing actions, and updating queue
values. Note that now do not exactly correspond
to the number of remaining future arrivals, as they are not served
under POPBP. Instead, they are equal to the number of future ar-
rivals excluding the mistaken packets.

Fig. 4. Multistage processing system. In this system, we have three commodity
flows; each represents a certain job. The flows enter and leave the system after
being processed. Each node thus maintains certain queues for the jobs.

We summarize the performance of POPBP in Theorem 8.
Since packets can be dropped under POPBP, to take into ac-
count the potential additional cost due to dropping, we intro-
duce an additional system cost function ,
where denotes the average packet
dropping rate vector at all queues and is the cost of drop-
ping for user . We assume that for each : (i) ; and
(ii) for some finite constant . For ex-
ample, can represent the average power consumption for
retransmitting the packets that are dropped, or in the utility max-
imization case, can denote the utility loss due to dropping
packets. In both cases, we see that properties (i) and (ii) hold.
Theorem 8: Suppose the conditions in Theorem 6 hold. Then,

under POPBP with a sufficiently small , we have

(28)

(29)

Moreover, for each user , .
Proof: See Appendix H.

Theorem 8 is interesting and states that even without pre-
serving, traffic prediction information can also be used to sig-
nificantly reduce system latency.

VI. PBP FOR MULTISTAGE PROCESSING SYSTEMS

In this section, we extend the results to general multistage
processing systems. This system model can be used to model
many information or content processing systems, where com-
puting tasks or assembling missions require multiple steps to
complete.
Specifically, we consider a general system where denotes

the set of system nodes and denotes the set of links connecting
the nodes. Different job flows enter the system and go through
a sequence of nodes, which form a single nonrepeating path ac-
cording to some predetermined processing procedure.12 The set
of job flows is denoted by . For instance, in
Fig. 4, job flow 2 (the blue dashed job flow) enters from node 1
and goes through the processing of nodes 1–3, then leaves the
system. For each job flow , we denote its exogenous arrivals at
node by , and denote the sequence of nodes it goes
through by (including the source node and the departure
node). Then, for each node , we use to denote its
upstream node in and use to denote its downstream
node.

12It is possible to consider the case when certain nodes are repeated a few
times, e.g., they handle multiple steps of the job flow processing, by using mul-
tiple queues to store intermediate products.
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We denote the service condition between two nodes
by and let ,

e.g., whether the resources needed for this processing are
scarce right now due to some background processing tasks. We
then denote by the resource allocated over link
for processing. The rate over each link is then determined by

.
In this case, we similarly have the following Multistage

Predictive Backpressure (MPBP). The main idea is
again to include future arrivals into the backlog of a node.
Specifically, for each node , if it is the source node of the job
flow , then we define as the
effective backlog of the node, where is defined as in
(5)–(7), with replaced by . Otherwise, if node

is not a source node, it maintains a queue as
the current unprocessed work (including actual and predicted or
preprocessed traffic) for job flow , which evolves according to

(30)

Here, denotes the rate allocated to serve job flow at
node at time . With the definition of , the MPBP
algorithm works as follows.
Multistage Predictive Backpressure (MPBP):

In every time-slot, observe for all and , and the
current channel state vector . Perform:
• For every link , define

Denote as the id of the flow that maximizes the above.
• Choose the power allocation vector to solve the fol-
lowing problem:

(31)

s.t. (32)
—Allocate the entire rate to .
— If node is the source node of flow , allocate the

service rates to the queues in a fully
efficient manner according to any prespecified queueing
discipline.

• Update the queues accordingly.
We notice that the MPBP algorithm is similar to the original

Backpressure algorithm for multihop systems [21]. In this case,
the performance of MPBP can similarly be analyzed, and the
results are summarized in the following theorem.
Theorem 9: Suppose the conditions in Corollary 1 hold.

Then, MPBP achieves

(33)

Moreover, we denote the delay reduction offered by predictive
scheduling with prediction window vector by .
Then, if , the average system delay goes to zero as

goes to infinity for all flow , i.e.,

(34)

Proof: The same as the proof of Theorem 3. Hence, we
omit the proof for brevity.

Fig. 5. (left) Mobile traffic delivered by the base station to a single user.
(right) Aggregate mobile traffic delivered by the base station to 10 different
users.

VII. SIMULATION

We present simulation results of the PBP algorithm in this
section in a 10-user single server system.13

A. Parameters and Settings
Real Data Trace:We collected data from 10 different mobile

users in a 12-day-long period (over 5-min intervals). The data
for each user represent the aggregate amount of mobile traffic
(over all applications) that is delivered by the base station to the
user in that slot. Fig. 5 shows the traffic of a single user and
the aggregate traffic of all users in 12 days. In the simulations,
we take the traffic data as the workload arriving at the system,
which needs to be delivered by the server to different users.
Channel, Power, and Prediction: For each user , we assume

that the channel condition takes values {1, 2} with equal
probabilities, and . We assume
that at any time, only one channel receives nonzero power al-
location. The service rate is given by

kB/s. The cost function is set to
be , which denotes the total power consumption. We
set for all . Then, we simulate the cases

to see the effect of the predictive scheduling. We
simulate the algorithm with .

B. Performance of PBP
Fig. 6 shows the performance of PBP with FIFO queueing

policy. We see from the left plot that the average power con-
sumption decreases as increases. The right plot shows the
average backlog under PBP. It is not hard to see that the average
system backlog scales as . One also sees that as the pre-
diction window sizes increase, the network delay decreases lin-
early in .
Fig. 7 shows the delay distribution under PBP for the setting

with and . We see that the distributions of the
latency for queue are shifted to the left by , as shown in
Theorem 2. It can also be verified that Corollary 1 also holds.

13Here, we do not compare our scheme to DP-based schemes. As discussed
before, designing an implementable DP-based scheme for our general model is
a very challenging task and is out of the scope of the current paper.
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Fig. 6. Performance of PBP. (left) Average power consumption under PBP.
(right) Average queue size under PBP with different prediction window sizes.

Fig. 7. Packet delay distribution under PBP with FIFO scheduling with
[we can also compute the average delay (which is larger than 5) from the

distribution] and for all .We see that predictive scheduling effectively
shifts the distribution to the left by 5 slots for both queues.

Fig. 8 then shows the delay distribution under PBP and the
original Backpressure, under the LIFO discipline. It can be ver-
ified that the distribution for the predictive system is also a left-
shifted version of the one under Backpressure. We see that large
fractions of packets experience zero delay in both queues, i.e.,
they are served before they arrive at . This is so because
under LIFO Backpressure (no prediction), most packets roughly
experience delay. Thus, with a moderate-size pre-
diction window size, the server can serve most packets before
they enter the system. Since we use a log-scale for the -axis, we
do not plot the fraction for packets that have zero delay. Instead,
we show the numbers in the plot with . We see that 69%
of the packets for queue 2 are served before they even enter the
system, whereas 73% of the packets are served for queue 10.
These results demonstrate the impact of predictive scheduling
on delay reduction.
To also verify Theorem 8, we conducted simulation for

POPBP. To ensure the conditions of Theorem 8, we choose
and simulated

and 15. We also set . For comparison, we have

Fig. 8. Packet Delay distribution underPBPwith LIFO scheduling (
and for all ). The arrows show the shift-to-the-left phenomenon. A
large fraction of the packets now experience zero delay under PBP, and this
fraction is shown with the number . This is because with a moderate
prediction window size, most packets are served before they arrive at .

Fig. 9. Average power consumption and dropping rate under POPBP. The two
horizontal lines in the left plot represent the optimal power consumption under
the scaled and unscaled cases.

also simulated another case when the arrival rate is scaled
by 5 times. From the right plot of Fig. 9, one sees that the
dropping rates under POPBP in both the scaled and unscaled
case decrease rapidly and quickly converge to 0 when
(the case needs larger values). On the other hand,
the left plot shows that the average system cost converges to

, validating Theorem 8.

C. Impact of Imperfect Prediction
To investigate the impact of imperfect prediction, we consider

two types of prediction errors. The first type is failing to predict
actual arrivals, i.e., miss detection.When it happens, the arrivals
will be out of the system's vision and thus will not appear in pre-
diction queues. Therefore, they cannot be served predictively.
The other type is false alarm, which happens when the system
mistakenly predicts the existence of nonexisting arrivals. Such
false arrivals will appear in prediction queues, but will not enter
the system. However, the system may incorrectly allocate re-
sources to serve them, resulting in wasted service opportunities.
We model miss detections and false alarms as follows. Each

time unit, let denote the true amount of arrival. We assume
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Fig. 10. Performance of PBP under imperfect prediction when for all
. Left: Average power consumption under different prediction errors. Right:

Average queue size under different prediction errors.

that fraction of are miss detections, i.e., not detected. De-
note as the predicted true arrivals. We assume
that there are false alarms that come together with
them . Therefore, the fraction of predicted actual ar-
rivals is given by ,
and these predicted arrivals can be served beforehand. Larger
means more miss detections, and smaller means more false

alarms in the system. For perfect prediction, and .
We simulate three different settings: ,

, and . The first set-
ting corresponds to the case when the prediction mechanism
works very conservatively, which leads to very few false alarms
but many miss detections. The second setting corresponds to the
case where the prediction mechanism works very aggressively
and results in few miss detections but many false alarms. The
third setting is in between.
As discussed above, may now

contain false alarms besides real arrivals, and the fraction of
false alarms is on average. Thus, the effective queue size
of (the number of real arrivals) is . Therefore,
in the PBP algorithm, we use as
the weight in (8) instead of .
Fig. 10 shows the performance of PBP with FIFO queueing

policy under imperfect prediction when for all . We
see that PBP still improves the delay performance while at the
same time keeping a good power performance. This is because
that the chance that PBP serves future arrivals is decreased when

increases. Therefore, the impact of prediction errors on the
utility performance of PBP is reduced, showing that PBP is ro-
bust against prediction error. Compared toPBPwith perfect pre-
diction, prediction errors increase the average backlog of the
system and thus the average delay. This is intuitive since miss
detections cannot be served beforehand and false alarms waste
service opportunities.
To further evaluate the performance of our algorithms under

more realistic prediction model, we construct a two-state
Markov model for the arrival (for every user) based on our
data trace. Then, we obtain the miss detection and false alarm
probabilities with the Markov model. Specifically, in the

Fig. 11. Performance of PBP under the two-state Markov prediction model.
The average power consumption remains close to optimal, while the average
total queue size is further reduced.

Markov model, we have two states “ ” and “ ,” indicating
low arrival state (arrival less than 15 kB) and high arrival state
(such two-state ON/OFF-type Markov models are common in
network traffic modeling, e.g., [26]). Then, we estimate the
transition probabilities , , , and assume that
the operator uses the -step transition probabilities and

to predict future arrivals when it is in the state and the
state, respectively. In this case, and represent

the miss detection probability and the false alarm probability,
respectively. Under this prediction error model, Fig. 11 shows
the performance of the PBP algorithm.
From Fig. 11, we see that PBP achieves a similar near-op-

timal average power consumption, while it further reduces the
queue sizes (and delay) compared to the simpler prediction
model above. This shows that PBP is indeed robust against
prediction errors and can perform better with more accurate
prediction models.

VIII. CONCLUSION
In this paper, we investigate the fundamental benefit of

predictive scheduling in controlled queueing systems. Based
on a lookahead prediction window model, we establish a novel
queue-equivalence result, which enables exact analysis of
queueing systems under predictive scheduling using traditional
queueing network control techniques. We then propose the
Predictive Backpressure (PBP) algorithm, and show
that PBP achieves a cost performance that is arbitrarily close to
the optimal, while guaranteeing that the average system delay
vanishes as the prediction window size increases. Our results
provide useful guidelines for designing control algorithms in
systems where system prediction and pre-serving is available,
and provide a mathematical framework for provisioning the
required prediction power, as well as analyzing the tail delay
reduction improvement.

APPENDIX A
PROOF OF THEOREM 1

Here, we prove Theorem 1.
Proof: (Theorem 1) We prove the result by induction with

the aid of Fig. 12 showing the evolution of .
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Fig. 12. Original queue without prediction and with a delayed arrival process
as well as a different initial queue state.

First, we see that the the result holds for : On one
hand, . On the other hand, in the
system under predictive scheduling, since
and for , we have

.
Suppose the result holds for all , we show that it

holds for . Using the queueing dynamic (10), we know
that in time-slot , packets will be
served from . Now consider the queues .
Since the scheduling policy is fully efficient, we must have
that the number of packets served from these queues is also

. To see this, note that if
, there are more packets in the queues than the number of

packets that can be served. In this case, we must have
for all . Also, because the policy is fully efficient,

we have . Hence, exactly packets
will be served from , resulting in

. On the other hand, suppose .
Then, there are enough service opportunities to clear all the
awaiting packets. In this case, since the scheduling policy is
fully efficient, exactly packets will be served. Thus, in
both cases, we have .

APPENDIX B
PROOF OF THEOREM 2

Here, we prove Theorem 2.
Proof: (Theorem 2) From Theorem 1, we see that

for all time. Hence, if the two queueing
systems use the same queueing discipline in choosing what
packets to serve, then every packet will experience the exact
same delay in both and .
However, in , a packet will enter the actual system

only after spending one unit of time in each of the queues in
, which takes exactly slots in total. Thus,

any packet experiencing a -slot delay will experience
delay in .

APPENDIX C
PROOF OF THEOREM 3

We prove Theorem 3 here.
Proof: (Theorem 3) Using Corollary 1, we see that in the

predictive system, the average system backlog size is given by

(35)

On the other hand, the average system backlog without predic-
tion is given by

(36)

Using (36) and (35), we conclude that

(37)
Using Little's theorem and dividing both sides by , we
see that (16) follows.
Now we prove (17). By taking a limit as , we first

obtain

(38)

Then, using the fact that , we have

(39)

Using the above in (16), we see that (17) follows.

APPENDIX D
PROOF OF THEOREM 4

In this section, we prove Theorem 4 using a similar argument
as in [10]. For our analysis, we will use the following theorem,
which characterizes in the nonpredictive case (see [10] for
its proof).
Theorem 10: The minimum average cost is the solution

to the optimization problem (21).
Theorem 10 can be viewed as saying that the minimum av-

erage cost subject to system stability can be achieved by a sta-
tionary and randomized policy, which picks a set of power allo-
cations with probabilities .

Proof: (Theorem 4) We first see that since any policy
without prediction is also a feasible policy for the predictive
system, by definition.
We now prove that . Consider any predictive

scheduling scheme that ensures system stability. Consider
the set of slots . Let denote the set of
slots with and let denote its cardinality. We
also define the conditional empirical average of transmission
rate and power cost under as follows:

(40)

The above is a mapping from the -dimensional power vector
space into the -dimensional space, and that the right-
hand-side is a convex combination of the points in the
-dimensional space. Hence, using Caratheodory's theorem as

in [10], one see that for every , there exists probabilities
and power allocation vectors ,

such that
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Now define

Using the ergodicity of the channel state process, the continuity
of and , and the compactness of ,
one can find a sequence of times and a set of limiting
probabilities and power vectors such
that

(41)

(42)

Here, denotes the average cost under scheme and
denotes the average total allocated transmission rate to queue
under . This shows that the average cost and the average

allocated rate to any queue under a predictive scheme can be
achieved by some randomized schemes.
Let be the number of packets that enter

at time and let denote the service rate allocated
to serve the packets in at time .14 Further let

be the number of packets served from at
time . Then, denote , , and as their average
values, i.e., ,

, and
.15

Using the queueing dynamics of , we have

(43)
Because and for all time,
we have

(44)

Since the system is stable, i.e., is stable, we must have

(45)
Summing (45) and (43) over , using (44),
using , and using the fact that stabilizes the
system, we conclude that

This shows that for any stabilizing predictive policy, one can
find an equivalent stationary and randomized scheduling policy,
which results in the same cost that can be expressed as (21), and
generates the same service rates that must satisfy the constraint
(22). Since is defined to be the minimum cost over the entire
class of such stationary and randomized schemes, we conclude
that .

14The introduction of is to help separate packets from queues in the
presentation. We indeed have for all .

15Here, we assume these limits exist. Note that since , and
are all bounded, these limits are equal to the sample path limits with

probability 1 [27].

APPENDIX E
PROOF OF THEOREM 5

Here, we prove Theorem 5. Our proof is based on the fol-
lowing theorem about the Backpressure algorithm [10].
Theorem 11: The Backpressure algorithm with any finite

achieves the following:

(46)

Here, is a constant independent of .
and denote the average expected cost and the average

expected system queue size under Backpressure, respectively.
Proof: (Theorem 5) To prove the results, we con-

sider the auxiliary system in Theorem 1, i.e., no predic-
tion, , ,

, and evolves according to (10).
Then, we construct the Backpressure algorithm for

this auxiliary system. We define a Lyapunov function
and define a one-slot Lyapunov drift

as . Using (10), we get

(47)

By choosing the actions to minimize the right-hand side of (47),
we see that Backpressure works as follows: At every time ,
solve the following problem and perform the chosen action:

(48)

s.t. (49)
Comparing this to (8), and using the fact that ,
we conclude that applying PBP to the predictive system is
equivalent to applying Backpressure to this auxiliary system.
Therefore, Backpressure in the auxiliary system will choose
the exact same control actions as PBP in the actual system.
Since both systems have the same arrival and channel state
processes, the two systems will evolve identically. Thus, the
average power cost and the average queue size will be the same
in both systems. Hence, Theorem 5 follows from Theorem 11.

APPENDIX F
PROOF OF THEOREM 6

We prove Theorem 6. For our proof, we use the following
theorem (which is [15, Theorem 1]), in which denotes an
optimal solution of (23). According to [15], is either
or 0.
Theorem 12: Suppose: (i) is unique; (ii) the -slack condi-

tion (18) is satisfied with ; (iii) the function satisfies
(50)

for some constant independent of . Then, under Back-
pressure, there exist constants , i.e., all indepen-
dent of , such that for any

(51)
where is defined

(52)
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Proof: See [15].
We are now ready to present the proof of Theorem 6.
Proof: (Theorem 6) We prove the results using Little's the-

orem. The main idea is to show that the average system queue
length is roughly reduced by . To prove this, we show
that the average total service rate allocated to the prediction
queues is . Then, the average rate of the packets that
go through will roughly be , and so the av-
erage queue size is reduced by roughly .
First, using (11) and (51), we see that in steady state

Using the fact that , we have

Now let . Since , we see that
when is sufficiently large, we have

(53)
Here, (a) follows from the fact that for all

, and in (b) we use the fact that is sufficiently
large and
for all . This shows that the probability for to go
below is at most .
Using the fact that under the FIFO queueing discipline, a pre-

diction queue will be served only when
, we conclude that the average service rate allocated to

the prediction queues is no more than . Hence,
the average traffic rate of the packets that traverse all predic-
tion queues and eventually enter is at least

. Since every packet stays one slot in every pre-
diction queue, using Little's theorem, we conclude that the av-
erage size of the prediction queues, denoted by
satisfies . Hence,
(26) follows.

APPENDIX G
PROOF OF THEOREM 7

We prove Theorem 7 in this appendix.
Proof: First of all, when conditions (i)–(iv) hold, we see

from [28, Theorem 4] that, under Backpressure with LIFO
(without prediction), for each queue , there exist a set of
packets that have an average rate given by

(54)
and packets in experience an average delay which
satisfies

(55)

where and are constants. Note here that if ,
then and the theorem follows. Hence, here
we consider .
Consider the system under PBP with LIFO. From the queue

equivalence result in Theorem 1, we can also find a set of
packets in the predictive system, which also have an average
rate of and experience an average delay in
given by . Denote the set of packets that
eventually enter in the predictive system by
and denote their rate by . We see then

(56)
Consider the packets in and define their average rate
by . Note that these are the packets that enter ,
but are taken into consideration when computing the rate and
packet delay of (some packets may not enter but are
also included in computing the delay). Using (55), we see that

(57)

Here, (57) holds because the average number of packets from
is at least , while is a subset of

. (57) implies that

Using (54), we conclude that

(58)

Combining (56) and (58), we see that the result follows.

APPENDIX H
PROOF OF THEOREM 8

Here, we prove Theorem 8.
Proof: (Theorem 8) First we see that POPBP achieves the

exact same utility performance as PBP. This is because both
algorithms choose actions in the exact same way. Thus, (28)
follows from Theorem 5. Similarly, (29) follows because the
values of are exactly the same under both algorithms.
To see the dropping rate, one sees that dropping happens only

when becomes empty. However, by choosing
, the probability

that becomes empty is bounded by
as in the proof of Theorem 6. Since in every time-slot,

at most packets can be marked as mistaken, we see that
the drop rate is at most . Combing this result
with the fact that , we see that the total additional
system cost is .
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