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a b s t r a c t

Set multi-covering is a generalization of the set covering problem where each element
may need to be covered more than once and thus some subset in the given family of
subsets may be picked several times for minimizing the number of sets to satisfy the
coverage requirement. In this paper, we propose a family of exact algorithms for the set
multi-covering problem based on the inclusion–exclusion principle. The presented ESMC
(Exact Set Multi-Covering) algorithm takes O∗((2t)n) time and O∗((t + 1)n) space where
t is the maximum value in the coverage requirement set (The O∗(f (n)) notation omits a
poly log(f (n)) factor). We also propose the other three exact algorithms through different
tradeoffs of the time and space complexities. To the best of our knowledge, this present
paper is the first one to give exact algorithms for the set multi-covering problem with
nontrivial time and space complexities. This paper can also be regarded as a generalization
of the exact algorithm for the set covering problem given in [A. Björklund, T. Husfeldt, M.
Koivisto, Set partitioning via inclusion–exclusion, SIAM Journal on Computing, in: FOCS
2006 (in press, special issue)].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently it has been shown that for some exact algorithms, using the inclusion–exclusion principle can significantly
reduce the running time. For example, Björklund et al. have applied the inclusion–exclusion principle to various set covering
and set partitioning problems, obtaining time complexities that are much lower than those of previous algorithms [2]. This
principle has also beenused in someearly papers, such as [1,7]. By using theMöbius inversion techniquewhich is an algebraic
equivalent of the inclusion–exclusion principle, Björklund et al. give a fast algorithm for the subset convolution problem [3]
and Nederlof presents a family of fast polynomial space algorithms for the Steiner Tree problem and other related problems
[8]. In this paper, we are interested in designing inclusion–exclusion based exact algorithms for the set multi-covering
problem [10,11]. This problem is a generalization of the set covering problem in which each element needs to be covered by
a specified integer number of times and each set can be picked multiple times in order to satisfy the coverage requirement.
It is a bit surprising that only approximation algorithms have so far been proposed for the set multi-covering problem.
In fact, by using the same greedy strategy as for the set covering problem, which is to repeatedly add the set containing
the largest number of uncovered elements to the cover, one can achieve the same O(log n) approximation for the problem
[10]. Feige shows that the set covering problem cannot be approximated better than ln n unless NP ∈ DTIME(nlog log n) [5].
Some parallel approximation algorithms for the set covering problem and its generalizations, such as the set multi-cover
problem, the multi-set multi-cover problem and the covering integer programs problem have been presented in [11]. In
all these related work on approximation solutions, the set multi-covering problem appears to be no harder than the set
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Table 2.1
Summary of notations and their definitions.

Notation Definition

N The universe set, where N = {1, . . . , n} and |N| = n.
F A family of subsets of N , where F = {s1, . . . , s|F |} and |F | is the total number of subsets in F .
T The integral coverage requirement set, where T = {t1, . . . , tn}; each i ∈ N must be covered at

least ti ≥ 1 times in the picked subsets over F .
t The maximum integer in the set T , i.e., t = max1≤i≤n{ti}.
ck(F) The number of k-tuples 〈s1, . . . , sk〉 over F such that the union of each k-tuple, i.e., C =

⋃k
i=1 si ,

satisfy the specified coverage requirement T .
nk(X) The number of k-tuples 〈s1, . . . , sk〉 over F such that each i ∈ X(X ⊆ N) appears at most

(ti − 1) number of times in the set C .
a(X) The number of subsets in F that avoid X .
b(X, Y ) The number of subsets in F that include Y but avoid X\Y .
pXq (n1, . . . , n|X |) or p

X
q (nX ) The number of q-tuples over F such that each j ∈ X appears nj times in the union of each

q-tuple. For simplicity, we use nX to denote {n1, . . . , n|X |}.

covering problem. In this paper, we will see that finding an exact solution for the set multi-covering problem can takemuch
longer time than that for the fastest exact algorithm for the set covering problem [2]. To the best of our knowledge, this
present paper is the first one to give exact algorithms for the set multi-covering problem with nontrivial time and space
complexities.
The structure of this paper is as follows. In Section 2, we give a formal definition of the set multi-covering problem.

In Section 3, we give a brief introduction of the inclusion–exclusion principle and then transform the set multi-covering
problem to the problem of counting the number of k-tuples that satisfy the integral coverage requirements. We then give
four algorithms for counting these numbers of k-tuples in Section 4. In Section 5, we give a constructive algorithm for finding
theminimumnumber of sets thatmeet the coverage requirements. A simple illustrating example for our algorithms is given
in the Appendix. We conclude the paper in Section 6.

2. The set multi-covering problem

A summary of the various notations used in this paper and their corresponding definitions is given in Table 2.1.
Throughout the paper, we let the union of a k-tuple 〈s1, . . . , sk〉 which is denoted as C =

⋃k
i=1 si represent a multi-set.

This means that we just put all the elements in each si into the set C without removing duplicated elements.
The set multi-covering problem: Let N = {1, . . . , n} be the universe, and F a given family of subsets {si} over N , and the
union of all the subsets in F covers all the elements in N . A legal (k, T ) cover is a collection of k subsets over F such that⋃k
i=1 sk ≥ TN , where T = {t1, . . . , tn} and the inequality means that each i ∈ N must appear at least ti ≥ 1 times in the

union of the k subsets. Note that the k subsets can be non-distinct whichmeans that some subsets in F can be picked several
times. The goal of the set multi-covering problem is to find the minimum k to make a legal (k, T ) cover.
Remark 1. Since each subset in F can contain each element of N at most once, in order to find a legal (k, T ) cover, k must
be greater than or equal to t , the maximum integer in the coverage requirement set T , i.e., k ≥ t . Also, since the union of F
covers all the elements in N , we have k ≤ tn.

3. Counting based exact algorithm for the set multi-covering problem

3.1. The inclusion–exclusion principle

Fact 3.1 (Folklore). Let B be a finite set with subsets A1, A2, . . . , An ⊆ B. With the convention that ∩i∈∅Ai = B, the number of
elements in B which lie in none of the Ai is∣∣∣∣∣ n⋂

i=1

Ai

∣∣∣∣∣ =∑
X⊆N

(−1)|X | ·

∣∣∣∣∣⋂
i∈X

Ai

∣∣∣∣∣. (3.1)

3.2. Counting the number of k-tuples

Lemma 3.2. Let nk(X) denote the number of k-tuples 〈s1, . . . , sk〉where for each j ∈ X, the number of j in the set C =
⋃k
i=1 sk is

at most tj− 1; then the number of k-tuples that satisfy the coverage requirement T can be computed from the following equation:

ck(F) =
∑
X⊆N

(−1)|X | · nk(X). (3.2)

Proof. Let B be the set of k-tuples 〈s1, . . . , sk〉 from F , and let Ai be the set of k-tuples where element i in the set C appears at
most (ti − 1) times. The left side of Eq. (3.1) is the number of k-tuples in which each element i in the universe N is covered
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at least ti times, which is represented by ck(F), the left side of Eq. (3.2). Accordingly, |
⋂
i∈X Ai| is the number of k-tuples in

which each j ∈ X , which is an element in the set C , appears at most (tj − 1) times; i.e., nk(X) = |
⋂
i∈X Ai|. By the right side

of Eq. (3.1), we can derive the right side of Eq. (3.2). �

Lemma 3.3. We can find a legal (k, T ) cover if and only if ck(F) > 0.
Proof. ck(F) is the number of k-tuples over F that satisfy the coverage requirement T . The number of legal (k, T ) covers
is the number of k subsets over F that satisfy the coverage requirement T . Since different orderings of the k subsets mean
different k-tuples while the (k, T ) cover concerned remains the same, we know that only when ck(F) > 0 can there be a
legal (k, T ) cover. Similarly, if there is a legal (k, T ) cover, it guarantees that ck(F) > 0. This finishes the proof. �

According to Lemma 3.3, we have the following corollary.
Corollary 3.4. The minimum k value to make a legal (k, T ) cover is equal to the minimum k value that satisfies ck(F) > 0.
Thus we can transform the set multi-covering problem to the problem of computing ck(F). By using binary search, since

t ≤ k ≤ tn, the time for solving the set multi-covering problem equals the sum of the times for computing the O(log(tn))
numbers of ck(F). In the next section, we introduce several algorithms for computing ck(F) with different time and space
complexities.

4. Algorithms for computing ck(F)

In this section, we show how to compute ck(F), i.e., to count the number of k-tuples 〈s1, . . . , sk〉 over F such that the
union of each such k-tuple satisfies the given coverage requirement T .

4.1. How to compute nk(X)

According to Eq. (3.2), we know that the crux of computing ck(F) is to obtain nk(X), i.e., the number of k-tuples over F
such that each i ∈ X appears at most (ti− 1) times in the union of every k-tuple. Without loss of generality, we assume X =
{1, 2, . . . ,m}, and for the simplicity of notation, we let nX = {n1, n2, . . . , nm}. We then denote pXq (nX ) = p

X
q (n1, n2, . . . , nm),

the number of q-tuples over F such that for each j ∈ X the number of the element j in the union of every q-tuple is nj. Now
since the union of each q-tuple can cover each j ∈ X at most q times, for each pXq (n1, n2, . . . , nm), we have nj ≤ q for each
j ∈ X; otherwise, pXq (n1, n2, . . . , nm) equals 0. From these definitions, we can easily obtain the following Eq. (4.1). This
equation means that, in order to obtain nk(X), we should sum all the pXk (nX ) values (

∏m
i=1 ti of them), where p

X
k (nX ) is from

pXk (0, 0, . . . , 0) to p
X
k (t1−1, t2−1, . . . , tm−1). Now our problem becomes how to efficiently compute all the p

X
k (nX ) values.

nk(X) =
∑

0≤ni≤ti−1
1≤i≤m

pXk (nX ). (4.1)

Before delving into the details of calculating all these pXk (nX ) values, we need to introduce some notations. We use a(X)
to denote the number of sets in F that avoid X where X ⊆ N , and b(X, Y ) to denote the number of sets in F that include Y
but avoid X\Y , where Y ⊆ X . We show next how to get a(X) for all X and b(X, Y ) for all X and Y .

4.2. How to compute all a(X)

There are two ways to compute a(X). The first way is to use the fast zeta transform technique introduced in [2]. By
using this technique, all a(X) values can be computed in O∗(2n) time. And since the technique uses a look-up table to
store all the interim values including a(X) for all X ⊆ N , it requires O∗(2n) space. The second way is to compute a(X)
directly without storing all the interim values into a look-up table. In order to compute a(X) where X ⊆ N , we just need
to test every subset S ⊆ N\X to see if S is in F , which takes time O∗(2n−|X |) by assuming that the membership test in F
can be decided in polynomial time and polynomial space. Then for all X ⊆ N , the total time for computing a(X) equals∑
X⊆N O

∗(2n−|X |) = O∗(
∑n
r=0 C

r
n2
n−r) = O∗(3n).

4.3. How to compute all b(X, Y )

Based on the two differentways of computing a(X), we have two correspondingways to compute all b(X, Y ) for all Y ⊆ X
and for all X ⊆ N .
For arbitrary X and Y , where Y ⊆ X , we let |X | = m and |Y | = r and r ≤ m. Without loss of generality, assume

X = {1, 2, . . . ,m} and Y = {1, 2, . . . , r}. Then b(X, Y ) can be computed via Eq. (4.2).
b(X, Y ) =

∑
Z⊆Y

(−1)|Z | · a(Z ∪ (X\Y )) =
∑
Z⊆Y

(−1)|Z | · a(Z ∪ {r + 1, . . . ,m}). (4.2)

Eq. (4.2) is obtained by applying the inclusion–exclusion principle. According to Fact 3.1, suppose B is a family of subsets
of F which avoid X\Y , and let Ai ⊆ B(i ∈ Y ⊆ X) be the family of subsets which further avoid element i. Then the left side
of Eq. (3.1) (|

⋂|Y |
i=1 Ai|) is the number of sets in F that cover Y but avoid X\Y which is the value of b(X, Y ). Accordingly, the
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right side of Eq. (3.1) (|
⋂
i∈Z⊆Y Ai|) is the number of sets in F that avoid Z ∪ (X\Y )which is the value of a(Z ∪ (X\Y )). Thus

according to Eq. (3.1), we have Eq. (4.2). Then we calculate how much time we need to compute all b(X, Y ).
First, we do not use a table to store all a(X) values, and the time complexity is given in Lemma 4.1.

Lemma 4.1. For all Y ⊆ X and for all X ⊆ N, b(X, Y ) can be obtained in O∗(6n) time and polynomial space.
Proof. Asmentioned earlier, in order to compute a(X)where X ⊆ N , we just need to test every subset S ⊆ N\X to see if S is
in F , which takes time O∗(2n−|X |). For given X and Y , according to Eq. (4.2), the time for computing b(X, Y ) can be calculated
from the formula

∑r
i=0 C

i
r · O

∗(2n−i−m+r). By using the Binomial theorem, we have Eq. (4.3).
r∑
i=0

C ir · O
∗(2n−i−m+r) = O∗(2n−m · 3r). (4.3)

Now for all Y ⊆ X , the time for computing b(X, Y ) can be calculated through the formula
∑m
r=0 C

r
m ·O

∗(2n−m · 3r). Similarly,
by using the Binomial theorem, we have Eq. (4.4).

m∑
r=0

C rm · O
∗(2n−m · 3r) = O∗(2n+m). (4.4)

Finally, for all X ⊆ N , the time for computing b(X, Y ) can be calculated through the formula
∑n
m=0 C

m
n O
∗(2n+m). Again by

the Binomial theorem, we have Eq. (4.5).
n∑
m=0

Cmn O
∗(2n+m) = O∗(6n). (4.5)

According to the computation steps of Eqs. (4.3)–(4.5), since we did not use any look-up table to store the exponential
number of a(X) values to speed up the calculation of b(X, Y ), the space used is only polynomial. This completes the proof. �

Now we give another way to compute all b(X, Y ) by using exponential space. Its time and space complexities are given
in Lemma 4.2.

Lemma 4.2. For all Y ⊆ X and for all X ⊆ N, b(X, Y ) can be obtained in O(4n) time and O∗(2n) space.
Proof. As before, by using the fast zeta transform technique introduced in [2], all a(X) values can be computed in O∗(2n)
time and O∗(2n) space. Then for some given X and Y , according to Eq. (4.2), since all a(X) values are known, b(X, Y ) can be
computed in time 2r where r = |Y |. The time for computing b(X, Y ) for all Y ⊆ X equals

∑m
r=0 C

r
m · 2

r
= 3m. Similarly, the

time for computing b(X, Y ) for all X ⊆ N equals
∑n
m=0 C

m
n · 3

m
= 4n. This finishes the proof. �

4.4. Four algorithms for computing all pXk (nX )

As mentioned in Section 4.1, we need to compute
∏m
i=1 ti p

X
k (nX ) = p

X
k (n1, n2, . . . , nm) values, where 0 ≤ ni ≤ ti − 1

and 1 ≤ i ≤ m. Without loss of generality, we assume the positive integers in {n1, n2, . . . , nm} form a set nY = {n1, . . . , nr},
where Y = {1, 2, . . . , r} and 0 ≤ r ≤ m. Then from the definitions of a(X) and b(X, Y ), we have pX1 (n1, n2, . . . , nm) =

b(X, {1, 2, . . . , r}) and pX1 (0, 0, . . . , 0) = a(X). Now for brevity of notation, for any subset Z = {r1, . . . , ri} ⊆ Y , we use
(nX − 1Z ) to denote the set {n1, . . . , nr1 − 1, . . . , nri − 1, nri+1, . . . , nm}, i.e., for all j ∈ Z , the corresponding nj values are
decremented by 1, and for all j /∈ Z , we keep the corresponding nj values. Then for 2 ≤ q ≤ k, we use the following recursive
function to obtain pXq (nX ).

pXq (nX ) =
∑
Z⊆Y

b(X, Z)·pXq−1(nX − 1
Z ). (4.6)

Basically, this equation tells us how to calculate the pXq (nX ) value when given p
X
q−1(nX − 1

Z ) values for all Z ⊆ Y . For
example, when Z = ∅, b(X,∅) = a(X) and pXq−1(nX −1

Z ) = pXq−1(nX ). We already know that a(X)means the number of sets
in F that avoid X , and pXq−1(nX )means the number of (q− 1)-tuples from F where for each j ∈ X the number of the element
j in the union of every (q− 1)-tuple is nj; thus the product of a(X) and pXq−1(nX ) is the total number of ways to add a set to
each of the pXq−1(nX ) (q− 1)-tuples to make it a q-tuple while keeping nX unchanged. Similarly, for each nonempty Z ⊆ Y ,
we know that b(X, Z)means the number of sets in F that cover Z but avoid X\Z , where Z ⊆ Y ⊆ X , and pXq−1(nX−1

Z )means
the number of (q− 1)-tuples from F where for each j ∈ X the number of the element j in the union of every (q− 1)-tuple
equals the updated nj value in the set (nX − 1Z ); thus the product of b(X, Z) and pXq−1(nX − 1

Z ) is the total number of ways
to add a set to each of the pXq−1(nX − 1

Z ) (q − 1)-tuples to make it a q-tuple while satisfying all the nj values in the set nX .
Finally, the summation of all these products yields the number of q-tuples from F such that for each j ∈ X the number of
the element j in the union of every q-tuple equals nj, which is pXq (nX ).
So according to Eq. (4.6), in order to get all pXk (nX ), we need to calculate all p

X
q (nX ) where 1 ≤ q < k. We now give four

algorithms for computing all pXk (nX ).

Please cite this article in press as: Q.-S. Hua, et al., Set multi-covering via inclusion–exclusion, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.020



ARTICLE  IN  PRESS
Q.-S. Hua et al. / Theoretical Computer Science ( ) – 5

But first we will analyze the special case where the maximum integer t in the integral coverage requirement set
T = {t1, . . . , tn} equals 1. In this case, set multi-covering becomes the set covering problem. Then as mentioned in
Section 4.1, we only need to compute

∏m
i=1 ti = 1 number of p

X
k (nX ) = p

X
k (0, . . . , 0︸ ︷︷ ︸

m

) values. This means that the number

of positive integers in the set nX = {n1, n2, . . . , nm} is zero, i.e., the set Y in Eq. (4.6) is an empty set. Accordingly, Eq. (4.6)
becomes pXk (0, . . . , 0) = b(X,∅) · p

X
k−1(0, . . . , 0) = a(X) · p

X
k−1(0, . . . , 0). Since p

X
1 (0, . . . , 0) = a(X), we can obtain

pXk (0, . . . , 0) = (a(X))k. Finally from Eqs. (3.2) and (4.1), we obtain ck(F) =
∑
X⊆N (−1)|X | · (a(X))k, which is the same as

the formula given in [2] for counting the number of k-tuples that satisfy the set covering requirement. As discussed in [2],
based on whether we use exponential space or not (c.f. Section 4.2), ck(F) can be computed in O∗(2n) time and O∗(2n) space,
or can be computed in O∗(3n) time and polynomial space.
For the following, we assume that the maximum integer t in the integral coverage requirement set T = {t1, . . . , tn} is

greater than or equal to 2.

Algorithm 1 for computing all pXk (nX ).

Input: The value k where t ≤ k ≤ tn; the set X = {1, 2, . . . ,m}; the integral coverage requirement set for X , i.e.,
TX = {t1, t2, . . . , tm}. Here TX is a subset of T , and we use min(TX ) and max(TX ) to denote the minimum and the maximum
integers respectively in the set TX .
Output: The values for all pXk (nX ).
1: For all X ⊆ N , by using the fast zeta transform technique given in [2], we compute all a(X) and store them in a look-up
table.
2: Based on the first step, for all Y ⊆ X and X ⊆ N , we compute all b(X, Y ) and store them in another look-up table.
3: For q = 2 to k do:
4: By using Eq. (4.6), we compute all pXq (nX ) from p

X
q (0, . . . , 0) to p

X
q (min(q, t1−1), . . . ,min(q, ti−1), . . . ,min(q, tm−1))

and we store all these pXq (nX ) values in a look-up table. Here the functionmin(q, ti−1)means choosing theminimum value
between q and (ti − 1).
5: End For.

Without storing all of the pXq (nX ) values in a table, we have the second algorithm for computing all p
X
k (nX ).

Algorithm 2 for computing all pXk (nX )

1: Same as the first step in Algorithm 1.
2: Same as the second step in Algorithm 1.
3: For each of the

∏m
i=1 ti number of p

X
k (nX ), where p

X
k (nX ) is from p

X
k (0, . . . , 0) to p

X
k (t1− 1, . . . , tm− 1), we use Eq. (4.6) to

compute their values directly without storing any of these values in a table.

Then, without storing all of the b(X, Y ) values into a table, we have the third algorithm for computing all pXk (nX ).

Algorithm 3 for computing all pXk (nX )

1: Same as the first step in Algorithm 1.
2: Same as the third step in Algorithm 2. But since we did not store all the b(X, Y ) values into a look-up table, we need to
use Eq. (4.2) to calculate the b(X, Y ) value for each Y ⊆ X .

Finally, without storing all of the a(X) values into a table, we have the fourth algorithm for computing all pXk (nX ).

Algorithm 4 for computing all pXk (nX )

1: Same as the third step in Algorithm 2. But since we did not store all the a(X) and b(X, Y ) values into the look-up tables,
we need to calculate them on the fly.

With these algorithms for computing all pXk (nX ), we can calculate nk(X) and then ck(F). We analyze in the following the
time and space complexities for calculating ck(F) through using these four algorithms for computing all pXk (nX ).

4.5. Time and space complexities for calculating ck(F)

Theorem 4.3. By using Algorithm 1 for computing all pXk (nX ), ck(F) can be computed in O
∗((2t)n) time and O∗((t + 1)n) space.

Proof. The first step of Algorithm 1 uses O∗(2n) time and O∗(2n) space. For the second step, according to Lemma 4.2,
computing all b(X, Y ) takes time O(4n). Obviously there are

∑n
m=0 C

m
n 2
m
= 3n b(X, Y ), so storing all b(X, Y ) in a look-

up table takes O∗(3n) space.
In the ‘For’ loop (step 3 to step 5), we calculate all pXq (nX ) from q = 2 to q = k and store all these p

X
q (nX ) values in a

look-up table. So according to Eq. (4.6), for each pXq (nX ), since all the b(X, Y ) values have been stored and so have all the
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pXq−1(nX ) values, the time to compute p
X
q (nX ) is

∑r
j=0 C

j
r = 2r where r is the number of positive integers in the set nX . So in

order to calculate the total time for calculating all pXq (nX ), we just need to count how many p
X
q (nX )we need to compute.

Since we know the number of positive integers in the set nX is r , for each q where 2 ≤ q ≤ k, the
number of pXq (nX ) we need to compute equals

∏r
i=1min(q, ti − 1), i.e., those p

X
q (nX ) from p

X
q (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
m−r

) to

pXq (min(q, t1 − 1), . . . ,min(q, tr − 1)︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
m−r

).

So if q ≤ min(TX )−1 ≤ t−1, the number of pXq (nX )we need to compute is q
r , i.e., all pXq (nX ) from p

X
q (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
m−r

)

to pXq (q, . . . , q︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
m−r

). Similarly, if t − 1 < q ≤ k, the number of pXq (nX )we need to compute equals
∏r
i=1(ti − 1)which

is less than (t− 1)r , i.e., all pXq (nX ) from p
X
q (1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
m−r

) to pXq (t1 − 1, . . . , tr − 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
m−r

). Finally, if min(TX ) ≤ q ≤

max(TX )− 1 ≤ t − 1, the number of pXq (nX )we need to compute is at most q
r .

From the above analyses, for a given nX where the number of positive integers equals r and for all 2 ≤ q ≤ k, the total
number of pXq (nX )we have computed is at most:

t−1∑
q=2

qr + (k− t + 1) · (t − 1)r . (4.7)

As mentioned earlier in this proof, since the time for computing each pXq (nX ) is 2
r , the total time for computing all these

pXq (nX ) is at most

2r ·

(
t−1∑
q=2

qr + (k− t + 1) · (t − 1)r
)

.

Then for all nX where r , the number of positive integers in each of them, varies from 0 tom, the total time for computing
all pXq (nX ) is at most:

m∑
r=0

C rm

(
2r ·

(
t−1∑
q=2

qr + (k− t + 1) · (t − 1)r
))
=

t−1∑
q=2

(2q+ 1)m + (k− t + 1) · (2t − 1)m.

Nowaccording to Eq. (4.1)which is for computing nk(X), the total time for computing nk(X) is less than
∑t−1
q=2 (2q+ 1)m+

(k− t + 1) · (2t − 1)m + tm, where the last term tm accounts for at most tm number of additions of pXk (nX ) to obtain nk(X).
Finally, according to Eq. (3.2) which is for calculating ck(F), the time for computing ck(F) is at most:

n∑
m=0

Cmn

(
t−1∑
q=2

(2q+ 1)m + (k− t + 1) · (2t − 1)m + tm
)
=

t−2∑
q=2

(2q+ 2)n + (k− t + 2) · (2t)n + (t + 1)n.

Now according to the following helping lemma, Lemma 4.4,
t−2∑
q=2

(2q+ 2)n + (k− t + 2) · (2t)n + (t + 1)n = O((t − 1) · (2t − 2)n)+ (k− t + 2) · (2t)n + (t + 1)n

= O∗((2t)n).

Lemma 4.4. For any positive integer s, we have

(s+ 1) · (s/2)n ≤
s∑
i=1

in ≤ (s+ 1) · sn/2.

Proof. First we define a function f (x) = xn + (s − x)n, where 0 ≤ x ≤ s. By computing the second derivative of f (x), we
know that f (x) is a convex function. Thus it achieves the largest value at the boundaries of the x values, which are either
x = 0 or x = s. By computing the first derivative of f (x), we find that it achieves its smallest value at x = s/2. So we
have 21−nsn ≤ f (x) ≤ sn for all 0 ≤ x ≤ s. Then by replacing x with all its integer values from 0 to s, and summing these
inequalities together, we obtain the result. This finishes the proof. �

After proving the time complexity for calculating ck(F), we now turn to the space complexity. This is equivalent to
finding out the total interim values we have stored in the look-up tables. We know already the total spaces for storing
all a(X) and b(X, Y ) values are O∗(3n), and now we only need to know the total number of pXq (nX ) we have stored in the
table. As given in Eq. (4.7), for a given nX and for all 2 ≤ q ≤ k, the total number of pXq (nX ) we have computed is at most
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q=2 q
r
+ (k− t + 1) · (t − 1)r . Then for all nX , the total number of pXq (nX )we have stored is at most:
m∑
r=0

C rm

(
t−1∑
q=2

qr + (k− t + 1) · (t − 1)r
)
=

t−2∑
q=2

(q+ 1)m + (k− t + 2) · tm.

Finally, for all X ⊆ N , the total number of pXq (nX )we have stored is at most:
n∑
m=0

Cmn

(
t−2∑
q=2

(q+ 1)m + (k− t + 2) · tm
)
=

t−2∑
q=2

(q+ 2)n + (k− t + 2) · (t + 1)n.

Again, according to Lemma 4.4, we have:
t−2∑
q=2

(q+ 2)n + (k− t + 2) · (t + 1)n = O(tn+1 + (k− t + 2) · (t + 1)n) = O∗((t + 1)n).

Since t ≥ 2, all the time and spaces consumed in the first and the second step of Algorithm 1 can be subsumed in O∗((2t)n)
and O∗((t + 1)n), respectively. This finishes the proof of Theorem 4.3. �

Next, we analyze the time and space complexities for calculating ck(F) by using Algorithm 2.
Theorem 4.5. By using Algorithm 2 for computing all pXk (nX ), ck(F) can be computed in O

∗((2k + 1)n) time and O∗(3n) space.

Proof. First, for computing all pXk (nX ), Algorithm 2 chooses to compute each p
X
k (nX ) using the recursive function in Eq. (4.6).

According to this Equation, for some X ⊆ N where |X | = m, we know that each pXq (nX ) where 1 ≤ q < k can be called
by at most 2m number of pXq+1(nX ). From this observation we conclude that after each p

X
q (nX ) has been called by at most 2

m

number of pXq+1(nX ), all the p
X
q+1(nX ) values have been calculated. So in order to calculate the total time for calculating all

pXq+1(nX ) (represented as
∑
nX
T (pXq+1(nX ))), we have the following two steps. First, we need to compute the time for each

pXq (nX ) being called by at most 2
m number of pXq+1(nX ) (the calculating time for p

X
q (nX ) is denoted as T (p

X
q (nX ))). According

to Eq. (4.6), this needs to include the total time for computing b(X, Z) for all Z ⊆ Y ⊆ X (represented as
∑
Z T (b(X, Z))) and

the 2m number of product times between b(X, Z) and pXq (nX + 1
Z ). Second, by summing the calculating times in the first

step for all pXq (nX )we can obtain the upper bound for
∑
nX
T (pXq+1(nX )). Thus we have the following inequality.∑

nX

T (pXq+1(nX )) ≤
∑
nX

(
2m · T (pXq (nX ))+

∑
Z

T (b(X, Z))+ 2m
)

. (4.8)

We first calculate
∑
Z T (b(X, Z)). Since all b(X, Y ) values have been stored in the look-up tables, each look-up takes

constant time. So we have
∑
Z T (b(X, Z)) = O(2

m). And since all pX1 (nX ) values are equivalent to the corresponding b(X, Y )
values, we have

∑
nX
T (pX1 (nX )) =

∑
Z T (b(X, Z)) = O(2

m). Note that, similar to the proof for Theorem 4.3, when 1 ≤ q < t ,
there are (q+1)m pXq (nX ); when t ≤ q ≤ k, there are t

m pXq (nX ). From this observation, by repeatedly using Inequality (4.8),
we can obtain the upper bound for the total time for computing all pXk (nX ) in terms of the following inequality.∑

nX

T (pXk (nX )) ≤ 3 · 2
km
+ 2

t−1∑
i=2

(2(k−i)m · (i+ 1)m)+ 2
k−1∑
i=t

(tm · 2(k−i)m) = O∗(2km). (4.9)

Now similar to the proof for Theorem4.3, according to Eq. (4.1)which is for computing nk(X), the total time for computing
nk(X) equals O∗(2km). Then finally, according to Eq. (3.2) which is for computing ck(F), the time for computing ck(F) equals∑n
m=0 C

m
n (O∗(2km)) = O∗((2k + 1)n).

For the space complexity, as have been shown in the beginning of the proof of Theorem 4.3, the spaces we need to store
all the a(X) values and b(X, Y ) values are O∗(2n) and O∗(3n), respectively. So the total space complexity is O∗(3n). This ends
the proof of Theorem 4.5. �

Remark 2. The time complexity given in Theorem 4.5 is a loose upper bound especially for t � k ≤ tn. The reason is that,
in our time complexity analysis, we have assumed that each pXq (nX ) is called by 2

m number of pXq+1(nX ). However, this is not
true for every pXq (nX ). For example, for some q ≥ t − 1, p

X
q (t − 1, . . . , t − 1) can only be called by one p

X
q+1(nX ) which is

pXq+1(t − 1, . . . , t − 1). For all t − 1 ≤ q < k, this counting error is present in each call of pXq (nX ) for calculating p
X
q+1(nX ).

So the time complexity analysis given in the proof for Theorem 4.5 is tighter for smaller k values than for larger k values.
Currently we cannot come up with a tighter time upper bound analysis for Algorithm 2. Since we will also use Inequality
(4.8) for analyzing the time complexities of Algorithms 3 and 4, this remark can also be applied to Theorems 4.6 and 4.7.
Theorem 4.6. By using Algorithm 3 for computing all pXk (nX ), ck(F) can be computed in O

∗((3 · 2k−1 + 1)n) time and O∗(2n)
space.
Proof. The only difference between Algorithms 2 and 3 is that we do not store all the b(X, Y ) values in a look-up table
in the latter. This will affect the time for computing

∑
nX
T (pXq (nX )) including the initial

∑
nX
T (pX1 (nX )) and the time for
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computing
∑
Z T (b(X, Z)). Now according to Eq. (4.2) which is for computing b(X, Z), since all a(X) values have been stored

in the look-up table (c.f. step 1 of Algorithm 3), we know that the time for computing b(X, Z) is equal to 2|Z |. From this we
know that the total time for computing all b(X, Z)where Z ⊆ X is equal toO(

∑m
i=0 C

i
m2
i) = O(3m). In addition, asmentioned

in the proof for Theorem 4.5, we have
∑
nX
T (pX1 (nX )) =

∑
Z T (b(X, Z)) = O(3

m). Now by repeatedly using Inequality (4.8),
we know that the total time for computing all pXk (nX ) which is represented as

∑
nX
T (pXk (nX )) can be calculated from the

following inequality.∑
nX

T (pXk (nX )) ≤
t∑
i=1

(3m · 2(k−i)m · im)+

k∑
i=t+1

(3m · 2(k−i)m · tm)+

t−1∑
i=1

(2(k−i)m · (i+ 1)m)+

k−1∑
i=t

(2(k−i)m · tm)

= O∗((3 · 2k−1)m). (4.10)

According to Inequality (4.10),we know that the total time for computingnk(X) is less thanO∗((3·2k−1)m). Then according
to Eq. (3.2), we know that the time for computing ck(F) is at most

∑n
m=0 C

m
n (O∗((3 · 2k−1)m)) = O∗((3 · 2k−1 + 1)n).

For the space complexity, since we only store all the a(X) values in the look-up table, the total space used is also O∗(2n).
This ends the proof of Theorem 4.6. �

Theorem 4.7. By using Algorithm 4 for computing all pXk (nX ), ck(F) can be computed in O
∗((2k+1 + 2)n) time and polynomial

space.

Proof. The only difference between Algorithms 3 and 4 is that we did not store all the a(X) values in a look-up table in
the latter. Similarly, this will affect the time for computing

∑
nX
T (pXq (nX )) and the time for computing

∑
Z T (b(X, Z)). Now

according to Eq. (4.2) which is for computing b(X, Z), we know that the time for computing b(X, Z) is equal to O∗(3|Z | ·2n−m)
(c.f. Eq. (4.3)). So for all Z ⊆ X ,

∑
Z T (b(X, Z)) = O

∗(
∑m
i=0 C

i
m(3i · 2n−m)) = O∗(2n+m). Similar to the proof of Theorem 4.5,

we have
∑
nX
T (pX1 (nX )) =

∑
Z T (b(X, Z)) = O

∗(2n+m).
From the above analysis, by repeatedly using Inequality (4.8), we can compute the total time for calculating all pXk (nX )

through the following inequality.∑
nX

T (pXk (nX )) ≤
t∑
i=1

(O∗(2n+m) · 2(k−i)m · im)+

k∑
i=t+1

(O∗(2n+m) · 2(k−i)m · tm)

+

t−1∑
i=1

(2(k−i)m · (i+ 1)m)+

k−1∑
i=t

(2(k−i)m · tm)

= O∗(2n+m · 2(k−1)m). (4.11)

Now according to Inequality (4.11), the total time for computing nk(X) is less than O∗(2n+m · 2(k−1)m). Then finally the
time for computing ck(F) is less than

n∑
m=0

Cmn (O∗(2n+m · 2(k−1)m)) = O∗((2k+1 + 2)n).

For the space complexity, since we did not store all the a(X), b(X, Y ) and pXq (nX ) values in the look-up tables, the total
space used is polynomial. This completes the proof of Theorem 4.7. �

5. A constructive algorithm for the set multi-covering problem

Although we have computed the minimum number of sets that satisfy the coverage requirement, we have not really
constructed these sets. In this section, we present an algorithm called ESMC for picking the minimum number of sets such
that each element in the universe is covered by at least the required number of times as specified in the integral coverage
requirement set. Before giving this constructive algorithm, we need to define two basic elements pair operations.

5.1. Two basic elements pair operations

We define two kinds of elements pair operations over a series of sets. One is called elements pair separation, which is to
divide a set into two sets such that any pair of elements in the original set will fall into two different sets; the other is called
elements pair coalition, which is to merge a pair of elements in the same set into a single element. Their formal definitions
are given below.

Elements pair separation: For any set s = {a, b, x1, . . . , xm} in F which covers a pair of elements a and b, we replace the
set s by separating the two elements into two different sets sa = {a, x1, . . . , xm} and sb = {b, x1, . . . , xm}.

Elements pair coalition: For any set s = {a, b, x1, . . . , xm} in F which covers a pair of elements a and b, we replace the
set swith the set sab = {ab, x1, . . . , xm}where the two elements a and b are merged into a new single element ab.
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5.2. The constructive algorithm for the set multi-covering problem

We now give a constructive algorithm for finding the minimum number of sets in F that satisfying the integral coverage
requirement set T . This algorithm is based on finding the minimum k value such that the value of ck(F) is greater than zero.

ESMC: Exact Set Multi-Cover Algorithm
Input: A family F of subsets over the universe N ; a coverage requirement set T which states the integral coverage
requirement for each element in N .
Output: The minimum number of sets from F to satisfy the requirement T .
1: Set Fbak = F .
2: Calculate the minimum value of k such that ck(F) > 0.
3: Pick any element a in the universe N .
4: Find all the elements {x1, . . . , xm} in N that appear with a in some set in F .
5: Set F0 = F .
6: For i = 1 tom do:
7: F = F0.
8: For the pair of elements (a, xi), we apply the Elements Pair Separation operation over the set F to generate a new set
called Fi.
9: Calculate the value of ck(Fi).
10: End For
11: If all of the ck(Fi) values where 0 ≤ i ≤ m are greater than zero, we can deduce that there exists a set in the optimal
coveringwhich only covers the element a since otherwise theremust exist some xi whose separationwith the element a can
make ck(Fi) ≤ 0. So we just pick this set in F which covers a and contains the least number of elements. We then decrement
the value of k by 1 and update the coverage requirement set T , i.e., for all elements xi in the picked set we decrement each
of the corresponding ti values by 1. Also if any ti ≤ 0 we remove the element i in the universe set N.
12: Else we pick any i such that ck(Fi) ≤ 0. Then for the pair of elements {a, xi}, we apply the Elements Pair Coalition
operation over the set F . Note that the element a has become a new single element (axi).
13: Repeat step 4 to step 12 until we have picked a set from F .
14: Set F = Fbak and we repeat step 3 to step 13 until k = 0.

5.3. Correctness analysis

First, according to step 2, we know that the value of k we choose guarantees that we only use the minimum number of
sets to satisfy the coverage requirement. Second, according to step 11, we know that, when we pick a set from F in each
step, we can guarantee that the picked set must exist in some optimal legal (k, T ) covering sets. From this we also know
that, when we pick this set, there must exist a legal (k−1, T ′) cover where T ′ is the updated coverage requirement set after
picking a subset from F . From the above analysis, we can conclude that we do pick the minimum number of sets from F that
satisfies the coverage requirement set T .

5.4. Time and space complexity analyses

The time of the ESMC algorithm can be divided into two parts. The first part is due to step 2, which is to calculate the
minimum k value for a legal (k, T ) cover. By using binary search, since t ≤ k ≤ tn, its time corresponds to O(log(tn))
calculations of ck(F) (c.f. Section 3.2). The second part is due to steps 4 to 12 of the algorithm which is to pick a subset from
F . We can easily see that it takes O(n2) calculations of ck(F). Since we need to pick k subsets, we need O(kn2) evaluations of
ck(F) in total. So the overall time complexity is dependent on the time complexity for computing ck(F). Now according to
Theorem 4.3, we have the following corollary.
Corollary 5.1. By using Algorithm 1 for computing all pXk (nX ), the ESMC algorithm takes O

∗((2t)n) time and O∗((t + 1)n) space
where t is the maximum integer in the coverage requirement set T .
Similarly, according to Theorems 4.5–4.7, we can get the corresponding time and space complexities for the ESMC

algorithm. But since the first part of the ESMC algorithm needs to test different k values for finding the minimum k value to
make a legal (k, T ) cover, the time consumed in this part could be very large depending on which k values we have tested.
But since t ≤ k ≤ tn, we have the following Corollary 5.2 which corresponds to Theorem 4.7. By employing Theorems 4.5
and 4.6 we can obtain similar results as Corollary 5.2 which we omit here.

Corollary 5.2. By using Algorithm 4 for computing all pXk (nX ), the ESMC algorithm takes O
∗(2O(tn

2)) time and polynomial space.

6. Conclusion

In this paper, we have generalized the inclusion–exclusion based exact algorithm for the set covering problem to the set
multi-covering problem. We have presented a family of exact algorithms to solve the set multi-covering problem through
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Table A.1
Calculating n2(X)for all X ⊆ N .

X n2(X)

∅ p∅2(∅)

{1} p{1}2 (0)+ p{1}2 (1)

{2} p{2}2 (0)

{3} p{3}2 (0)

{1,2} p{1,2}2 (0, 0)+ p{1,2}2 (1, 0)

{1,3} p{1,3}2 (0, 0)+ p{1,3}2 (1, 0)

{2,3} p{2,3}2 (0, 0)

{1,2,3} p{1,2,3}2 (0, 0, 0)+ p{1,2,3}2 (1, 0, 0)

different tradeoffs between the time and space complexities. We have shown that by usingmore space, the time complexity
can be significantly reduced.
Although the simple greedy strategy applied to the set covering problem can be applied to the setmulti-covering problem

to yield the same approximation ratioO(log n), our fastest exact algorithmwhich takesO∗((2t)n) time andO∗((t+1)n) space
consumes much more time and space than the currently fastest exact algorithm for the set covering problem which takes
O∗(2n) time andO∗(2n) space [2]. In addition, ifwe restrict to polynomial space, the time consumed for the setmulti-covering
problem is much longer than its set covering counterpart which takes O∗(3n) time [2].
The following are some possible directions for designing and analyzing more efficient exact algorithms for the set multi-

covering problem. First, asmentioned in Remark 2, the time complexity analyses for the Algorithms 2, 3 and 4 for computing
all the pXk (nX ) values are not tight, somuch tighter time complexity analyses for the three algorithmswill be needed. Second,
it is possible to extend our algorithms to other generalized covering problems, such as multi-set multi-cover [10]. Third, as
shown in [4,9], some techniques in information theory can help analyze exact algorithms that need counting steps. So it will
be interesting to apply this kind of technique to those generalized set covering scenarios. Finally, like what was done by the
authors in [6], it might be possible to apply our algorithm to wireless scheduling problems which have drawn increasing
attention in the wireless networking community in recent years.
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Appendix

In this appendix,we give a very simple example to showhowwe calculate the value of ck(F)and how the ESMC algorithm
works for the given example.
Suppose the universe N = {1, 2, 3}, the family of subsets over N is F = {{1, 2}, {1, 3}, {2, 3}} and the coverage

requirement set T = {2, 1, 1}. Now we first find the minimum k value to make a legal (k, T ) cover. This is equivalent to
calculating the minimum k value such that ck(F) > 0. Suppose we first test the case where k = 2.
According to Eq. (3.2), we have c2(F) =

∑
X⊆N (−1)|X | · n2(X). Now due to Eq. (4.1), we have n2(X) =∑

0≤ni≤ti−1
1≤i≤|X |

pX2 (n1, . . . , n|X |). Then based on these equationswehave Table A.1which is to calculate n2(X) values for allX ⊆ N .

The next step is to compute all the pX2 (n1, . . . , n|X |) values on the right side of Table A.1. By combining Eq. (4.6) which
computes pXq (n1, . . . , n|X |) and Eq. (4.2) which computes b(X, Y ), we have Table A.2.
Having calculated all the n2(X) values which are shown on the right side of Table A.2, we can obtain c2(F) =∑
X⊆N (−1)|X | · n2(X) = 9 − 5 − 1 − 1 + 0 + 0 + 0 − 0 = 2 > 0, which means that there are two 2-tuples that

can satisfy the coverage requirement. Since the maximum integer in the coverage requirement set T is 2, we know the
minimum k value we need to pick is 2. Actually, by calculating the c1(F) value, which is c1(F) =

∑
X⊆N (−1)|X | · n1(X) =

3− 3− 1− 1+ 0+ 0+ 0− 0 = −2 < 0, we can also conclude that the minimum k value is 2 since picking one set from F
does not meet the coverage requirement.
Now according to the ESMC algorithm, we briefly show in the following how to pick the two sets that can satisfy the

coverage requirement T .
First, according to step 3, we pick the element 1 in the universe N . Then we can find the elements {x1 = 2, x2 = 3}that

can appear with 1 in some subsets in F . Now according to step 6 to step 10, we obtain F1 = {{1}, {2}, {1, 3}, {2, 3}} and
F2 = {{1, 2}, {1}, {3}, {2, 3}}. From this we can calculate c2(F1) ≤ 0 and c2(F2) ≤ 0. Then according to step 12, we choose
to merge the elements pair (1, 2). Now since the new single element (12)does not appear with any other elements in the
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Table A.2
Calculating pX2 (n1, . . . , n|X |) for all X ⊆ N .

X n2(X)

∅ p∅2(∅) = b(∅,∅) · p
∅

1(∅) = a(∅) · a(∅) = 3 ∗ 3 = 9.

{1}

(1) : p{1}2 (0)= b({1},∅) · p{1}1 (0)
= a({1}) · b({1},∅)
= a({1}) · a({1})
= 1 ∗ 1 = 1;

(2) : p{1}2 (1)= b({1},∅) · p{1}1 (1)+ b({1}, {1}) · p{1}1 (0)
= a({1}) · b({1}, {1})+ b({1}, {1}) · b({1},∅)
= a({1}) · [a(∅)− a({1})] + [a(∅)− a({1})] · a({1})
= 1 ∗ (3− 1)+ (3− 1) ∗ 1 = 4;

(3) : p{1}2 (0)+ p{1}2 (1) = 1+ 4 = 5.

{2}

p{2}2 (0)= b({2},∅) · p{2}1 (0)
= a({2}) · b({2},∅)
= a({2}) · a({2})
= 1 ∗ 1 = 1.

{3}

p{3}2 (0)= b({3},∅) · p{3}1 (0)
= a({3}) · b({3},∅)
= a({3}) · a({3})
= 1 ∗ 1 = 1.

{1,2}

(1) : p{1,2}2 (0, 0)= b({1, 2},∅) · p{1,2}1 (0, 0)
= a({1, 2}) · b({1, 2},∅)
= a({1, 2}) · a({1, 2})
= 0 ∗ 0 = 0;

(2) : p{1,2}2 (1, 0)= b({1, 2},∅) · p{1,2}1 (1, 0)+ b({1, 2}, {1}) · p{1,2}1 (0, 0)
= a({1, 2}) · b({1, 2}, {1})+ b({1, 2}, {1}) · b({1, 2},∅)
= a({1, 2}) · [a({2})− a({1} ∪ {2})] + [a({2})− a({1} ∪ {2})] · a({1, 2})
= 0 ∗ (1− 0)+ (1− 0) ∗ 0 = 0;

(3) : p{1,2}2 (0, 0)+ p{1,2}2 (1, 0) = 0+ 0 = 0 .

{1,3} (1) : p{1,3}2 (0, 0)= a({1, 3}) · a({1, 3}) = 0 ∗ 0 = 0;
(2) : p{1,3}2 (1, 0)= b({1, 3},∅) · p{1,3}1 (1, 0)+ b({1, 3}, {1}) · p{1,3}1 (0, 0)

= a({1, 3}) · b({1, 3}, {1})+ b({1, 3}, {1}) · b({1, 3},∅)
= 0 ∗ 1+ 1 ∗ 0 = 0;

(3) : p{1,3}2 (0, 0)+ p{1,3}2 (1, 0)= 0+ 0 = 0.

{2,3} p{2,3}2 (0, 0) = a({2, 3}) · a({2, 3}) = 0 ∗ 0 = 0.

{1,2,3} (1) : p{1,2,3}2 (0, 0, 0)= a({1, 2, 3}) · a({1, 2, 3}) = 0 ∗ 0 = 0;
(2) : p{1,2,3}2 (1, 0, 0)= b({1, 2, 3},∅) · p{1,2,3}1 (1, 0, 0)+ b({1, 2, 3}, {1}) · p{1,2,3}1 (0, 0, 0)

= a({1, 2, 3}) · b({1, 2, 3}, {1})+ b({1, 2, 3}, {1}) · a({1, 2, 3})
= 0 ∗ 0+ 0 ∗ 0 = 0;

(3) : p{1,2,3}2 (0, 0, 0)+ p{1,2,3}2 (1, 0, 0) = 0+ 0 = 0 .

set F , we have m = 0. Then since c2(F0) = c2(F) = 2 > 0, according to step 11, we just pick the first subset in F which is
{1, 2}. Similarly, we can pick the second subset in F which is {2, 3}. This finishes the execution of the ESMC algorithm.
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