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Experimental test of the quantum Jarzynski
equality with a trapped-ion system
Shuoming An1, Jing-Ning Zhang1, Mark Um1, Dingshun Lv1, Yao Lu1, Junhua Zhang1, Zhang-Qi Yin1,
H. T. Quan2,3* and Kihwan Kim1*

The Jarzynski equality relates the free-energy di�erence between two equilibrium states to the work done on a system through
far-from-equilibrium processes—amilestone that builds on the pioneering work of Clausius and Kelvin. Although experimental
tests of the equality have been performed in the classical regime, the quantum Jarzynski equality has not yet been fully
verified owing to experimental challenges in measuring work and work distributions in a quantum system. Here, we report
an experimental test of the quantum Jarzynski equality with a single 171Yb+ ion trapped in a harmonic potential. We perform
projective measurements to obtain phonon distributions of the initial thermal state.We then apply a laser-induced force to the
projected energy eigenstate and find transition probabilities to final energy eigenstates after the work is done. By varying the
speed with which we apply the force from the equilibrium to the far-from-equilibrium regime, we verify the quantum Jarzynski
equality in an isolated system.

There is increasing interest in non-equilibrium dynamics
at the microscopic scale, crossing over quantum physics,
thermodynamics and information theory as the experimental

control and technology at such a scale have been developing
rapidly. Most of the principles in non-equilibrium processes are
represented in the form of inequalities, as seen in the example of
the maximum work principle, 〈W 〉 −1F ≥ 0, where the average
work 〈W 〉 is equal to the free-energy difference1F only in the case
of the equilibrium process. In close-to-equilibrium processes, the
fluctuation–dissipation theorem is valid and connects the average
dissipated energy 〈Wdiss〉 ≡ 〈W−1F〉 and the fluctuation of the
system σ 2/2kBT . Here σ is the standard deviation of the work
distribution, T is the initial temperature of the system in thermal
equilibrium and kB is the Boltzmann constant. Beyond the near-
equilibrium regime, no exact results were known until Jarzynski
found a remarkable equality1 that relates the free-energy difference
to the exponential average of the work done on the system:

ln
〈
e−Wdiss/kBT

〉
=0 (1)

The Jarzynski equality (1) is satisfied irrespective of the protocols
of varying parameters of the system even when the driving
is arbitrarily far from equilibrium. The relation enables us to
experimentally determine1F of a system by repeatedly performing
work at any speed. Experimental tests of the classical Jarzynski
equality and its relation to the Crooks fluctuation theorem2 have
been successfully performed in various systems3–12.

In classical systems, work can be obtained by measuring the
force and the displacement, and then integrating the force over the
displacement during the driving process. In the quantum regime,
however, as a result of Heisenberg’s uncertainty principle, we cannot
determine the position and the momentum simultaneously—thus
invalidating the concepts of force and displacement. Instead of
measuring these classical observables, it is necessary to carry out

projective measurements over the energy eigenstates to determine
the work done in each realization and the work distribution13. With
this understanding of work in quantum mechanics, the Jarzynski
equality has been extended to the quantum regime14–16 with sim-
plicity and elegance for isolated systems, although the meaning of
work and heat in open quantum systems is still not fully settled17.
Although the theoretical derivation of the quantum Jarzynski equal-
ity is unequivocal, similar to its classical counterpart, experimental
verification in a variety of systems under a range of conditions
would put it on a solid experimental foundation. For this reason,
experimental testing of the quantum Jarzynski equality has been
a long-sought goal for many physicists18–24. However, even for an
isolated quantum system, experimental verification has been con-
strained by the technical challenges in controlling quantum systems
precisely and performing projective measurements to obtain the
work distribution18–21. There have been theoretical efforts to get
around such difficulties by measuring the characteristic function
and then reconstructing the work distribution22–24. An experimental
demonstration has appeared following those proposals21. Neverthe-
less, a standard way20 of verifying the quantum Jarzynski equality by
directmeasurement of the work distribution is still lacking. Here, we
adopt the method of twomeasurements over energy eigenstates and
obtain the work distribution. From the work distribution, we verify
the quantum Jarzynski equality.

In our experiment, we employ a trapped atomic 171Yb+ ion
harmonic oscillator whose Hilbert space has infinite dimensions.
We implement the projective measurement on phonons25 to
determine the initial eigenstate from the thermal distribution and
perform the standard phonon-distribution measurement26–29 after
work is done on the projected eigenstate. Thus, we successfully
measure work and work distributions in a genuine quantum
system. With these experimental techniques, we test the quantum
Jarzynski equality at various initial temperatures and switching
speeds. We compare the performance of the Jazynski estimate of
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Figure 1 | Experimental set-up for testing the Jarzynski equality and equilibrium and non-equilibrium work processes. a, Schematic of the ion-trap
apparatus as an ideal harmonic oscillator and the geometry of laser beams that generate an e�ective moving standing wave that pushes the ion. The
counter propagating laser beams drive transitions between states in the 171Yb+ ion. The frequencies of ωL, ωHF, and ωX are shown in b. b, The basic level
structure of the 171Yb+ ion and the relevant laser frequencies. The Raman laser beams introduce a state-dependent force. When their beat-note
frequencies are adjusted to near ωHF±ωX , the force pushes the ion along the±1k direction for the (|↑〉±|↓〉)/

√
2 state of the ion. c, For the perfect

adiabatic process the phonon distributions before and after are unchanged. d, For the non-equilibrium process, the final phonon states are widely
distributed. In the case of both adiabatic and instantaneous shifts of the harmonic oscillator, the Jarzynski equality should be valid, as long as the system is
initially prepared in a thermal equilibrium state.

1F to that obtained using the average work and the fluctuation–
dissipation theorem.

Ion-trap systems have shown a high degree of control
in the quantum regime27. Controls of the harmonic osci-
llator are performed through coupling to the two electronic
levels (qubit) of the 171Yb+ ion in the S1/2 manifold, denoted
by |F=1,mF=0〉≡|↑〉 and |F = 0, mF = 0〉 ≡ |↓〉, which are
separated by ωHF=(2π)12.642GHz. As shown in Fig. 1,
the 171Yb+ ion is confined in harmonic potentials with
trap frequencies ωX = (2π)3.1MHz, ωY = (2π)2.7MHz,
ωZ=(2π)0.6MHz, respectively.

We perform work on the system by applying a laser-
induced force and shifting the centre of the potential in
the X-direction. The force is implemented by the counter-
propagating laser beams shown in Fig. 1a,b, which is equivalent
to generating a so-called qubit-state-dependent force30,31. A pair
of laser beams with frequency differences of ω±=ωHF± (ωX − ν)

produce the following Hamiltonian in the rotating frame about
H0=(1/2)~ωHFσ̂z+~(ωX−ν)

(
â†â+(1/2)

)
, where â† and â are

the creation and the annihilation operators acting on phonons,
after taking the rotating-wave approximation,

H (t)=
P̂2

2Me
+

1
2
Meν

2X̂ 2
+ f (t)X̂ σ̂x (2)

Here, P̂= i
√

~Meν
2 (â†

− â) and X̂ =
√

~
2Meν

(â†
+ â) are momentum

and position operators, Me = (ωX/ν)M is the scaled mass of
the 171Yb+ mass, M , ν(≡ωX±(ωHF−ω±))=(2π)20.0 kHz is the
effective trap frequency, f (t)=(1/2)~1kΩ(t) is the effective force,
σ̂x is the Pauli operator, 1k is the net wavevector of the counter-
propagating laser beams along the X-axis and the Rabi frequency,
Ω , is proportional to the intensity of the laser beams.

The force shifts the trap centre by −f (t)/Meν
2 and reduces

the ground-state energy by f 2(t)/2Meν
2. In our experiment, the

maximum force is 4.16 zN (×10−21N), produced by the maximum
Rabi frequency Ωmax = (2π)378 kHz, which shifts the centre
position by 5.6 nm. When we adiabatically add the force f (t)
to the maximum value, the final state distribution is conserved
in the new basis and still in thermal equilibrium, as shown
Fig. 1c. In contrast, if we increase the force to the same value
instantaneously, the final states are highly excited, which represents

a far-from-equilibrium process and is shown in Fig. 1d. In both
cases, we would measure the same average of the exponentiated
dissipated work

〈
exp(−Wdiss/kBT )

〉
, which is used to test the

Jarzynski equality.
For the time-dependent quantum system H(t) (2), where the

eigenvalues and the eigenstates are denoted by En(t) and |n(t)〉, the
phonon number state, the work done on the system from t = 0 to
t = τ is defined by En̄(τ )−En(0). The distribution of the work is
described by the following equation13

P (W )=
∑
n,n̄

δ[W−(En̄(τ )−En(0))]Pn̄←nP th
n (3)

where P th
n = exp (−En(0)/kBT )/

[∑
n exp(−En(0)/kBT )

]
gives the

initial thermal distribution and Pn̄←n = |〈n̄(τ )|Û |n(0)〉|2 is the
transition probability from the initial state |n(0)〉 to the final state
|n̄(τ )〉 under the evolution operator Û . In testing the validity of the
Jarzynski equality, it is necessary to observe that the average of the
exponentiated work

〈
exp(−W/kBT )

〉
≡
∑

P (W )exp(−W/kBT )
is independent of the work protocol from the quasi-static to the
far-from-equilibrium regime. The essential part of the experimental
test in the quantum regime is to obtain the conditional probability
from the projected energy eigenstate |n(0)〉 out of the thermal
distribution to the final eigenstate |n̄(τ )〉 after the work is done on
the projected state.

In our experiment, we follow a similar procedure to that
proposed in refs 18–20, which is composed of four stages:
preparation of the thermal state; projection to an energy eigenstate;
application of work on the eigenstate; the measurement of the final
phonon distribution.

We prepare a thermal state of the trapped ion’s harmonic motion
in the X-direction. We first cool the vibrational mode near to the
ground state |n=0〉 by resolved-sideband cooling32 right after the
Doppler cooling. Then we allow the system to heat up to the desired
temperature. The heating and thermalization of the system have
been extensively studied both experimentally and theoretically33–36.
The process is described well by the model of a harmonic oscillator
coupled to a high-temperature reservoir, which follows a sequence
of thermal equilibrium states33–36. We observe the thermal distri-
bution at each waiting time, where the temperature increases as
shown in Fig. 2a. We characterize the distribution by both the
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Figure 2 | Thermal state preparation of the phonon and measurement
results. a, Measurements on the heating rate of the trapped ion’s harmonic
motion in the X-direction. After the ground-state cooling, the average
phonon number increases linearly with the waiting time. The temperature is
extracted from the average phonon number 〈n〉 using
Te�=~ν/kB ln(1+ 1/〈n〉), where ν is the e�ective trap frequency. Projective
measurements on the phonon states (red circles) are performed at various
waiting times and the results are compared against those from the
phonon-distribution measurement based on the dependence of the
blue-sideband Rabi frequency on the phonon number shown in equation
(4) (filled blue circles). The measured heating rate given by the phonon
projection is consistent within error bars with that from fitting the
blue-sideband transition by equation (4). b, Phonon distribution (red
circles) measured by projective measurement at a 1 ms waiting time, fitted
using the thermal distribution function Pth

n =〈n〉n/(〈n〉+ 1)n+1 (solid line).
The measurement procedure shown in Fig. 3 is repeated 5× 106 times,
where the phonon state is determined in each single run in the projective
measurement. Here, the experimentally determined errors in the detection
are corrected (Methods). Error bars indicate the standard deviation.
c, Phonon distribution at 1 ms obtained by fitting the data in the inset with a
superposition of Fock states (filled blue circles) and with a thermal
distribution with 〈n〉 (solid line) using equation (4). Error bars represent
one standard deviation in parameter estimations of the fitting. The method
is applied to obtain the error bars for the remaining figures and table (for
more details, see the Supplementary Information).

projective measurement and the standard fitting method using
the Rabi-frequency dependence of the sideband transition on the
phonon state26–29.

Figure 2b shows the phonon distribution of a thermal state
obtained by the projective measurement at 1ms waiting time
after the ground-state cooling, yielding 〈n〉 = 0.157(±6),
Teff=480(±8) nK. The temperature is extracted from the average
phonon number 〈n〉 using Teff = ~ν/[kB ln (1+1/ 〈n〉)], where
the effective frequency of the harmonic oscillator ν is different
from the real motional frequency ωX . We use the thermal state
at 1ms as well as 0.3ms (〈n〉 = 0.051(±2), Teff = 316(±4) nK)

and 0.6ms (〈n〉 = 0.094(±4), Teff = 390(±6) nK) to start with
different initial temperatures for the test of the Jarzynski equality.
We finally determine the population of each eigenstate by
fitting with the thermal distribution, owing to the limited
precision of the projective measurement below the 10−3 level (see
Methods and Supplementary Information). The resulting phonon
distribution from the projective measurement is consistent with
that from the fitting method, as shown in Fig. 2c. Note that in
the fitting method we cannot decide the phonon state in a single
measurement nor carry out successive operations on the projected
Fock state.

Our projective measurement is composed of two parts: first,
find the projected energy eigenstate |n〉 and then deterministically
generate the same phonon Fock state. The projected state is
determined by repeating the sequence of phonon subtraction and
qubit state detection and counting the number of repetitions until
the first fluorescence is observed (Fig. 3a). If the fluorescence is
detected at the (n+ 1)th iteration for the first time, the projected
state is |n〉 (Fig. 3b)25.

The phonon subtraction (|n〉→ |n−1〉, shown in Fig. 3c) is
performed by the successive application of the π pulse of the
resonant carrier transition (|↓,n〉→|↑,n〉) and the adiabatic blue-
sideband transition (|↑,n〉 → |↓,n−1〉). We apply the scheme
of the adiabatic spin-flip operation in ref. 37 to the phonon
system, where a near-perfect transition from |↑,n〉 to |↓,n−1〉
with the same duration is achieved regardless of the phonon
number n (see Methods and Supplementary Information). After
the phonon subtraction, only the state |↓, 0〉 is transferred to
the bright |↑〉 state that scatters photons at the qubit-detection
sequence (Fig. 3e), whereas the other states remain in the dark
|↓〉 state with a reduction of one quanta (Fig. 3f). Therefore, the
projected state |↓,n〉 generates the fluorescence at the (n+ 1)th
successive operation of subtraction and detection. At each waiting
time, we typically perform 5× 106 projective measurements with
seven iterations of subtraction and detection. At eachmeasurement,
the projected energy eigenstate is determined. The Fock state |n〉
is deterministically prepared by n repeated applications of the π
pulses of the blue-sideband and the carrier transition after another
ground-state cooling26.

Because the projection scheme has two totally independent
sequences: determination and preparation, we completely separate
the sequence of preparing the Fock state |n〉 from the sequence
of detecting it. We prepare the initial Fock states up to |n=5〉, as
the total population of Fock states n>5 at 〈n〉=0.157 is less than
10−5 and the estimated error without these states is smaller than
10−3, even for the case of the fastest driving. Figure 4a shows the
fidelity in the preparation of the phonon number state up to |n=5〉.
We produce the |n〉 state up to n= 5 with over 90% fidelity (see
Supplementary Information).

After determining and preparing the projected energy eigenstate
|n〉, we apply work to the system. We apply the laser-induced
force of equation (2) on the prepared state for durations of
5 µs, 25 µs and 45 µs with a linearly increasing strength to the
same maximum value, as shown in Fig. 4b. The qubit state
dependence in the Hamiltonian (2) plays no role, because the
electronic state is prepared in the eigenstate of σ̂x , (|↑〉± |↓〉)/

√
2

(see Methods). Note that the laser-induced effective force occurs
in a rotating frame. Because the effective force term does not
commute with H0, we adiabatically bring the final state to the
lab frame before measurement of the final phonon distribution.
We have carefully studied the adiabatic process and observed less
than 0.015 change of the average phonon number when the total
duration is 50 µs, including the heating effect (see Methods and the
Supplementary Information).

After the work is done on the state |n〉, we measure the final
distribution of phonon number states by applying the blue- and
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Figure 3 | Experimental scheme for the projective measurement of the phonon state. a,b, Flow chart and time sequence, respectively, for the projective
measurement. If the first fluorescence is observed after (n+ 1) repetitions of phonon subtraction and qubit state detection, the projected phonon state is
|n〉. c, The phonon subtraction operation, which changes the phonon state from |n〉 to |n− 1〉, is composed of the π pulses of the resonant carrier transition
(black arrow) and the adiabatic blue-sideband transition (blue arrow, see also Methods). The subtraction |n〉→|n− 1〉 is performed for any phonon Fock
state except |n=0〉, which is transferred to |↑, n=0〉. d, Qubit state detection. e,f, On application of the detection laser beam (Fig. 1c), fluorescence is
observed for the |↑〉 state (e), which was the |↓, n=0〉 state before the phonon subtraction, whereas no fluorescence is detected for the |↓〉 state (f), where
phonon states are reduced by one quanta. The state originally projected to |↓, n〉 reaches the state |↑, n=0〉, which shows fluorescence after (n+ 1)
repetitions of subtraction and detection (c,d) procedures.

red-sideband transitions and fitting the signals using the maximal
likelihood method with the parameters of the Fock state population
Pn (see Methods and Supplementary Information). We observe
the time evolution of the blue- and red-sideband transitions up
to 250 µs with a step size of 1 µs by averaging 200 repetitions of
each step.

Figure 4c summarizes how the final phonon distributions depend
on the speed at which work is applied on a Fock state |n〉, which
is given by the transition probabilities Pn̄←n in equation (3). The
raw data and fitting results are presented in the Supplementary
Information. Figure 4c shows that our work protocols range from
the equilibrium to the non-equilibrium regime. For the slow ramp,
τ = 45 µs, the final distribution of the phonon states is almost
identical to the initial distribution shown in Fig. 4a. For the case
of the fastest ramp, τ = 5 µs, it is clearly shown that the final
population is most widely spread, which indicates the process is out
of equilibrium.

Figure 4d shows the probability distribution of the dissipated
work,Wdiss, constructed from the transfer probabilities Pn̄←n shown
in Fig. 4c with a phonon distribution P th

n of effective temperature
Teff= 480 nK (〈n〉= 0.157). It is clear that ramping the force with
a duration τ = 45 µs is close to an adiabatic process, as there is
almost no change in the phonon distribution in the work process.

Similar to the results for the classical regime4, the mean value and
the width of the distribution of the dissipated work increase with the
ramping speed. The standard deviations of the dissipated work in
the two fast ramp protocols (τ=5µs and τ=25µs) are of the order
of kBTeff (refs 1,4) and negative dissipated work, as a manifestation
of the microscopic ‘violations’ of the second law, appears clearly
in the two fast ramp protocols. Note that in the classical version
of our model, only a Gaussian profile of the distribution of
dissipated work exists in an open system38–40 as well as in an
isolated system (see also Supplementary Information) regardless of
the protocol. The non-Gaussian profile is predicted in ref. 41 at the
extreme low initial temperature 〈n〉< 1, which is naturally in the
quantum regime.

Table 1 summarizes the performances of the three different
estimates of the change in free energy from the Jarzynski equality,
the fluctuation–dissipation theorem and the mean dissipated
energy. Our experimental data clearly demonstrate the validity
of the Jarzynski equality when other estimates deviate from
the ideal values42. For comparison, we apply three work proto-
cols at three initial temperatures. The free energy differences
1F are −2.63 kBTeff (Teff=316nK), −2.13 kBTeff (Teff = 390 nK)
and−1.73 kBTeff (Teff=480nK). For the case of τ=45µs, the average
dissipated energy provides estimations of 1F within 2σ . For the
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Table 1 | Summary of the experimental test of the quantum Jarzynski equality and comparison with other estimates.

1F/kBTe� Te� (nK) −ln〈e−Wdiss/kBTe�〉 〈Wdiss/kBTe�〉−1/2(σ 2/(kBTe�)2) 〈Wdiss/kBTe�〉

τ=5µs τ=25µs τ=45µs τ=5µs τ=25µs τ=45µs τ=5µs τ=25µs τ=45µs
−2.63 316 −0.032(37) 0.006(34) 0.042(52) −1.601(443) −0.718(568) −0.087(154) 2.573(313) 0.929(401) 0.211(109)
−2.13 390 −0.033(35) 0.005(33) 0.037(50) −0.889(346) −0.426(442) −0.027(120) 2.033(245) 0.749(313) 0.168(85)
−1.73 480 −0.034(34) 0.003(31) 0.031(48) −0.505(269) −0.260(342) 0.002(93) 1.598(190) 0.602(242) 0.131(66)
The experimental results at various temperatures and rates of application of the force are close to the ideal values of− ln

〈
e−Wdiss/kB T

〉
=0 within error bars, where Wdiss=W−1F and the energy scale

is kBTe� . The other estimates of the free-energy di�erence1F using the average work 〈Wdiss/kBTe�〉 and the fluctuation–dissipation relation 〈Wdiss/kBTe�〉− 1/2(σ 2/(kBTe�)2) are compared against
those from the Jarzynski equality42 . For these estimates from experimental results, high phonon states with populations significantly smaller than the error bars are not included.

case of τ=45µs and τ=25µs, the fluctuation–dissipation theorem
provides estimations within σ and 2σ , respectively, indicating these
protocols are in linear response regime. For the case of τ=5µs,
the far-from-equilibrium protocol, only the Jarzyski estimate gives
reasonable values of the free-energy differences. We found that
the main error in the experiment comes from heating of the
phonon mode during the adiabatic return, but the amount of
error from heating in the Jarzynski estimate is less than the
experimental uncertainty according to our numerical simulation.

Detailed experimental imperfections and errors are discussed in the
Supplementary Information.

For many decades, measurement of the work and its distribution
in a quantum system has been only a thought experiment and this
factmay explain why attempts to directly test the quantum Jarzynski
equality in experiments have not been successful so far. Based
on the ground-breaking technology of isolating and manipulating
individual quantum systems43,44 developed in the past three decades,
we further developed the phonon projective-measurement method,
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enabling us to experimentally measure the mechanical work and
its distribution in a quantum system undergoing an arbitrary
non-equilibrium process. Besides being used in verifying the
quantum Jarzynski equality, our experimental breakthrough could
be applied to make many other thought experiments in quantum
thermodynamics possible in the laboratory. For example, the
method can be immediately used to test Crooks’ relation in the
quantum regime2,5 and in further investigations of the equality in
open quantum systems17,20. It could also be adapted to studies of
quantum heat engines45,46 by experimentally exploring work and
heat in thermodynamic cycles. Furthermore, the phonon projective
measurement would be an essential tool for the boson-sampling
problem47 with phonons25.

Methods
In the projected measurement, we transfer the |↑,n〉 state to the |↓,n−1〉
state in the same amount of time independent of the phonon number by
adjusting the intensity and frequency of the laser beam in the form
Ωb(t)=Ωn,n+1,max sin((π/T )t) and δ(t)=δ0 cos((π/T )t) (ref. 37). The main
errors in the phonon projective measurement come from two sources:
imperfections in qubit state detection and heating of the phonon state during
the measurement. We apply a correction method of state detection48 to the
phonon system. The phonon state changes due to the heating process are tracked
and reversed by means of a calculation. We apply the σ̂x -dependent force and
prepare the eigenstate of σ̂x during application of the force and the adiabatic
process back to the lab frame. We bring the phonon distribution from the
rotating frame to the lab frame by linearly reducing the laser intensity in a time
Ta=(2π/|ν|). We use the maximal-likelihood method to find the phonon
distributions by fitting interference of the blue- and red-sideband transitions
among different phonon modes following the methods in ref. 49. The values of Pn

can be determined by observing the time evolution of the probability P±
↑
(t) of

finding the ion in the |↑〉 state during the blue(red)-sideband transitions, which
is written as

P±
↑
(t)=

1
2
∑

n

Pn
[
1−e−γ± tA± cos(2Ωn,n±1t)

]
(4)

Here P±
↑
(t) is experimentally measured through the qubit-state-dependent

fluorescence50,51. The decay rate γ± is included to take into account laser intensity
fluctuations and heating. The contrast parameter A± is required to take into
account imperfections in the state preparation and detection. The Supplementary
Information describes the detailed experimental schemes with supporting data.
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