
Theoretical Computer Science 410 (2009) 4448–4456

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the complexity of 2D discrete fixed point problem
Xi Chen a, Xiaotie Deng b,∗
a Department of Computer Science, Tsinghua University, Beijing, PR China
b Department of Computer Science, City University of Hong Kong, Hong Kong SAR, PR China

a b s t r a c t

We study a computational complexity version of the 2D Sperner problem, which states
that any three coloring of vertices of a triangulated triangle, satisfying some boundary
conditions, will have a trichromatic triangle. In introducing a complexity class PPAD,
Papadimitriou [C.H. Papadimitriou, On graph-theoretic lemmata and complexity classes,
in: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, 1990,
794–801] proved that its 3D analogue is PPAD-complete about fifteen years ago. The
complexity of 2D-SPERNER itself has remained open since then.
We settle this open problem with a PPAD-completeness proof. The result also allows

us to derive the computational complexity characterization of a discrete version of the
2D Brouwer fixed point problem, improving a recent result of Daskalakis, Goldberg
and Papadimitriou [C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, The complexity of
computing a Nash equilibrium, in: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), 2006]. Those hardness results for the simplest version of those
problems provide very useful tools to the study of other important problems in the PPAD
class.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The classical lemmaof Sperner [10], characterizing the combinatorial nature of Brouwer’s fixed point theorem, states that
any admissible 3-coloring of any triangulation of a triangle has a trichromatic triangle. Naturally, it defines a search problem
2D-SPERNER of finding such a triangle in an admissible 3-coloring for an exponential size triangulation, typical of problems
in PPAD, a complexity class introduced by Papadimitriou to capture mathematical structures with the path-following proof
technique [9]. Many important problems, such as the Brouwer fixed point, the search versions of Smith’s theorem, as well
as the Borsuk–Ulam theorem, belong to this class [9].
The computational complexity issue for those problems is of interest only when the search space is exponential in the

input parameter. For problem 2D-SPERNER as an example, with an input parameter n, we consider a right angled triangle
with a side length N = 2n. Its triangulation is into right angled triangles of side length one (see Fig. 1 for an example). There
is a (3-coloring) function which, given any vertex in the triangulation, outputs its color in the coloring. The color function is
guaranteed to be admissible and is given by a polynomial-time Turing machine. The problem is to find a triangle that has all
three colors on its vertices. The 3D analogue 3D-SPERNER is the first natural problem proved to be complete in PPAD [9].
Whether the 2D case is complete or notwas left as an open problem. Since then, progress has beenmade toward the solution
of this problem: In [6], Grigni defined a non-oriented version of 3D-SPERNER and proved that it is PPA-complete. Friedl,
Ivanyos, Santha, and Verhoeven showed [5,4] that the locally 2D case of Sperner’s problem is complete in PPAD. Despite
those efforts, the original 2D Sperner’s problem has remained elusive.

∗ Corresponding author.
E-mail addresses: csxichen@gmail.com (X. Chen), deng@cs.cityu.edu.hk (X. Deng).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.07.052

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:csxichen@gmail.com
mailto:deng@cs.cityu.edu.hk
http://dx.doi.org/10.1016/j.tcs.2009.07.052

X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456 4449

In this paper, we prove that 2D-SPERNER is PPAD-complete and thus settle the open problem proposed by
Papadimitriou [8] fifteen years ago. Furthermore, this result also allows us to derive the PPAD-completeness proof of a
discrete version of the 2D fixed point problem (2D-BROUWER). Our study is motivated by the complexity results in [1]
and [7] for finding a discrete Brouwer fixed point in d-dimensional space with a function oracle. The combinatorial structure
there is similar to the one here. It was proven in the oraclemodel that, for any d ≥ 2, the fixed point problemunconditionally
requires an exponential number (in consistency with d) of queries. Although the computational models in these two
problems are different,wemoved into the direction of a hardness proof, expecting that the complexity hierarchy in Sperner’s
problem may have a similar structure with respect to the dimension.
The class PPAD is the set of problems that are polynomial-time reducible to the problem called LEAFD [9]. It considers a

directed graph of an exponential number, in the input parameter n, of vertices, numbered from 0 to N − 1 where N = 2n.
Each vertex has at most one incoming edge and at most one outgoing edge. There is a distinguished vertex, 0, which has
no incoming edge and has one outgoing edge. The required output is another vertex for which the sum of its incoming
degree and outgoing degree is one. To access the directed graph, we have a polynomial-time Turing machine which, given
any vertex as an input, outputs its possible predecessor and successor. In examination into the PPAD-completeness proof of
problem3D-SPERNER, we found that themain idea is to embed complete graphs in 3D search spaces [9]. Such an embedding,
obviously impossible in the plane, would allow us to transform any Turing machine which generates a directed graph in
LEAFD to a Turing machine which produces an admissible coloring on a 3D search space of 3D-SPERNER.
We take a different approach for the proof which can be clearly divided into two steps. First, we define a new search

problem called RLEAFD (restricted-LEAFD). While the input graph has the same property as those in problem LEAFD (that
is, both the incoming degree and outgoing degree of every vertex are atmost one), it is guaranteed to be a sub-graph of some
predefined planar grid graph. Note that even though any input to LEAFD is planar, it is not easy to do it within polynomial
time. The interesting result obtained is that, even with such a strong restriction, the problem is still complete in PPAD. In
the second step, we reduce RLEAFD to 2D-SPERNER and prove that the latter is also complete. The main idea represents an
improved understanding of PPAD reductions and may be of general applicability in related problems.
The completeness result of 2D-SPERNER allows us to deduce that a discrete version of the 2D Brouwer fixed point

problem is also PPAD-complete. In the problem, we consider a function g on a 2D grid such that, for every point p in the grid,
g(p) is equal to p plus an incremental vectorwith only three possible values: (1, 0), (0, 1) and (−1,−1). A fixed point is a set
of four corners of an orthogonal unit square such that incremental vectors at those point include all the three possibilities,
an analogue to that of the 3D case introduced in [3]. Such a definition of fixed points, which is different from the original
Brouwer fixed point but is related to Sperner’s lemma, has a natural connection with approximation [7], and is consistent in
spirit with the recent algorithmic studies on discrete fixed points [1]. On a first look at the problem, its natural link to the 2D
Sperner problem is only in one direction. We overcome the difficulty in the other direction to show the reduction is indeed
complete.
The PPAD-completeness of both 2D-SPERNER and 2D-BROUWER, in their simplicities, can serve as better benchmarks

as well as provide the much needed intuition to derive completeness proofs for complicated problems, such as in the
subsequent result of non-approximability (and also the smoothed complexity) of the two-player game Nash Equilibrium
problem [2]. In particular, an important key lemma in the non-approximability result is a PPAD-completeness proof of a
discrete fixed point problem on high-dimensional hypergrids with a constant side length, which can be most conveniently
derived from the completeness of the 2D discrete fixed point problem.

2. Preliminaries

2.1. TFNP and PPAD

Definition 1 (TFNP). Let R ⊂ {0, 1}∗ × {0, 1}∗ be a polynomial-time computable, polynomially balanced relation (that is,
there exists a polynomial p(n) such that for every pair (x, y) ∈ R, |y| ≤ p(|x|)). The NP search problem QR specified by R is
this: given an input x ∈ {0, 1}∗, return a string y ∈ {0, 1}∗ such that (x, y) ∈ R, if such a y exists, and return the string ‘‘no’’
otherwise.
An NP search problem QR is said to be total if for every string x ∈ {0, 1}∗, there exists a y ∈ {0, 1}∗ such that (x, y) ∈ R.

We use TFNP to denote the class of total NP search problems.
AnNP searchproblemQR1 ∈ TFNP is polynomial-time reducible to problemQR2 ∈ TFNP if there exists a pair of polynomial-

time computable functions (f , g) such that, for every input x of QR1 , if y satisfies (f (x), y) ∈ R2, then (x, g(y)) ∈ R1. We now
define a total NP search problem called LEAFD [9].
Definition 2 (LEAFD). The input of the problem is a pair (M, 0k) where M is the description of a polynomial-time Turing
machine which satisfies: (1) for any v ∈ {0, 1}k, M(v) is an ordered pair (u1, u2) where u1, u2 ∈ {0, 1}k ∪ {no}; (2)
M(0k) = (no, 1k) and the first component of M(1k) is 0k. M generates a directed graph G = (V , E) where V = {0, 1}k.
An edge uv appears in E iff v is the second component ofM(u) and u is the first component ofM(v).
The output is a directed leaf (with in-degree+ out-degree = 1) other than 0k.

PPAD [8] is the set of total NP search problems that are polynomial-time reducible to LEAFD. From its definition, LEAFD
is complete for PPAD.

4450 X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456

Fig. 1. The standard 7× 7 triangulation of a triangle.

Fig. 2. Summary of cases in the construction of E2n .

2.2. Definition of 2D-SPERNER

One of the most interesting problems in PPAD is 2D-SPERNER whose totality is based on Sperner’s Lemma [10]: any
admissible 3-coloring of any triangulation of a triangle has a trichromatic triangle.
In problem 2D-SPERNER, we consider the standard n × n triangulation of a triangle which is illustrated in Fig. 1. Every

vertex in the triangulation corresponds to a point in Z2. Here A0 = (0, 0), A1 = (0, n) and A2 = (n, 0) are the three vertices
of the original triangle. The vertex set Tn of the triangulation is defined as Tn = {p ∈ Z2 | p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ n}. A
3-coloring of the n× n triangulation is a function f from Tn to {0, 1, 2}. It is said to be admissible if

1. f (Ai) = i, for all 0 ≤ i ≤ 2;
2. for every point p on segment AiAj, f (p) 6= 3− i− j.

A unit size well-oriented triangle is a triple ∆ = (p0, p1, p2) where p0, p1, p2 ∈ Z2. It satisfies either p1 = p0 + e1,
p2 = p0 + e2 or p1 = p0 − e1, p1 = p0 − e2, where e1 = (0, 1) and e2 = (1, 0) are the unit vectors. In other words, the
triangle has a northwest oriented hypotenuse. We use S to denote the set of all such triangles.
From Sperner’s Lemma, we define problem 2D-SPERNER as follows.

Definition 3 (2D-SPERNER [8]). The input instance is a pair (F , 0k) where F is a polynomial-time Turing machine which
produces an admissible 3-coloring f on T2k . Here f (p) = F(p) ∈ {0, 1, 2}, for every vertex p ∈ T2k .
The output is a trichromatic triangle∆ ∈ S of coloring f .

In [8], it was shown that 2D-SPERNER is in PPAD. They also defined a 3D analogue 3D-SPERNER of 2D-SPERNER, and
proved that it is PPAD-complete. The completeness of the 2D case was left as an open problem.

3. Definition of search problem RLEAFD

Before the definition of RLEAFD, we describe a class of planar grid graphs {Gi}i≥1, where Gn = (Vn, En) and vertex set

Vn =
{
u ∈ Z2|0 ≤ u1 ≤ 3(n2 − 2), 0 ≤ u2 ≤ 3(2n− 1)

}
.

Informally speaking, Gn is a planar embedding of the complete graph Kn with vertex set {0, 1...n− 1}. For every 0 ≤ i < n,
vertex i of Kn corresponds to the vertex (0, 6i) of Gn. For every edge ij ∈ Kn, we define a path Eij from vertex (0, 6i) to (0, 6j).
To obtain the edge set En of Gn, we start from an empty graph (Vn,∅), and then add all the paths Eij. There are O(n2) vertices
in Vn, which are at the intersection of two paths added previously. Since Kn is not a planar graph when n ≥ 5, there is no
embedding which can avoid those crossing points. For each of those crossing points, we add four more edges into En.
We define En formally as follows. En can be divided into two parts: E1n and E

2
n such that En = E

1
n ∪ E

2
n and E

1
n ∩ E

2
n = ∅.

The first part E1n = ∪ij∈KnEij and path Eij is defined as follows.

X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456 4451

Fig. 3. The planar grid graph G3 .

Definition 4. Let p1, p2 ∈ Z2 be two points with the same x-coordinate or the same y-coordinate. Let u1,u2... um ∈ Z2 be
all the integral points on segment p1p2 which are labeled along the direction of p1p2. We use E(p1p2) to denote the path
which consists ofm− 1 directed edges: u1u2, u2u3, . . .um−1um.

Definition 5. For every edge ij ∈ Kn with 0 ≤ i 6= j < n, we define a path Eij as E(p1p2) ∪ E(p2p3) ∪ E(p3p4) ∪ E(p4p5),
where p1 = (0, 6i), p2 = (3(ni+ j), 6i), p3 = (3(ni+ j), 6j+ 3), p4 = (0, 6j+ 3) and p5 = (0, 6j).

One can show that, every vertex in Vn has at most 4 edges (including both incoming and outgoing edges) in E1n . Moreover,
if u has 4 edges, then 3|u1 and 3|u2. We now use {ui}1≤i≤8 to denote the eight vertices around u. For each 1 ≤ i ≤ 8,
ui = u + xi where x1 = (−1, 1), x2 = (0, 1), x3 = (1, 1), x4 = (1, 0), x5 = (1,−1), x6 = (0,−1), x7 = (−1,−1) and
x8 = (−1, 0). If u ∈ Vn has 4 edges in E1n , then it must satisfy the following two properties:

1. either edges u4u,uu8 ∈ E1n or u
8u,uu4 ∈ E1n ;

2. either edges u2u,uu6 ∈ E1n or u
6u,uu2 ∈ E1n .

Now for every vertex u ∈ Vn which has four edges in E1n , we add four more edges into En. For example, if u
4u, uu8, u2u,

uu6 ∈ E1n (that is, the last case in Fig. 2), then u4u5, u5u6, u2u1, u1u8 ∈ E2n . All the four possible cases are summarized in
Fig. 2.
An example (graph G3) is showed in Fig. 3. We can draw it in two steps. In the first step, for each ij ∈ K3, we add path Eij

into the empty graph. In the second step, we search for vertices of degree four. For each of them, 4 edges are added according
to Fig. 2. One can prove the following property of Gn.

Lemma 1. Every vertex in Gn has at most 4 edges. There is a polynomial-time Turing machine M∗ such that, for every input
instance (n,u) where u ∈ Vn, it outputs all the predecessors and successors of vertex u in graph Gn.

We use Cn to denote the set of graphs G = (Vn, E) such that E ⊂ En and for every u ∈ Vn, both of its in-degree and
out-degree are no more than one.
The new search problem RLEAFD is similar to LEAFD. The only difference is that, in RLEAFD, the directed graph G

generated by the input pair (K , 0k) always belongs to C2k . By Lemma 1, one can prove that RLEAFD ∈ PPAD.

Definition 6 (RLEAFD). The input instance is a pair (K , 0k)where K is the description of a polynomial-time Turing machine
which satisfies: (1) for every vertex u ∈ V2k , K(u) is an ordered pair (u1,u2) where u1,u2 ∈ V2k ∪ {no}; (2) K(0, 0) =
(no, (1, 0)) and the first component of K(1, 0) is (0, 0). K generates a directed graph G = (V2k , E) ∈ C2k . An edge uv appears
in E iff v is the second component of K(u), u is the first component of K(v) and edge uv ∈ E2k .
The output of the problem is a directed leaf other than (0, 0).

4. Problem RLEAFD is PPAD-Complete

In this section, we will describe a reduction from LEAFD to RLEAFD and prove the latter is also complete in PPAD.
Let G be a directed graph with vertex set {0, 1...n− 1}which satisfies that the in-degree and out-degree of every vertex

are at most one. We now build a graph C(G) ∈ Cn in two steps. An important observation here is that C(G) is not a planar
embedding of G, as the structure of G is mutated dramatically in C(G). However, it preserves the leaf nodes of G and does
not create any new leaf node. Graph C(G) is constructed as follows.

4452 X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456

Fig. 4. Graph C(G) ∈ C3 .

1. Starting from an empty graph (Vn,∅), for every ij ∈ G, add path Eij;
2. For every u ∈ Vn of degree 4, remove all the four edges which have u as an endpoint and add four edges around u using
Fig. 2.

One can check that, for each vertex in graph C(G), both of its in-degree and out-degree are no more than one, and thus,
we have C(G) ∈ Cn. For example, Fig. 4 shows C(G)where G = ({0, 1, 2}, {02, 21}). The following lemma is easy to check.
Lemma 2. Let G be a directed graphwith vertex set {0, . . . n−1}which satisfies that the in-degree and out-degree of every vertex
are at most one. For every vertex 0 ≤ k ≤ n − 1 of G, it is a directed leaf of G iff u = (0, 6k) ∈ Vn is a directed leaf of C(G). On
the other hand, if u ∈ Vn is a directed leaf of C(G), then u1 = 0 and 6|u2.
Lemma 3. Search problem RLEAFD is PPAD-complete.
Proof. Let (M, 0k) be an input instance of LEAFD and G be the directed graph specified byM . It is tedious, but not hard, to
show that one can build a Turing machine K fromM in polynomial time, such that

1. K satisfies all the conditions in Definition 6; and
2. As an input of RLEAFD, the graph generated by K is exactly C(G) ∈ C2k .

On the other hand, Lemma 2 shows that, given any directed leaf of C(G), we can locate a directed leaf of G easily. In this way,
we get a reduction from LEAFD to RLEAFD and the lemma follows. �

5. 2D-SPERNER is PPAD-Complete

In this section, we present a polynomial-time reduction from RLEAFD to 2D-SPERNER and finish the completeness proof
of 2D-SPERNER.
Let (K , 0k) be an input instance of RLEAFD and G ∈ C2k be the directed graph generated by K . Wewill build a polynomial-

time Turing machine F that defines an admissible 3-coloring on T22k+5 . Given a trichromatic triangle ∆ ∈ S of F , a directed
leaf of G can be found easily. To clarify the presentation here, we use u, v, w to denote vertices in V2k , and p, q, r to denote
vertices in T22k+5 .
To construct F , we first define a mapping F from V2k to T22k+5 . Since G ∈ C2k , its edge set can be uniquely decomposed

into a collection of paths and cycles P1, P2, . . . Pm. By using F , every Pi is mapped to a set I(Pi) ⊂ T22k+5 . Only vertices in
I(Pi) have color 0 (with several exceptions around A0). All the other vertices in T22k+5 are colored carefully with either 1 or
2. Let∆ ∈ S be a trichromatic triangle of F and p be the point in∆with color 0, then the construction of F guarantees that
F −1(p) ∈ V2k is a directed leaf of G, which is different from (0, 0).
Firstly, the mapping F from V2k to T22k+5 is defined as F (u) = p where p1 = 3u1 + 3 and p2 = 3u2 + 3. For each

uv ∈ E2k , we use I(uv) to denote the set of four vertices in T22k+5 which lie on the segment between F (u) and F (v). Let
P = u1...ut be a simple path or cycle in G2k where t > 1 (if P is a cycle, then u1 = ut), then we define I(P) = ∪t−1i=1 I(u

iui+1)
and O(P) ⊂ T22k+5 as

O(P) =
{
p ∈ T22k+5 and p /∈ I(P) | ∃ p

′
∈ I(P), ||p− p′||∞ = 1

}
.

If P is a simple path, then we can further decompose O(P) into {sP , eP} ∪ L(P) ∪ R(P). Here sP = F (u1) + (u1 − u2) and
eP = F (ut)+ (ut − ut−1). Starting from sP , we enumerate vertices in O(P) clockwise as sP , q1...qn1 , eP , r1...rn2 , then

L(P) =
{
q1, q2...qn1

}
and R(P) =

{
r1, r2...rn2

}
.

X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456 4453

Fig. 5. Behavior of turing machine F .

Fig. 6. G2 and G ∈ C2 .

If P is a simple cycle, then we decompose O(P) into L(P) ∪ R(P) where L(P) contains all the vertices on the left side of the
cycle and R(P) contains all the vertices on the right side of the cycle.
As the graph G specified by (K , 0k) belongs to C2k , we can uniquely decompose its edge set into P1, . . . Pm. For every

i : 1 ≤ i ≤ m, Pi is either a maximal path (that is, no path in G contains Pi), or a cycle in graph G. For both cases, the length
of Pi is at least 1. One can prove the following two lemmas.

Lemma 4. For all i, j : 1 ≤ i 6= j ≤ m,
(
I(Pi) ∪ O(Pi)

)
∩

(
I(Pj) ∪ O(Pj)

)
= ∅.

Lemma 5. Let (K , 0k) be an input instance of problem RLEAFD and G ∈ C2k be the directed graph specified, we can construct a
polynomial-time TM MK in polynomial time with the following properties. Given any vertex p ∈ T22k+5 , it outputs an integer t:
0 ≤ t ≤ 5. Let the unique decomposition of graph G be P1, P2...Pm, then: if ∃ i, p ∈ I(Pi), then t = 1; if ∃ i, p ∈ L(Pi), then t = 2;
if ∃ i, p ∈ R(Pi), then t = 3; if ∃ i, p = sPi , then t = 4; if ∃ i, p = ePi , then t = 5; otherwise, t = 0.

Finally, Turing machine F is described by the algorithm in Fig. 5. For example, let G ∈ C2 be the graph generated by
(K , 01), which is illustrated in Fig. 6, then Fig. 7 shows the 3-coloring F on T128. As T128 contains so many vertices, not all of
them are drawn in Fig. 7. For every omitted vertex p ∈ T128, if p1 = 0, then F(p) = 1, otherwise, F(p) = 2.
One can prove the following two properties of TM F : (1) the 3-coloring f specified by F is admissible; (2) let∆ ∈ S be a

trichromatic triangle and p be the vertex in∆with color 0, then u = F −1(p) is a directed leaf of G, which is different from
(0, 0). By these two properties, we get the following theorem.

Theorem 1. Search problem 2D-SPERNER is PPAD-complete.

4454 X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456

Fig. 7. F : black — 0, gray — 1, white — 2.

6. 2D-BROUWER is PPAD-complete

Recently, Daskalakis, Goldberg and Papadimitriou [3] proved that the problem of computing Nash equilibria in games
with four players is PPAD-complete. In the proof, they define a 3D Brouwer fixed point problem and proved it is PPAD-
complete. By reducing it to 4-Nash, they show that the latter is also complete in PPAD.
In this section, we first define a new problem 2D-BROUWERwhich is a 2D analogue of the 3D problem [3]. By reducing

2D-SPERNER to 2D-BROUWER, we prove the latter is also PPAD-complete.
For every n > 1, we let

Bn =
{
p = (p1, p2) ∈ Z2 | 0 ≤ p1 < n− 1 and 0 ≤ p2 < n− 1

}
.

The boundary of Bn is the set of points p ∈ Bn with pi ∈ {0, n − 1} for some i ∈ {1, 2}. For every p ∈ Z2, we let
Kp = {q ∈ Z2 | qi = pi or pi + 1, ∀ i ∈ {1, 2} }. A 3-coloring of Bn is a function g from Bn to {0, 1, 2}. It is said to be
valid if for every p on the boundary of Bn: if p2 = 0, then g(p) = 2; if p2 6= 0 and p1 = 0, then g(p) = 0; otherwise,
g(p) = 1.

Definition 7 (2D-BROUWER). The input instance of 2D-BROUWER is a pair (F , 0k)where F is a polynomial-time TMwhich
produces a valid 3-coloring g on B2k . Here g(p) = F(p) ∈ {0, 1, 2} for every p ∈ B2k . The output is a point p ∈ B2k such that
Kp is trichromatic, that is, Kp has all the three colors.

The reason we relate this discrete problem to Brouwer’s fixed point theorem is as follows. Let G be a continuous map
from [0, n− 1] × [0, n− 1] to itself. If G satisfies a Lipschitz condition with a large enough constant, then we can construct
a valid 3-coloring g on Bn such that:

1. For every point p ∈ Bn, g(p) only depends on G(p);
2. Once getting a point p ∈ Bn such that Kp is trichromatic, one can immediately locate an approximate fixed point ofmapG.

Details of the construction can be found in [1].
Notice that the output of 2D-BROUWER is a set Kp of four points which have all the three colors. Of course, one can

pick three vertices in Kp to form a trichromatic triangle ∆, but it’s possible that ∆ /∈ S. Recall that every triangle in S has
a northwest oriented hypotenuse. In other words, the hypotenuse of the trichromatic triangle in Kp might be northeast
oriented. As a result, 2D-BROUWER could be easier than 2D-SPERNER.
Motivated by the discussion above, we define a problem 2D-BROUWER∗ whose output is similar to 2D-SPERNER. One

can reduce 2D-SPERNER to 2D-BROUWER∗ easily and prove the latter is complete in PPAD.

X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456 4455

Fig. 8. The construction of Turing machine F ′ .

Fig. 9. F ′: c1 = F(l, k), c2 = F(l+ 1, k), c3 = F(l, k+ 1) and c4 = F(l+ 1, k+ 1).

Definition 8 (2D-BROUWER∗). The input instance is a pair (F , 0k) where F is a polynomial-time Turing machine which
generates a valid 3-coloring g on B2k . Here g(p) = F(p) ∈ {0, 1, 2} for every p ∈ B2k .
The output is a trichromatic triangle∆ ∈ S which has all the three colors.

We now give a reduction from 2D-BROUWER∗ to 2D-BROUWER.
Let (F , 0k) be an input pair of 2D-BROUWER∗, and n = 2k. In Fig. 8, we describe a new Turingmachine F ′which generates

a new 3-coloring on B3n. For 0 ≤ l, k < n, Fig. 9 shows the 3-coloring produced by F ′ on {3l, 3l+1, 3l+2, 3l+3}×{3k, 3k+
1, 3k+2, 3k+3} ⊂ B3n. Clearly, F ′ is also a polynomial-time Turingmachine, which can be constructed from F in polynomial
time. Besides, F ′ generates a valid 3-coloring on B3n. We now prove that, for every p ∈ B3n such that set Kp is trichromatic
in F ′, one can recover a trichromatic triangle∆ ∈ S in F easily.
Let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2. By examining Fig. 9, we know that either (i, j) = (0, 1) or

(i, j) = (2, 1). Furthermore,

1. if (i, j) = (0, 1), then ∆ = (p0, p1, p2) ∈ S is a trichromatic triangle in F , where p0 = (k, l), p1 = p0 + e1 and
p2 = p0 + e2;

2. if (i, j) = (2, 1), then ∆ = (p0, p1, p2) ∈ S is a trichromatic triangle in F , where p0 = (k + 1, l + 1), p1 = p0 − e1 and
p2 = p0 − e2.

Finally, we get an important corollary of Theorem 1.

Theorem 2. Search problem 2D-BROUWER is PPAD-complete.

7. Concluding remarks

All the PPAD-completeness proofs of Sperner’s problems before rely heavily on embeddings of complete graphs in
the standard subdivisions. That is, edges in the complete graph correspond to independent paths which are composed of
neighboring triangles or tetrahedrons in the standard subdivision. Such an embedding is obviously impossible in the plane,
as complete graphs with order no less than 5 are not planar. We overcome this difficulty by placing a carefully designed

4456 X. Chen, X. Deng / Theoretical Computer Science 410 (2009) 4448–4456

gadget (which looks like a switch with two states) at each intersection of two paths. While the structure of the graph is
mutated dramatically (e.g. Fig. 4), the property of a vertex being a leaf is well maintained.
An important corollary of the PPAD-completeness of 2D-SPERNER is that, the computation of discrete Brouwer fixed

points in 2D spaces (2D-BROUWER) is also PPAD-complete. Our new proof techniques may provide helpful insight into the
study of other related problems: Can we show more problems complete for PPA and PPAD? For example, is 2D-TUCKER
[9] PPAD-complete? Can we find a natural complete problem for either PPA or PPAD that does not have an explicit Turing
machine in the input? For example, is SMITH [9] PPA-complete? Finally and most importantly, what is the relationship
between complexity classes PPA, PPAD and PPADS?

Acknowledgements

The first author’s work is supported by the National Natural Science Foundation of China (Grant 60553001), and the
National Basic Research Program of China (Grant 2007CB807900, 2007CB807901). The second author’s work is supported
by an SRG grant (No. 7001838) of City University of Hong Kong.

References

[1] X. Chen, X. Deng, On algorithms for discrete and approximate Brouwer fixed points, in: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, STOC, 2005, pp. 323–330.

[2] X. Chen, X. Deng, S.-H. Teng, Computing Nash equilibria: Approximation and smoothed complexity, in: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, FOCS, 2006.

[3] C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, The complexity of computing a Nash equilibrium, in: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, STOC, 2006.

[4] K. Friedl, G. Ivanyos, M. Santha, F. Verhoeven, On the black-box complexity of Sperner’s lemma, in: Proceedings of the 15th International Symposium
on Fundamentals of Computation Theory, 2005, pp. 245–257.

[5] K. Friedl, G. Ivanyos, M. Santha, F. Verhoeven, Locally 2-dimensional Sperner problems complete for polynomial parity argument classes, in:
Proceedings of the 6th Italian Conference on Algorithms and Complexity, 2006, pp. 380–391.

[6] M. Grigni, A Sperner lemma complete for PPA, Information Processing Letters 77 (5–6) (2001) 255–259.
[7] M.D. Hirsch, C.H. Papadimitriou, S. Vavasis, Exponential lower bounds for finding Brouwer fixed points, Journal of Complexity 5 (1989) 379–416.
[8] C.H. Papadimitriou, On graph-theoretic lemmata and complexity classes, in: Proceedings of the 31st Annual Symposium on Foundations of Computer
Science, 1990, pp. 794–801.

[9] C.H. Papadimitriou, The complexity of the parity argument and other inefficient proofs of existence, Journal of Computer and System Sciences 48
(1994) 498–532.

[10] E. Sperner, Neuer beweis fur die invarianz der dimensionszahl und des gebietes, Abhandlungen aus dem Mathematischen Seminar Universitat
Hamburg 6 (1928) 265–272.

	On the complexity of 2D discrete fixed point problem
	Introduction
	Preliminaries
	TFNP and PPAD
	Definition of 2D-SPERNER

	Definition of search problem RLEAFD
	Problem RLEAFD is PPAD-Complete
	2D-SPERNER is PPAD-Complete
	2D-BROUWER is PPAD-complete
	Concluding remarks
	Acknowledgements
	References

