
IEEE INFOCOM First International Workshop on Big Data Sciences, Technologies and Applications (BDSTA 2016) 

Improving Spark Performance with Zero-copy 
Buffer Management and RDMA 

Hu Li*, Tianjia Chen t, Wei Xu+ 
Institute for Interdisciplinary Information Sciences 

Tsinghua University 
Email: *lihuI2@mails.tsinghua.edu.cn.tctj2015@tsinghua.edu.cn.+weixu@tsinghua.edu.cn 

Abstract-With the ever increasing demand on interactive 
data analytics, latency for big data frameworks becomes more 
important. We present our preliminary experience designing and 
implementing NetSpark, an improved Spark [1] framework that 
is highly optimized for network latency. Combining optimiza
tions on data serialization, network buffer management with 
hardware-supported Remote Direct Memory Access (RDMA) 
technology, we show that we can eliminate most of the data 
co pies from end to end, significantly reducing the Spark task 
running time. Our preliminary experiments show that NetSpark 
improves GroupBy operation in Spark by about 40% and the 
PageRank algorithm in GraphX by about 20% on a 10Gbps data 
center network over the legacy network stack. 

Keywords-Distributed Computing; Spark; RDMA; low latency; 

I. INTRODUCTlON 

With the ever increasing demand of data analytics, it is 
more and more important not only to be able to analyze the 
data, but to analyze a vast amount of data interactively. For 
example, real time web traffk analysis is becoming the key for 
the success of e-conunerce sites. This interactive requirement 
is a much more challenging goal than the tradition al Hadoop 
model that is optimized for throughput rather than latency. 

In-memory computation frameworks make the interactive 
data analytics possible. Spark [1] is a widely used data 
processing system. In addition to all the easy-to-program data 
processing primitives, a key optimization of Spark is to store 
intermediate results in memory rather than disks. The in
memory computation improves system performance by re
moving the expensive overhead from disks and distributed file 
systems. Thus, Spark is flexible enough to implement different 
computation models on top, including GraphX [2], Spark 
SQL [3], and Spark Streaming [4]. These frameworks demand 
even lower latency for different reasons. GraphX supports 
graph analytics algorithms that require many iterations, and the 
running time of an iteration directly affects the job completion 
time. SparkSQL is designed to handle interactive queries, and 
shorter latency can greatly improve user experience. 

The following main components determine how fast a task 
runs: scheduling, computation and network communication, 
The Spark community has proposed many ways to improve 
the per-task running time as we will review in Section V-CO 
However, the network latency becomes the major bottleneck 
preventing us from further reducing the job latency. 

978-1-4673-9955-5/16/$31 .00 ©2016 IEEE 

1 

While Spark uses network in many ways, one operation 
uses network the most by far, the shuffie operation. The shuffie 
operation causes all Executors to exchange information among 
each other. In the Hadoop system, shuffie requires heavy disk 
operations and thus the network congestions only happen in 
rare cases like the incast problem. Spark is different in two 
ways: first, the small tasks produce lots of small data transfers 
among many nodes; second, memory cache replaced most disk 
accesses, making network latency the dominating bottleneck. 

This paper presents our preliminary results on improving 
the network performance of Spark by improving its network 
stack performance. We also show some preliminary results on 
how this improvement helps real applications like GraphX. 

In the case of Spark with small tasks, single node network 
stack performance is important. The latency bottleneck on 
a single node is severely affected by the kernel network 
stack performance. There is significant overhead to process 
a packet in the kerne\. Sending a packet involves the virtual 
file system layer, the socket layer, IP layer be fore it gets to 
the Network Interface Card (NIC). Many of these processing 
layers require memory copies. Even worse, the packet handler 
needs to access many shared kernel data structures, causing 
lock contentions and context switches, and the situation only 
gets worse on multi-core machines. Many projects focus on 
improving data center network stack performance, and we 
review these approach es in Section V-A. 

Remote Direct Memory Access (RDMA) takes even more 
aggressive on the hardware side. It allows the application to 
specify an application space buffer so that the network transfer 
can bypass the operating system kerne!. RDMA is widely 
used in high performance computing interconnects such as 
the Infiniband fabric. The Infiniband does flow control and 
congestion control to provide a lossless fabric and thus people 
do not need a full TCP stack. 

Traditionally RDMA is only available on Infiniband, limit
ing its applicability to conunodity cloud computing clusters, 
the main platform that Spark runs on. Recent development on 
RDMA over Converged Ethernet (RoCE) enables RDMA to 
co-exist with Ethernet traffk [5]. 

However, adopting RDMA is still challenging, especially 
for a high level language like Java or Scala in which Spark 
is implemented. In particular, with RDMA, we bypass the 
kernel network stack, making it necessary for the application 
to manage many data structures (such as buffers) that the OS 



would have managed. Even worse, sometimes the automatic 
memory management in these language runtimes has nega
tive impact on the RDMA performance. Last but not least, 
as RDMA reduces the network transfer time, any overhead 
related to buffer management becomes more obvious. 

People have build RDMA Iibraries for Java Virtual Ma
chines (JVMs). For example, we used the jVerbs [6] library 
from IBM. It is a wrapper of a native RDMA implementation 
through the Java Native Interface (JNI). As we will show in our 
evaluation, just porting to RDMA brings some improvement to 
the Spark performance, but not a significant one. The network 
bufler management, object serialization, as weil as the garbage 
collection still brings significant overhead to the end-to-end 
network latency. 

We design NetSpark, combing the application of RDMA 
with a number of Spark-specific improvements. Our improve
ments include application buffer management and serializing 
an object directly to the RDMA buffer. We show that these 
improvement is a necessary complements to RDMA, and 
together with these optimizations, we are able to improve the 
shuffle read performance by about 40% and the PageRank 
algorithm in GraphX by about 20%. Further more, NetSpark 
is fully compatible with off-the-shelf Spark 1.5. The users only 
need to set a single ftag to enable RDMA mode. There is no 
change to the user program. We believe the compatibility is 
the key for its practical adoption. 

We made two contributions in the work, and this paper 
presents the preliminary results: 

• We propose a combination of memory management opti
mizations for JVM-based applications to take advantage 
of RDMA more efficiently and demonstrate these im
provements in Spark. 

• We build a reliable Spark package that runs on RoCE fab
ric, improving latency-sensitive task performance, while 
staying fully compatible with the off-the-shelf Spark. 

The remaining of this paper is organized as folIows: Sec
tion 11 provides background on Spark network buffer man
agement and RDMA; Section III introduces the design and 
implementation of the memory management in NetSpark. 
Section IV provides the preliminary evaluations of NetSpark 
performance on a cluster of 34 servers. We review related work 
in Section V, and conclude in Section VI. 

11. BACKGROUND 

In this section, we provide abrief introduction of the current 
Spark network buffer management, identifying its inefficiency. 
We also provide abrief introduction to the RDMA architecture 
and programming model for the readers who are not already 
familiar with topic. 

A. Current Spark Network Buffer Management 

In each Spark application, a Driver process creates a 
SparkContext data structure that holds the application state 
information. Each worker node creates Executor processes as 
the main process for task execution. The Executor creates a 
thread to execute each task within the same Executor process. 

2 

Using thread reduces the overhead for task starting/stopping, 
making it efficient to run small tasks. We modify two compo
nents in the Executor: the BlockManager component for data 
management and the network transfer service for communica
tions among workers. 

During a data transfer process, such as in the shuffte 
operation, an Executor first serializes the object into a buffer, 
uses the Java network API to copy it from heap to off-heap, 
and then executes the system call to copy the off-heap bufler 
to the kernel TCPIIP stack. The buffer needs to be copied 
several tünes in the kernel before sent out from the NIC On 
the receiver side, the buffer needs to be copied back to the 
Java application and deserialized into a Java object. Again, 
the process heavily involves memory copy. Allocating and 
deallocating the buffers inside the Java process cause frequent 
garbage collections, making the performance unpredictable. 

B. RDMA and RoCE 

RDMA has been widely used in high performance comput
ing. RDMA works as folIows: when initiating packets sending, 
the application pins a region of memory, and then let the NIC 
to register this physical memory region. It also puts the virtual 
memory to physical memory mapping into the page table. 
After registration, the NIC can directly access the registered 
memory without interrupting the CPU. The NIC maintains a 
complete queue for sending and receiving packet without a 
full network stack. Since the NIC can copy packets from user 
space into the NIC directly without CPU context switches, the 
latency in the RoCE is much lower than TCP [7]. 

RDMA offers two types of APIs. The first type is one-side 
read/wr i te operations. In this type, network transfer does 
not involve the remote host CPU. The second type is two
side send/rece i ve operations that requires CPU processing 
on the receiver. One-side operations offer sm aller latency and 
more efficient CPU utilization than two-side operations [8] 
and thus two side operations are usually reserved for control 
messages only. 

RDMA technology is designed for Infiniband network fab
ric, but recently people have developed RoCE (RDMA over 
Converged Ethernet) that runs on Ethernet, the most common 
fabric in data centers. RoCE use the Ethernet priority ftow 
control (PFC) to guarantee that there is no packet loss in the 
data link layer. We need to enable the PFC and VLAN, and 
mayaIso need Quality of Service (QoS) in configurations on 
the servers and switches [9]. To handle very busy network 
traffic with lots of server under a single top-of-the-rack switch, 
we need to adjust the switch buffer allocation so that the PFC 
buffer is large enough. 

111. DESIGN AND IMPLEMENTATION 

The key to take full advantage of RDMA is to optimize 
the application-specific buffer management. Figure 1 shows 
an overview of our modifications to the Spark Executor. 
The BufferManager is the center module in NetSpark, and it 
manages the data serialization and network communications. 
A RDMA-based network module that sets up and manages 



Executor 
j--'--'--'--'-_._-'-_._-'--'--'--'--'--'--'--; 

i[ Taskl] [TaSk2 ] [TaSk N] ! 

:~~~-~·~~·~:~~~I-~-.-~~~~~·.-~·~-.·~-: 
Il Se ndi ngConnect ions J 

Bl ockManager Bl ockTrans f erService 

11 Reeeivi ngConnect ions 1 

1 1 
BufferManager 

Fig. 1: Modified and new modules in Spark Executor. The 
BufferManager and RDMA network transfer module is new, 
and BlockManager module is modified. 

the connections, as weIl as an object serialization library both 
request buffer from the BufferManager. The BufferManager 
maintains a set of off-heap, fixed-sized buffer blocks and use 
the same set of blocks for network sending I receiving and 
object serialization I deserialization. 

In this section, we introduce the design and implementation 
of the buffer management that allows us to achieve zero copy 
from object serialization to send out a message, significantly 
reducing the network transfer time. 

A. Network Buffer Management for RDMA 

As we mentioned in Section II-B, we need to pin memory 
pages of the RDMA buffer in the main memory, preventing 
the operating system from paging them out. In a native process 
without automatic memory management, we can do so using 
the mlock system call. In a Java runtime, we need to allocate 
this buffer on the off-heap region. We can pin the off-heap 
memory pages. However, off-heap pages is relatively slow to 
allocate and release, and may increase latency if we perform 
lots of small allocations. 

To eliminate this overhead, we have to pre-allocate some 
memory space as the RDMA buffer. The challenge here is 
how to determine the size of the pre-allocated buffer. Smaller 
buffer size means more management overhead, while a size too 
large means was ted memory spaces. The size of transfers in 
Spark, especially for the shuffle operations, vary significantly, 
making the size choice difficult. 

One naive approach is to allocate a small number of 
large-enough fixed-size buffers on the off-heap space. After 
receiving a RDMA transfer (and hence the size is known), the 
program can dynamically allocate a buffer on the heap space 
with the right size, and copy the data from the off-heap RDMA 
bufler to heap space. The off-heap buffer is used for the 
transfer, acting like the kernel network buffer in TCPIIP model. 
Once the data is copied to the heap buffer, another transfer can 
reuse the off-heap buffer. After the application finish using the 
data, the on-heap buffer is subject to garbage collection. While 

3 

this approach is simple, it requires one memory allocation and 
one memory copy, introducing extra garbage collection and 
heap management overhead. Those overhead increase when 
jobs get sm aller, and when the network performance gets 
higher. 

Another approach to avoid copying the data between heap 
and off-heap is to allocate a number of off-heap buffers with 
variable sizes. Some RDMA-based key value storage and 
RPC systems adopt this choice. For example, FaRM uses 
SLAB [10] to manage variable sized buffer allocations. The 
choice of SLAB is based on the assumption that the transfer 
size follows a specific distribution that can be estimated be
forehand, without too many large messages. For example, in a 
key-value storage system, the message sizes are typically small 
with little variations in size [11] . However, the assumption is 
no longer true for shuffle traffk in Spark as the message sizes 
show significant variations. 

Due to these considerations, we use a BufferManager to 
pre-allocate a number of fixed sized buffer blocks in the off
heap space, and pin all of them. These buffer blocks are used 
both for sending and receiving messages and they are shared 
across all connections. We choose the buffer block size to 
be 2MB(size of Huge page). 2MB is big enough to saturate 
10Gb Ethernet, can be rec1aimed in 2ms, and can reduce 40% 
of register time compared with normal memory page [12]. 

For each connection, we use two-side operation to exchange 
memory address and notify(we also optimised with inline and 
selective signaling[8]), and use the one-side read for data 
transfer. The BufferManager allocates all buffer blocks for 
the RDMA read operation. As the two-side operation is only 
used for control information, it is small and do not add much 
latency. The one-side operation for the actual transfers makes 
the overall data transfer efficient. 

B. Object serilizationldeserialization 

Object serialization/deserialization may lead to extra mem
ory copy I allocation overhead. In the tradition al network stack, 
the network send/receive buffer is different from the buffer 
that is accessible by the application. During the deserialization 
process, one needs to make another copy of the buffer content 
to memory space separate from the network buffer. Doing so 
allows the system to reuse the network buffer space for new 
transfers, at the cost of an extra memory copy. 

Thanks to the ftexibility of our network buffer management, 
and combine network buffer with serilization/deserialization 
buffer, we can reuse the off-heap space for serializa
tion/deserialization. We implemented the functionality by pro
viding custom Input Stream and OutputStream c1asses. 
The internal buffer in InputStream and OutputStream 
is a list of buffers allocated by the BufferManager. The 
OutputStream automatically segment the data into multiple 
buffer blocks, so there no RDMA buffer size tuning in our 
design, only some messages may waste some memory(at most 
2MB). Using this interface, we do not need to change the other 
parts of the Executor to move the buffer off-heap too. 



Fig. 2: Network topology of our testbed. 

During a large RDMA transfer, the buffer block is a 
transferring unit. The receiver explicitly acknowledges each 
block received. On receiving the ACK from receiver, the 
sender releases ACK'ed buffer block and returns it to the 
BufferManager. 

On the receiver side, the BufferManager passes a received 
bufter block to the InputStream, and the application can 
deserialize the object directly from the bufter. After a bufter 
block is read and deserialized, it is imrnediately released 
back to the BufferManager, without waiting until the object is 
completely deserialized. This early buffer release also reduces 
the memory utilization during a large transfer. 

By combining the BufferManager with the Input/Output 
stream interface compatible to the original Spark implemen
tation, we can eliminate the memory copy while keeping the 
changes to Spark Executor minimal. 

IV. EVALUATION 

A. Experiment setup 

Topology is very important for networking performance. 
Different from many other projects that use Infiniband with 
HPC topologies such as hypercubes, we evaluate our approach 
on a typical data center networking topology as Figure 2 
shows. Servers connect to the top-of-racks (TOR) switches 
with lOGE passive copper links, and each TOR connects to the 
aggregate switch using three 40GE links. Each TOR connects 
to 11 or 12 servers and we have 34 servers in total. We believe 
this topology represents a typical cloud computing cluster. 

Our TOR switches are all Arista 7050 and the aggregate 
switch is a Mellonax SX1710 running in Ethernet mode, and 
we adjusted the PFC buffer size on the Arista switches to 
37024 bytes. We have 34 servers each contains two 6 core 
Intel Xeon CPUs with 24 threads and 128GB memory. The 
servers connect to the network using a Mellonax ConnectX3 
ethernet NIC with latest drivers from the manufacture. We run 
Spark 1.5. 

The off-the-shelf Spark ofters two network transfer pro
tocols, JAVA NIO and Netty [13](But the NIO transfer will 
soon be deprecated). We compare network performance among 
these four implementations: the NIO, the Netty, a naive RDMA 
implementation and our NetSpark implementation. Both NIO 
and Netty are over the default Linux network stack. The naive 
implementation is similar to [14], which copies the data bufter 

4 

1.0 

, , 
_0.8 0 u 
QJ 

8 ~ , 
g 0.6 

, 

0 :;:; 

8 ~ , 
.g 0.4 

, 

"'" 11) 

j!!1 0.2 

0.0 
nio netty naive rdma NetSpark 

Fig. 3: Time to complete the reduce stage of a GroupBy 
operation using the four different implementations, using the 
small dataset. For each implementation we plot minimax 
completion time as well as the 25th, 50th, and 75th percentile 
completion time among all the tasks. 

to RDMA buffer, and will introduce extra copies compared 
with NetSpark. 

B. GroupBy 

GroupBy is an important operation that is heavily utilized 
in various tasks such as evaluating SQL queries and Map 
Reduces. GroupBy operation is composed of one map stage 
and one reduce stage, and involves lots of data to shuffle. The 
GroupBy performance is the key to improve SparkSQL per
formance. Thus, we first use GroupBy as a micro-benchmark 
to evaluate the improvement by NetSpark. Since Spark does 
not perforrn network transfers in the map stage, we only plot 
the result of reduce stage here. We have confirmed that the 
performance of map stage is the same across all four different 
implementations. 

For the first micro-benchmark on latency, we keep the task 
duration about one second, similar to the choice of latency 
sensitive queries [15]. The total amount of data shuffled 
is about 2.5GB for the reduce stage. Figure 3 gives the 
comparison results of the running time. The reduce stage is 
composed of 792 tasks,and each bar presents the minimax task 
completion time as well as the 25th, 50th, and 75th percentile 
value arnong all the 792 tasks. 

Netty, as a heavily optimized network library, achieves a 
good improvement over the legacy NIO implementation. The 
naive RDMA provides a slightly faster task completion time 
than Netty. NetSpark achieves a 17% improvement over the 
naive RDMA for the max, and about 33% for the 50th, 
showing the eft'ectiveness of our network buft'er management 
scheme. 

To figure out the cause of this performance improvement, 
we plot the time taken for CPUs to wait for the network data in 
each task in Figure 4. The result shows that NetSpark lowers 
the CPU wait time significantly, and this is the reason why we 
can lower the task completion time over the network with the 
same lOGE bandwidth. 

We also evaluated the tasks completion time( or the reduce 
stage cost time) using a much larger dataset of about 107.3GB, 



_0.5 --,--- --,---
u , , 
QJ 
11) 

;0.4 

0 0 --,---
E 

, 

~ 03 

0 
--,---

u , 
0 

iil 0.2 
, 

0 :::l 
"-
U 

0.1 

0.0 
nio netty naive rdma NetSpark 

Fig. 4: CPU block time during a GroupBy task using the four 
different implementations. 

30~, ~--~--~--~I 
u 
~ 
-;; 25 
o 

'" ::J 
.0 

~ 20 
i5 

ß 151 
~ 
::J o 
Q) 101 
CO> 
1'l 
\f) 

~ 5 
::J 

" ?i 

~ 

-
E$=J $ 

0' , 
nie netty naive rdma NetSpark 

Fig. 5: GroupBy perfonnance on the large dataset. Otherwise 
the figure is same as Figure 3. 

wh ich means each node processes about 43 x more data than 
the previous experiment. We repeated the experiment 100 
times, Figure 5 shows the comparison for the tasks completion 
time. The result shows that NetSpark is about 40% taster in the 
reduce stage than Netty. This is because with a larger dataset, 
each Executor runs multiple tasks , and the improvements for 
these tasks add up to a more significant speed up. 

C. PageRank 

In addition to the GroupBy micro-benchmark, we also 
evaluate NetSpark on the PageRank algorithm in GraphX [2]. 
We used the Twitter graph [16] as our test data. This dataset 
contains approximately 41 million nodes and 1.5 billion edges. 
The algorithm involves multiple iterations, and we also re
peated 100 times. Figure 6 shows the running time distribution 
for a single iteration. Similar to the micro-benchmark, we can 
see a 20% improvement over Netty and about 9.5% over the 
naive RDMA implementation. 

V. RELATED WORK 

A. Improving data center networking peiformance 

Data center network is significantly different from the tradi
tional enterprise network or the high performance computing 

5 

D12 
.; --,---

510 ~ Ei==l ., 
~ Ei=3 ~ 
QI 8 Ei=3 go 
'in 

'" 6 
2 
c 
0 4 :g 
.c 

~ 
'ö 
QI 
E 
i= 

° nio netty naive rdma NetSpark 

Fig. 6: Time taken to complete one iteration in the PageRank 
algorithm. 

interconnects. Due to cost concerns, the data center network 
is usually slower than the HPC interconnects. The typical 
data center network nowadays is still at lOGE and gradually 
moving to 25GE, while HPC has implemented 56Gbps or 
lOOGbps Infiniband network. 

However, data center network is much faster both in latency 
and throughput than enterprise networks, and thus many 
assumptions based on such networks no longer apply. For 
example, DCTCP [17] changes the TCP assumptions to reduce 
the delays and throughput problems caused by occasional con
gestions. [18] improves large data transfers using application 
layer protocols such as a multicast tree. 

With the latency in a data center network gets lower, many 
projects target lowering the operating system overhead to 
send/receive messages, especially on a multi-core machines 
with vast data processing power. Megapipe [19] improves the 
TCP/IP network stack perfonnance on multi-core machines 
through a novel API design, while mTCP [20] moves the entire 
TCP/IP stack to the user space to reduce the number of mem
ory copies and lock contentions. Modern network interface 
cards (NICs) provide hardware functionalities to improve the 
network performance. For example, Affinity-Accept [21] uses 
Receive Side Scaling (RSS) to provide a local accept queue 
for each CPU core, and [22] utilizes TCP offloading to reduce 
CPU utilization. 

B. Non-HPC RDMA applications 

Many projects focus on using RDMA to accelerate the key
value storage systems. [23], [24] show how to lower CPU 
utilization by migrating to RDMA. Projects [7], [8], [25], 
[26] focus on improving the latency using RDMA. More 
recent storage systems use RDMA with advanced consensus 
protocols to guarantee certain level of data consistency, while 
keeping the low latency and low CPU feature of RDMA [27], 
[28], [29]. 

There is a major difference between key-value storage and 
computation in terms of network workload and buffer man
agement. In a storage system, the data are not processed and 
can stay in the serialized fonn. In contrast, in a computation 
system Iike Spark, all data are computed and thus the life 



time of a bufler is just the network transfer time, adding extra 
memory allocation and copy overhead. Also as we mentioned 
previously, the transfer size distribution varies vastly in a data 
processing system. 

There are also projects focusing on improving data pro
cessing system performance. For example, [30] uses RDMA 
to accelerate Hadoop, and [31] accelerates graph computation. 
[32] also tries to accelerate Spark using RDMA over Infini
band network. However, it focuses on reducing the throughput 
loss from the IP-over-IB layer, rather than optimizing for 
network latency. We show that with our buffer management 
optimization, we can achieve almost the same task completion 
time on a lOGE network as their 32Gbps high performance 
Infiniband fabric, using similar GroupBy benchmark. 

C. lmproving Spark Latency 

Many people have realized large-scale data analytics frame
works are shifting towards shorter task durations and larger 
degrees of parallelism to provide low latency [15]. This is 
especially true for SQL systems [3] , [33] and streaming 
systems[4], [34] . People have build systems to reduce the 
latency for scheduling lots of small tasks [15], and even 
introduce hardware accelerators to reduce task completion 
time [35]. We believe as the task running time becomes 
shorter, our reduction for the network performance will be 
even more crucial for the overall system performance. 

VI. CONCLUSION AND FUTUR E WORK 

In this paper we present our preliminary results on design
ing and implementing NetSpark that reduces Spark network 
latency by leveraging the RoCE network fabric. We show that 
to take full advantage of RDMA, we need to perform appli
cation specific buffer management, in order to eliminates all 
unnecessary memory copies through the entire network stack. 
We evaluate our system on a real cluster with 34 nodes and 
the preliminary evaluation results shows 20% improvements in 
both micro-benchmark and task completion tünes using real 
Spark workloads. 

As future work, we would like to further improve Spark 
performance by leveraging the remote memory accessible 
through RDMA to perform data shufftes and avoid involving 
local disks for the shuffte processes. We will further inves
tigate the interactions between RDMA and TCP traffic with 
in the same Ethernet fabric, especially under high network 
utilizations and network visualizations. We would also like to 
apply our RDMA-specific memory management framework 
to other systems that involve a mixture of data transfers and 
computation, such as real time monitoring and log processing 
systems. 

VII. ACKNOWLEDGEMENTS 

This research is supported in part by the National Natural 
Science Foundation of China Grants 61033001, 61361136003, 
61532001, China 1000 Talent Plan Grants, Tsinghua Initiative 
Research Program Grants 20151080475, a Microsoft Research 
Asia Collaborative Research Award, and a Google Faculty 
Research Award. 

6 

REFERENCES 

[l] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant 
abstraction for in-memory cluster computing." NSDJ. 2012 

[2] Gonzalez, Joseph E, et al. "Graphx: Graph processing in a distributed 
datatlow framework." OSDJ, 2014. 

[3] Armbrust, Michael, et al. "Spark SQL: Relational data processing in 
Spark." SJGMOD, 2015. 

[4] Zaharia, Matei , et al. "Discreti zed Streams: An Efficient and Fault
Tolerant Model for Stream Processing on Large Clusters." HOTCLOUD. 
2012. 

[5] Kissel, Ezra et al. "Efficient wide area data transfer protocols for 100 
Gbps networks and beyond." SC, 2013. 

[6] Stuedi, Patrick, et al. "jVerbs: ultra-low latency for data center applica
tions." SoCC, 2013. 

[7] Dragojevic, Aleksandar, et al. "FaRM: Fast remote memory." NSDJ, 2014. 
[8] Kalia, Anuj , et al. "Using RDMA efficiently for key-value services." 

SJGCOMM,2014. 
[9] Ophirmaor, How To Run RoCE and TCP over L2 Enabled with PFC. 

https://community.mellanox.comldocsIDOC-1415 
[l0] Bonwick, Jeff. "The SI ab Allocator: An Object-Caching Kernel Memory 

Allocator." USENJX Vol. 16. 1994. 
[11] Atikoglu, Berk, et al. "Workload analysis of a large-scale key-value 

store." SJGMETRlCS, 2012. 
[12] Frey, Philip Werner and Gustavo Alonso. "Minimizing the Hidden Cost 

of RDMA." JCDCS, 2009. 
[13] Netty, hup:llneuy.iol 
[14] Barthels, Claude, et al. "Rack-Scale ln-Memory Join Processing using 

RDMA." SJGMOD, 2016. 
[l5] Ousterhout, Kay, et al. "Sparrow: di stributed, low latency scheduling." 

SOSP.2013. 
[l6] Kwak, Haewoon, et al. "What is Twitter, a social network or a news 

media?" WWW, 2010. 
[17] Alizadeh, Mohammad, et al. "Data center tcp dctcp." ACM SJGCOMM 

computer communication review, 2011. 
[18] Raiciu, Costin, et al. " lmproving datacenter performance and robustness 

with multipath TCP." SJGCOMM, 2011. 
[l9] Han, Sangjin, et al. "MegaPipe: A New Programming Interface for 

Scalable Network IIO." OSDJ, 2012. 
[20] Jeong, EunYoung, et al. "mTCP: a highJy scalable user-level TCP stack 

for multicore systems." NSDJ, 2014. 
[21] Pesterev, Aleksey, et al. "lmproving network connection locality on 

multicore systems." EuroSys, 2012. 
[22] Mogul, Jeffrey C. "TCP Oftload Is a Dumb Idea Whose Time Has 

Come." HOTOS, 2003. 
[23] Mitchell, Christopher, Yifeng Geng and Jinyang Li. "Using One-Sided 

RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store." ATC, 
2013. 

[24] Stuedi, Patrick, et al. "Wimpy Nodes with 10GbE: Leveraging One
Sided Operations in Soft-RDMA to Boost Memcached." ATC, 2012. 

[25] Wang, Yandong, et al. "C-Hint: An Effective and Reliable Cache 
Management for RDMA-Accelerated Key-Value Stores." SoCC, 2015. 

[26] Panda, Dhabaleswar K, et al. "High-Performance Design of HBase with 
RDMA over InfiniBand." JPPS, 2012. 

[27] Ousterhout, John, et al. "The case for RAMClouds: scalable high
performance storage entirely in DRAM." ACM SJGOPS Operating Sys
tems, 43.4 2010: 92-105. 

[28] Dragojevic, Aleksandar, et al. "No compromises: distributed transactions 
with consistency, availability, and performance." SOSP, 2015. 

[29] Wei, Xingda, et al. "Fast in-memory transaction processing using RDMA 
and HTM." SOSP, 2015. 

[30] Lu, Xiaoyi, et al. "High-Performance Design of Hadoop RPC with 
RDMA over InfiniBand." JCPP, 2013. 

[31] Lin, Haoxiang, et al. "GraM : scaling graph computation to the triUions." 
SoCC, 2015. 

[32] Lu, Xiaoyi , et al. "Accelerating Spark with RDMA for Big Data 
Processing: Early Experiences." HOT!, 2014. 

[33] Kornacker, Marcel, et al. "Impala: A Modern, Open-Source SQL Engine 
for Hadoop." ClDR, 2015. 

[34] Apache Storm, https://storm.apache.org/ 
[35] Li , Peilong, et al. "HeteroSpark: A heterogeneous CPU/GPU Spark 

platform for machine learning algorithms." NAS, 2015. 




