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Abstract: Bounding node-to-sink latency is an important issue of wireless sensor networks 
(WSNs) with a quality of service requirement. This paper proposes to deploy multiple sinks to 
control the worst case node-to-sink data latency in WSNs. The end-to-end latency in multihop 
wireless networks is known to be proportional to the hop length of the routing path that the 
message moves over. Therefore, we formulate the question of what is the minimum number of 
sinks and their locations to bound the latency as the minimum d-hop sink placement problem. We 
also consider its capacitated version. We show problems are NP-hard in unit disk graph (UDG) 
and unit ball graph, and propose constant factor approximations of the problems in both graph 
models. We further extend our algorithms so that they can work well in more realistic quasi UDG 
model. A simulation study is also conducted to see the average performance of our algorithms. 
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mobile computing; approximation algorithm; graph theory; UDG; unit disk graph; UBG; unit ball 
graph; quasi unit disk graph. 
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1 Introduction 

The recent advances in microelectronic technologies  
have enabled a whole new kind of network, namely 
Wireless Sensor Network (WSN). WSN has a broad range 
of important applications and thus attracted lots of attentions 
recently (Akyildiz et al., 2002). A mechanism for predictable 
node-to-sink latency is an important building block of 
WSNs with a Quality of Service (QoS) requirement. Owing 
to the reason, many efforts have been made to bound the 
node-to-sink data latency in WSNs (Sohrabi et al., 2000; 
Caccamo et al., 2002; Lu et al., 2002; Akkaya and Younis, 
2003; He et al., 2003; Felemban et al., 2005). In most cases, 
it has been implicitly assumed that there exists a node-to-
sink routing path satisfying an application’s worst case 
node-to-sink latency requirement if certain conditions are 
met (e.g. lower congestion level, proper routing path), and 
such path was secured using various mechanisms such as 
congestion control, proper routing path selection and packet 
admission control. 

It is well known that, in multi-hop routing, end-to-end 
latency increases proportional to the number of hops in the 
routing path due to queuing and processing delay at each 
intermediate node, which is significantly greater than the 
propagation delay in radio communication (Youssef and 
Younis, 2007; Misra et al., 2008). Therefore, if the hop 
distance from a node to a sink is very large, it will be very 
difficult to support a very tight node-to-sink data latency 
requirement of some WSNs. To deal with this issue, we 
propose to deploy multiple sinks (e.g. miniature helicopters, 
vehicles, robots) in proper locations which can relay the 
messages they collected from the nodes to the users directly. 
Intuitively, this approach will help to reduce the worst case 
data collection latency of a WSN. In addition, our approach 
can be harmoniously used with the other existing latency 

control mechanisms. Despite the fact that adopting multiple 
sinks may increase the cost of building a WSN, this could 
be still a promising approach for many node-to-sink delay 
sensitive applications such as intrusion detection and 
earthquake monitoring over a vast area in which we cannot 
design a WSN satisfying a rigorous node-to-sink delay 
requirement only using a single sink. 

To the best of our knowledge, the idea of exploiting 
multiple sinks (or relay nodes) to bound the node-to-sink 
latency in WSNs is rarely discussed in the literatures (Kim 
et al., 2011). In fact, most existing researches about multiple 
sink (or relay node) deployment problems were focused on 
how to utilise the sinks (or relay nodes) to meet a certain 
connectivity requirement (Zhang et al., 2007; Misra et al., 
2008) or to maximise network lifetime (Lloyd and Xue, 
2007). Therefore, the existing researches on sink (or relay 
node) placement problems do not apply to our case, and 
new algorithms have to be investigated. 

This paper considers a popular heterogeneous WSN 
model (Akyildiz and Kasimoglu, 2004; Rezgui and  
Eltoweissy, 2007; Cheng et al., 2008; Wang et al., 2009a; 
Wang et al., 2009b; Kim et al., 2010), which consists of  
(a) several sinks (or relay nodes) with a huge battery and a  
long range communication device (e.g. satellite transceiver) 
to forward the messages to users directly and (b) numerous 
cheap static sensor nodes. This model is a nice abstraction 
of several important WSNs such as battlefield surveillance 
where a set of cheap lightweight sensor nodes are deployed 
from aeroplane and a set of properly equipped vehicles or 
miniature flying machines (e.g. helicopters) act as sinks. 
Given that multiple sinks are available, it is apparent that 
the worst case node-to-sink latency in such system can be 
better controlled by carefully locating the available sinks.  
It is also important to notice that such sinks are generally 
expensive to purchase and operate. This observation arises 
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the following interesting question: given a user’s maximum 
tolerable node-to-sink latency bound, what is the minimum 
number of sinks needed and their locations? In the rest of 
this paper, we strive to answer this question. The major 
contributions of this paper are as follows. 

1 It is known that in wireless networks, the worst case 
end-to-end data latency is proportional to the hop 
distance between them (Youssef and Younis, 2007; 
Misra et al., 2008). Inspired by this fact, we introduce a 
new approach to bound the worst case maximum data 
collection latency in WSNs using minimum number of 
sinks. We define the problem of deploying the 
minimum number of sinks to meet a given worst case 
node-to-sink latency requirement as the Minimum  
d-Hop Sink Placement (MdHSP) problem. Note that 
this multiple sink placement strategy can be used 
together with the other existing ones to efficiently 
bound the worst case data collection latency of a WSN. 

2 In a WSN, a sink becomes a bottleneck of the network 
if there are too many nodes which desire to send 
messages to the sink. Apparently, as the WSN becomes 
busier, this situation will be aggravated and it will be 
very difficult to control the worst case data collection 
latency. In other word, if we limit the number of nodes 
forwarding messages to the same sink, the worst case 
node-to-sink latency can be controlled more effectively. 
Based on this observation, we introduce the capacitated 
version of MdHSP, namely the Capacitated Minimum 
d-Hop Sink Placement (CMdHSP) problem, is equivalent 
to MdHSP with one additional requirement that the 
number of sensor nodes serviced by each sink is 
restricted by some given constant. 

3 We prove both of MdHSP and CMdHSP are NP-hard in 
both Unit Disk Graph (UDG) and Unit Ball Graph 
(UBG). Then, we propose constant factor approximation  
algorithms for them. In detail, we show a simple  
d-hop colouring algorithm (Algorithm 1) is O(d2)-
approximation algorithm for MdHSP in UBG. As a 
corollary, we prove this colouring strategy is an O(d)- 
approximation for MdHSP in UDG. Furthermore, we 
introduce a simple O(d2)-approximation algorithm 
(Algorithm 2) for CMdHSP in UBG. We also show this 
approach is an O(d)-approximation for CMdHSP  
in UDG. 

4 Due to the salient features of wireless communication 
such as signal collision and interference, UDG and 
UBG sometimes do not abstract 2-D and 3-D wireless 
networks precise enough for some applications of 
WSNs. To overcome this limitation, we study the 
MdHSP and CMdHSP in δ-quasi Unit Disk Graph  
(δ-qUDG),1 which is a more realistic abstraction of 
wireless network than UDG (Kuhn et al., 2003), and 
propose new heuristic algorithms for them. While we 
only consider δ-qUDG, this algorithm also works in  
 

3-D counterpart, namely δ-qUBG. We also describe 
how CMdHSP can be solved in δ-qUDG and δ-qUBG. 

The rest of this paper is organised as follows. Section 2 
introduces several notations, definitions and assumptions. 
Our main results including the constant factor 
approximations for MdHSP and CMdHSP are presented in 
Section 3. The extensions of our algorithms for MdHSP and 
CMdHSP in δ-qUDG are presented in Section 4. The 
simulation results and their analysis are given in Section 5. 
Section 6 introduces related work. Finally, Section 7 
concludes this paper and presents some future works. The 
NP-hardness proofs of MdHSP and CMdHSP are presented 
in Appendix. 

2 Notations, definitions and assumptions 

Notations and definitions: in this paper, G = (V, E) is a 
graph with a vertex set V = V(G) and an edge set E = E(G). 
Depending on the context, G can be either UDG, UBG or  
δ-qUDG. Hopdist(u,v) means the number of edges on the 
shortest path between two nodes u and v. ( , )Eucdist u v  is 
the Euclidean distance between two nodes u and v. N[v]  
is the set of nodes neighbouring to v. N[v] is { } [ ]v N v∪ . 

[ ] = { |dN v u u V∈  such that = , ( , ) }u v Hopdist v u d≤ . 
( ) = { } [ ]d dN v v N v∪ . 

Definition 1 (Unit disk graph – UDG): G in the 2-D 
Euclidean space is called an UDG, if for any two different 
nodes ,u v V∈ , ( , )u v E∈  if and only if the Euclidean 
distance between u and v is at most one.  

Definition 2 (Unit ball graph – UBG): G in the 3-D 
Euclidean space is called an UBG, if for any two different 
nodes ,u v V∈ , ( , )u v E∈  if and only if the Euclidean 
distance between u and v is at most one.  

Definition 3 (δ-quasi unit disk graph – δ-qUDG): G in the 
2-D Euclidean space is called a δ-qUDG for a given 
constant 0 < 1δ ≤  if for each pair ,u v V∈ , 

( , ) ( , )Eucdist u v u v Eδ≤ → ∈  and ( , ) > 1Eucdist u v →  
( , )u v E∈ . 

In δ-qUDG, there will always be a communication link 
between two nodes if they are close enough (i.e. at most δ 
apart from each other). On the other hand, there will be no 
link if they are far enough from each other (i.e. greater  
than 1). For moderate distance (i.e. < ( , ) 1Eucdist u vδ ≤ ), 
the existence of a communication link will be dependent on 
the runtime environmental factors such as ambient noise and 
interference level. It is known that δ-qUDG models real-
world wireless networks much better than UDG (Kuhn et al., 
2003). In the rest of the paper, we will assume that there  
will be a link between two nodes u, v such that 

< ( , ) 1Eucdist u vδ ≤  with some known probability 0 < p < 1. 
Note that if δ = 1, then a δ-qUDG is equivalent to an UDG. 
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Definition 4 (Dominating Set – DS): D V⊆  is a DS of G if 
v V∀ ∈ , either v D∈  or u D∃ ∈  such that ( , )v u E∈ . 

Definition 5 (Independent Set – IS): I V⊂  is an IS of G if 
,u v I∀ ∈ , ( , )u v E∈ . 

Definition 6 (Maximal Independent Set – MIS): An IS I is a 
MIS if for any ( )v V I∈ , { }I v∪  is not an IS. 

Note that an MIS of G is a DS of G. Also, finding a 
minimum DS in UDG is a NP-hard problem (Johnson, 
1974), and thus is NP-hard in UBG. 

Definition 7 (d-hop dominating set – d-DS): D V⊆  is a  
d-DS of G if v V∀ ∈ , either v D∈  or u D∃ ∈  such that 

( )dv N u∈ . 

Definition 8 (d-hop independent set – (d-IS) D V⊆  is a  
d-IS of G if ,v u D∀ ∈ , [ ]dv N u∈ . 

Definition 9 (Maximal d-hop independent set – MdIS): A 
subset Id is a MdIS of G if 1) Id is a d-IS and 2) for any 

( \ )dv V I∈ , { }dI v∪  is not a d-IS anymore. 

Note that MdIS of G is d-DS of G. Now, we formally 
introduce the problems of our interest. The NP-hardness 
proofs of these problems are in Appendix. 

Definition 10 (MdHSP): Given a set V of nodes in the 
Euclidean space, the minimum d-hop sink placement 
(MdHSP) problem is to place a minimum number of sinks S 
in V such that each node in V is d-hop dominated by at least 
one sink in S. 

Definition 11 (CMdHSP): Given a set V of nodes in the 
Euclidean space, the capacitated minimum d-hop sink 
placement (CMdHSP) problem is to find an optimal solution 
of MdHSP under an additional constraint that each sink can 
d-hop dominate at most k nodes. 

Assumptions: Now, we enumerate the major assumptions of 
this paper. First, this paper assumes that WSNs consist of a 
set of homogenous (i.e. the same hardware) sensor nodes 
with a set of powerful sinks. Second, we assume that the 
sinks can be located at any place. This can be possible if the 
sinks are flying machines such as miniature helicopters or 
the space on which the sensor nodes are deployed has no 
obstacles. Third, we assume the input graph is randomly 
generated and is connected. 

If an input graph is disconnected, our algorithms will 
treat each of connected components as an independent 
graph. In fact, this assumption will not degrade the 
performance of our algorithms arbitrarily bad. That is, if an 
input graph consists of a set of connected components such 
that the distance between any two connected components is 
greater than two, then this assumption does not degrade the 
performance of the algorithms. If there are two components 
whose distance is no greater than two, the approximation 
factor of our algorithms under such assumption increases no 
greater than five times in UDG and 12 times in UBG. This  
 

is because in UDG, a node has at most five independent 
neighbourhoods (Lemma 7), and in UBG, a node has at 
most 12 independent neighbourhoods (Lemma 1). 

3 Constant factor approximations of MdHSP and 
CMdHSP in UDG and UBG 

In Section 3.1, we show a simple colouring algorithm 
(Algorithm 1) is a constant factor approximation algorithm 
for MdHSP in both UDG and UBG models. In Section 3.2, 
we use this result to propose a constant factor approximation 
algorithm (Algorithm 2) for CMdHSP in both UDG and UBG 
models. 

Algorithm 1 d-hop Colouring (G = (V,E)) 

1: Set S ← ∅ 
2: Colour all nodes in V white 
3: while there is a white node v ∈ V do 
4:     Colour v black and set S ← S ∪  {v} 
5:     Colour every node in Nd(v) grey 
6: end while 
7: Place a sink s very near to each node u in S so that all 
    nodes in Nd[u] is d-hop dominated by s. 

3.1 MdHSPA: constant factor approximations of 
MdHSP 

In this section, we prove a Maximal d-hop Independent Set 
(MdIS) computed by a simple d-hop colouring strategy 
(Algorithm 1) is an O(d2)-approximation for MdHSP in 
UBG. We also show this is actually an O(d)-approximation 
for MdHSP in UDG. 

Note that in both UBG and UDG, an MdIS is a d-hop 
Dominating Set (d-DS), which is a feasible solution of 
MdHSP. Therefore, we will focus on the worst case 
performance analysis of this strategy. In Section 3.1.1,  
we assume G is UBG and proceed our analysis. In  
Section 3.1.2, we modify this proof to analyse the 
performance ratio of Algorithm 1 for MdHSP in UDG. 

3.1.1 Approximation Ratio of Algorithm 1 in UBG 

In this section, we assume G is UBG. The outline of our 
performance analysis is as follow: let OPTMdHSP and OPTd–DS 
be an optimal solution of MdHSP and an optimal d-DS,  
respectively. For each d DSv OPT −∈ , if we can bound the 
maximum cardinality (size) of Id(v), an MdIS of Nd(v) by 
some constant α (Lemma 5) and if we can show that 
| | | |d DS MdHSPOPT OPTβ− ≤  (Lemma 6), Algorithm 1 is an 
α⋅β-approximation of MdHSP in UBG. 

For each d DSv OPT −∈ , let { | ( )v dK x x I v= ∈  and 

}( , ) / 2Hopdist x v d≤ ⎡ ⎤ , and { | ( )v dK x x I v′ = ∈  and 

}vx K∉ . Clearly, α is the possible maximum of | | | |'
v vK K+ . 
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Lemma 1 (Butenko et al., 2010): A unit ball of radius one 
can contain at most 12 independent points. 

Lemma 2: Suppose Id is an MdIS of G = (V,E). Then, for 
each v ∈ V, there are at most 12 nodes in Id, which are 

/ 2d⎡ ⎤ -hop dominated by v. (which implies | | 12vK ≤ .)  

Proof: Suppose 1 2= { , ,..., }kU u u u  is the set of all nodes  

in Id such that ( , ) / 2iHopdist v u d≤ ⎡ ⎤  for all i. Then,  
every possible situation is in one of following two  
distinct cases: 

• Case 1 – d is an even number: if k ≤ 1, then this lemma 
is trivially true. Now, suppose k > 1 and there are two 
different ,a bu u U∈ . This implies ( , )aHopdist u v ≤  

/ 2 = / 2d d⎡ ⎤ , ( , ) / 2 = / 2bHopdist v u d d≤ ⎡ ⎤ , and 
thus ( , ) 2 / 2a bHopdist u u d≤ ⋅ . However, this contradicts 
to our assumption that ua and ub are two different 
elements of U, and therefore more than d-hop far  
from each other. As a result, if d is even, k ≤ 1 must  
be true. 

• Case 2 – d is an odd number: for each iu U∈ , consider 
the shortest path from ui to v. Let wi be the node in this 
path, adjacent to v. Then, all of 1 2, ,..., kw w w  are in the 
ball with centre v and radius one. 

For contradiction, suppose 13k ≥ . By Lemma 1, a unit  
ball can contain at most 12 independent nodes. By  
the Pigeonhole principle, there have to be two different 

,a bu u U∈  such that ( , ) 1a bHopdist w w ≤  (either wa or  
wb are neighbouring with each other or wa = wb). By 
combining this with the facts that ( , )a aHopdist u w  

/ 2 1d≤ ⎡ ⎤ −  and ( , ) / 2 1b bHopdist u w d≤ ⎡ ⎤ − , we can 

conclude that ( , ) 2( / 2 1) 1 =a bHopdist u u d d≤ ⎡ ⎤ − +  since 
d is odd. However, this contradicts to the fact that ua and ub 
are two discrete members of U, and thus k ≤ 12 if d  
is odd.  

By combining our analysis on Case 1 and Case 2 above, 
we can conclude that k ≤ 12 is true for any d ≥ 1 and thus 
this lemma holds true.  

Now, we find the upper bound of | |'
vK . Consider 

vu K ′∈ . Let 

• Pu be the set of nodes in the shortest path from u to v 
which includes u and v, 

• {= |u u
Q x x P∈  and }( , ) / 2 1Hopdist x u d≤ ⎡ ⎤ − , 

• Bw be a unit ball whose centre is w and radius 1/2 for 
each w ∈ Qu, and 

• =u w Q wu
A B∈∪ . 

Now, we show some property of Au. 

Lemma 3: All Au for vu K ′∈  are disjoint in G. 

Proof: Suppose for some , vu u K′ ′∈  with u u′≠ , 

u uA A ′ ≠ ∅∩ . Then there exist uw Q∈  and w′ ∈ Qu′  
such that the distance between w and w′ is at most one (i.e. 

( , ) 1Hopdist w w′ ≤ ). This implies that there is a path 
between u and u′ whose length is at most d-hops since we 
also know ( , ) / 2 1Hopdist w u d≤ ⎡ ⎤ −  and ( , )Hopdist w u′ ′  

/ 2 1d≤ ⎡ ⎤ − , and thus ( , ) 2Hopdist u u′ ≤  ( )/ 2 1d⎡ ⎤ −  

1 d+ ≤ . This contradicts that u and u′ are d-hop 
independent. Therefore, the lemma is true.  

Lemma 4: The volume of Au is at least ( 3) 24d π−  in G.  

Proof: Let { }1= , ,...,u kQ u w w , where = / 2 1k d⎡ ⎤ −  and 
the elements in Qu are in the ordering from u toward v in Pu. 
Clearly, Bu cannot intersect with 

2 3
, ,...,w w wk

B B B , 
2wB  

cannot intersect with 
4 5
, ,...,w w wk

B B B , and so on. It follows 

that 
2 4

, , ,...,u w w kB B B B  are disjoint if k is even (or 
2

, ,u wB B  

14
,...,w kB B −  are disjoint if k is odd). Hence, the volume of 

Au is at least 

( )
3

2 2 34 31 = .
2 3 2 4 3 2 24

d dd ππ π⎛ − ⎞ −⎡ ⎤ −⎢ ⎥ + ⋅ > ⋅⎜ ⎟ ⋅ ⋅⎝ ⎠
 

Lemma 5: Suppose OPTd-DS  is an optimal d-DS of G and S 
is an output of Algorithm 1 (i.e. an MdIS of G). Then 

( )2
d DSS O d OPT −≤ . 

Proof: For every vu K ′∈ , Au lies inside the ball with centre v 
and radius d + 0.5. From Lemma 3, each Au is disjoint with 
Au′ for any vu K′ ′∈ , u u′ ≠ . Therefore, | |vK ′  can be 
bounded using the volume of the big ball whose radius is 
d + 0.5 and the lower bound of the volume of each Au, 
which is given in Lemma 4. In detail 

( ) ( )
( ) ( )

3
24 3 0.5

= .
3 24v

d
K O d

d
π

π
+

′ ≤
−

 

By combining this with Lemma 2, we can conclude that 

( ) ( )( )2| | | | | | | |= 12 | | .v v d DS d DSS K K OPT O d OPT− −′≤ + +  

Lemma 6: 12d DS MdHSPOPT OPT− ≤ . 

Proof: Suppose { }1= , ,MdHSP sOPT c c  is an optimal 
solution of MdHSP in UBG, where =| |MdHSPs OPT . By 
definition, OPTMdHSP does d-hop dominate G. Denote by 
MIS(N(ci)) an MIS of N(ci). 

Now, we claim if a node v ∈ V is d-hop dominated by ci, 
it is also d-hop dominated by at least one node in 
MIS(N(ci)). To show this claim is correct, let us define a 
shortest path from v to ci as { }1 2= , , , , ,v k iP v n n n c . Since 
v is d-hop dominated by ci, k ≤ d–1 has to be true. Clearly,  
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nk should be either in MIS(N(ci)) or adjacent to a node w in 
MIS(N(ci)). In the first case, v is (d – 1)-hop dominated by 
nk, a member of MIS(N(ci)). In the second case, v is d-hop 
dominated by w, a member of MIS(N(ci)). In either case, v is 
d-hop dominated by at least one member of MIS(N(ci)),  
and thus this claim is true. From this claim, we can conclude 
that ( )=1

= ( )s
ii

Y MIS N c∪  is d-hop dominating G as 

{ }1 2= , , ,MdHSP sOPT c c c  does. 
From Lemma 1, each ci can have at most 12 independent 

neighbours in UBG, and therefore, | ( ( )) | 12iMIS N c ≤ . 

Since it is possible ( ) ( )( ) ( ) =i jMIS N c MIS N c ∅∩  for 
i j≠  such that 1 ,i j s≤ ≤ , 

=1

| |=| ( ( )) | 12 = 12 | | .
s

i MdHSP
i

Y MIS N c s OPT≤∪  (1) 

Also, since Y is a d-DS of G, | | | |optd DS Y− ≤ . As a result,  

| | | | 12 | |,opt MdHSPd DS Y OPT− ≤ ≤  

and the lemma is true. 

Theorem 1: The approximation ratio of Algorithm 1 for 
MdHSP in UBG is O(d2).  

Proof: From Lemma 5, we have 2| | ( ) | |optS O d d DS≤ − , 
where S is an output of Algorithm 1, which implies that an 
MIS of G is a constant factor approximation of the 
minimum d-hop dominating set problem in UBG. From 
Lemma 6, we have | | 12 | |opt MdHSPd DS OPT− ≤ , which 
means that a minimum d-hop dominating set is a constant 
factor approximation of MdHSP in UBG. By combining 
these two lemma, we have ( )2| | 12 | |MdHSPS O d OPT≤ . 
Therefore, Algorithm 1 is an O(d2)-approximation algorithm 
for MdHSP in UBG. 

3.1.2 Approximation ratio of Algorithm 1 in UDG 
In this section, we assume G is UDG. The outline of our 
performance analysis is similar to the one in the previous 
section. We reuse the definitions of OPTMdHSP, OPTd-DS, Kv, 

vK ′ , Pu, Qu, and Au. However, we define Bw be a unit disk 
(instead of a unit ball) whose centre is w and radius 1/2. 

Lemma 7 (Wan et al., 2002): A unit disk of radius one can 
contain at most five independent points. 

Lemma 8: Suppose Id is an MdIS of G = (V, E). Then, for 
each v ∈ V, there are at most five nodes in Id, which are 

/ 2d⎡ ⎤ -hop dominated by v. 

Proof: The proof of this lemma is very similar to that of 
Lemma 2. Only difference is that since we assume G  
is UDG, we need to use Lemma 7 instead of Lemma 1.  
In detail, by applying Lemma 7 to the Case 2 analysis  
of Lemma 2, it is trivial to show that | | 5uK ≤  in UDG.  
(i.e. | | 5vK ≤ ).  

Clearly, Lemma 3 is still true in UDG since its proof 
does not rely on the fact that G is UBG. However, Lemma 4 
has to be modified properly. 

Lemma 9: The area of Au is at least (d – 3)π/16 in G. 

Proof: The basic structure of this proof is equivalent to the 
proof of Lemma 4. However, since each Bw is a unit disk 
whose radius is 0.5, and its centre is w, the area of Au is  
at least 

2 2
/ 2 2 3 ( 3)1 > = .

2 2 4 2 16
d d dπ π π⎛ ⎞⎡ ⎤ − − −

+ ⋅ ⋅⎜ ⎟
⎝ ⎠

 

Lemma 10: Suppose OPTd-DS is an optimal d-DS of UDG G 
and S is an output of Algorithm 1 (i.e. an MdIS of G). Then 
| | ( ) | |d DSS O d OPT −≤ . 

Proof: For every vu K ′∈ , Au lies inside the disk with centre 
v and radius d + 0.5. From Lemma 3, each Au is disjoint 
with Au′ for any vu K′ ′∈ , u u′ ≠ . Therefore, | |vK ′  can be 
bounded using the area of the big disk whose radius is 
d + 0.5 and the lower bound of the area of each Au, which is 
given in Lemma 9. In detail 

( )20.5
| | = ( ).

( 3) 16v

d
K O d

d
π

π
+

′ ≤
−

 

By combining this with Lemma 8, we can conclude that 

( ) ( )| | | | | | | |= ( ) 5 | | .v v d DS d DSS K K OPT O d OPT− −′≤ + +  

Lemma 11: | | 5 | |d DS MdHSPOPT OPT− ≤  in UDG. 

Proof: In order to show this lemma is true, we can reuse 
most of our argument for the proof of Lemma 6. We just 
need to replace Lemma 1 with Lemma 7. In particular, 
equation (1) will be changed to 

( )
=1

| |= ( ) 5 = 5 ,
s

i MdHSP
i

Y MIS N c s OPT≤∪  

and we can prove 

5 .opt MdHSPd DS OPT− ≤  

Theorem 2: The approximation ratio of Algorithm 1 for 
MdHSP in UDG is O(d). 

Proof: From Lemma 10, we have | | ( ) | |optS O d d DS≤ − , 
where S is an output of Algorithm 1, which implies that an 
MIS of G is a constant factor approximation of the 
minimum d-hop dominating set problem in UDG. From 
Lemma 11, we have 5opt MdHSPd DS OPT− ≤ , which means 

that a minimum d-hop dominating set is a constant factor 
approximation of MdHSP in UDG. By combining these  
two lemmas, we have | | (5 ) | |MdHSPS O d OPT≤ . Therefore, 
Algorithm 1 is an O(d)-approximation algorithm for 
MdHSP in UDG. 
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3.2 CMdHSPA: constant factor approximations of 
CMdHSP 

Algorithm 2 Capacitated minimum d-hop sink placement 
algorithm (G = (V,E), k) 

1:  Execute Algorithm 1 to place a set of sinks S = {s1,…,sl} in 
G. At this point, each node is a member of its nearest sink 
(and being serviced by the sink). A tie can be broken 
arbitrarily. 

2: for i = 1 to l do 
3:      M ← M(si)/* the members of the sink si*/ 
4:      while |M| > k do 
5:          Construct a shortest path tree T of M rooted at si. 

For each node w ∈ T, let Tw be the subtree of T, rooted at w. 
6:         Let u be the root of T. 
7:         while u has a child v with |Tv| > k do 
8:            u ← v 
9:        end while 
10:       Let v1, v2,…, vh be all children of u in the ordering 

1 2v v vh
T T T k≤ ≤ ≤ ≤ .  Also, let 

=1
( ) = h

vj j
M u T∪  

11:       while | ( ) |>M u k  do 

12:          Find an i, 2 ≤ i ≤ h such that 
=

h
vj i j

T k≤∑ , but 

= 1
>h

vj i j
T k

−∑ . 

13:          Place a new sink s′ very near to u so that all the 
nodes in 

=

h
vj i j

T∪  can be d-hop dominated by s′. Also, all the 

nodes in 
1

, , ,v v vi i h
T T V

+
 will be the member of s′. 

14:          ( )=

h
vj i j

M M T← ∪  and 1h i← − . 

15:      end while 
16: if |M(u)| = k then 
17:       Place a new sink s′ at u, make all nodes in M(u) to 

be the members of s′, and set ( )M M M u← . Note 
that u is still in M. 

18:         end if 
19:     end while 
20:  end for 

In this section, we propose approximation algorithms for the 
capacitated minimum d-hop sink placement (CMdHSP) problem, 
namely the Capacitated Minimum d-hop Sink Placement 
Algorithm (CMdSPA). The overall strategy of CMdHSPA is as 
follow. 

1 Executes Algorithm 1 to assign a set S of sinks to the 
given set V of sensor nodes without considering the 
additional constraint of the CMdHSP problem that each 
sink can serve at most k sensor nodes. 

2 Suppose each node is a member of its nearest sink (a tie 
can be broken arbitrarily). For each sink si ∈ S and the 
set M(si) of the members of si, additional sinks are 
placed if necessary so that no sink would d-hop 
dominate more than k nodes in M(si).  

The first step is well discussed in Section 3.1. Therefore, we 
will focus our discussion on the second step. The outline of this 

step is as follow. For each si ∈ S, if | ( ) |iM s k≤ , we are done. 
Otherwise, a shortest path tree T of ( ) { }i iM s s∪  rooted at si is 
constructed. For each node w of T, let Tw denote the subtree of 
T, rooted at w and | |wT  the number of nodes in Tw. Now, we 
find a node u of T such that u must satisfy the property: 
| |>uT k  and for every child v of u, | |vT k≤ . Clearly, such u 

has to exist since we assumed >si
T k . Let 1 2, ,..., hv v v  be all 

children of u in the ordering 
1 2v v vh

T T T k≤ ≤ ≤ ≤ . Find 

an i, 2 i h≤ ≤  such that 
1v v vi i h

T T T k
+

+ + + ≤  but 

1
>v v vi i h

T T T k
−
+ + + . Clearly, such i should exist due to 

the property of Tu. Note that 

2 v vi h

k T T k≤ + + ≤  (2) 

has to be true since otherwise 
1

>
2vi

kT
−

 has to be true so 

that 
1

>v v vi i h
T T T k

−
+ + +  is true. However, this implies 

1
>v vi i

T T
−

, which contradicts to our initial assumption. 

Now, at the position of u (or very near to the position of u 
in practice), we add a new sink for all the nodes in 

v vi h
T T∪ ∪  and make the nodes as the members of the new 

sink, but keep u outside of this subset of the members. Delete 
,...,v vi h

T T  from the tree Tu. We repeat this until the remaining 

part of Tu is smaller than or equal to k. At last, if the size of 
remaining part is exactly k, we can employ one more sink at u 
and assign all the remaining nodes as the member of u. 

Once one or more sinks are assigned, we remove the nodes 
which are members of the new sinks from M(si) and repeat the 
procedure above (find another u and assign additional sinks). In 
this way, M(si) will be broken into several (zero to many) 
smaller subsets of nodes, each of whose size is at least k/2 [see 
equation (2)]. Also there can be at most one exceptional subset 
of nodes whose size is less than k/2. Algorithm 2 is the formal 
description of CMdSPA. 

Note that after CMdSPA is executed, we may want to 
reorganise each M(si) such that the average distance 
between (si) and its member can be reduced. While such 
optimisation technique can reduce average delay further 
down, it does not improve the performance of CMdSPA 
algorithmically. 

Theorem 3: Algorithm 2 can be implemented in O(n2) time 
where n is the number of nodes in input graph.  

Proof: Clearly, Line 1 of Algorithm 2, which is a simple 
colouring algorithm, takes O(n2) time. In Line 5, the 
algorithm constructs a shortest path tree rooted at si and this 
takes ( )O n  time where =| ( ) | .in M s  Note that at the same 
time, each node can remember the number of ancestors. 
This makes the running time of Lines 7–9 to be O(n). For 
Line 10, we need to use a sorting algorithm and this takes 
totally ( log )O n n  time since each node involves sorting at 
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most once. For the last while-loop (Lines 11–15), the total 
running time is 2( )O n  because when S is updated, M(v), the 
set of descendants of every ancestor v of u will be updated. 
Therefore, Lines 2–20 takes 2( )O n  time. As a result, the 
total running time of Algorithm 2 is O(n2). 

3.2.1 Approximation ratio of CMdHSP in UBG 
Now, we analyse the performance ratio of Algorithm 2 for 
CMdHSP in UBG. Let us define the CMdHSP-R problem 
whose goal is equivalent to that of CMdHSP except that we are 
allowed to put each sink only on an existing node in V. Clearly, 
Algorithm 2 produces a feasible solution of CMdHSP-R since 
the algorithm picks a subset D of the nodes V and place a sink 
very near to each of the nodes. Let OPTCMdHSP–R and OPTCMdHSP 
be an optimal solution of CMdHSP-R and an optimal  
solution of CMdHSP, respectively. Then, we first show that 

( )2| D O d≤  CMdHSP ROPT − , and use result to show that 

( )2| |D O d≤  CMdHSPOPT . 

Lemma 12: In UBG, the approximation ratio of Algorithm 2 
for CMdHSP-R is O(d2).  

Proof: Let 1= { , , }lS s s  be the set of the sinks deployed by 
Line 1 of Algorithm 2. For each sink si ∈ S, let M(si) be a 
subset of the members of (si). Now, we will bound the 
maximum number of subsets generated from M(si) after Lines 
2–20 of Algorithm 2 is applied. For this purpose, we will count 
the number p of the subsets whose size are less than k/2 first 
and the number q of subsets whose size are at least k/2 later. 

1 After Algorithm 2 is applied, we will obtain at most one 
subset with size less than k/2 from M(si). That is, if we 
have more than two of those, they have to be merged 
into one by the algorithm. 

2 After Algorithm 2 is applied, the number q of subsets 
with size at least k/2 from M(si) cannot exceed 2n/k 
since otherwise, the total number of nodes in M(si) must 
exceed n.  

By Lemma 5, we have ( )2| | | |d DSS O d OPT −≤ . Also, it is 

clear that | | | |d DS CMdHSP ROPT OPT− −≤ . Therefore, | |p S O≤ ≤  

( )2 | |CMdHSP Rd OPT − . From the Case (b), we have 

2 /q n k≤ . Furthermore, / | |CMdHSP Rn k OPT −≤  is trivially 
true. Therefore, we have 2 | |CMdHSP Rq OPT −≤ . 

Therefore, the total number of subsets is at most ( )p q+  
2| |= ( ( ) 2) | |CMdHSP R CMdHSP ROPT O n OPT− −+ . Since each subset 

includes one sink, this lemma is true. 

Theorem 4: Given a UBG G and a constant k, Algorithm 2 
produces an approximation solution with at most 

( )( )212 2 CMdHSPO d OPT+  sinks. 

Proof: To prove this theorem, we will modify the proof of 
Lemma 6. Suppose 1= { , , }CMdHSP sOPT c c , where 

=| |CMdHSPs OPT  and M(ci) is the members of a sink (ci). 

Then, M(ci) is d-hop dominated by MIS(N(ci)) as we showed 
in the proof of Lemma 6. 

We would like to emphasise that it is always possible for 
each node in M(ci) to be a member of a node in MIS(N(ci)) 
such that the number of members assigned to a particular 
node in MIS(N(ci)) does not exceed k. This is because 

1 Each node in M(ci)  should be d-hop dominated by at least 
one node in MIS(N(ci)) as we showed in Lemma 6, and 

2 For all (ci), | ( ) |iM c k≤  since (ci) is a member of 
OPTCMdHSP. 

Therefore, ( )=1
= ( )s

ii
Y MIS N c∪  is a feasible solution of 

CMdHSP-R after such membership assignment, which 
implies | |CMdHSP ROPT Y− ≤ . From Lemma 6, we also know 
| ( ( )) | 12iMIS N c ≤  for all ci, and thus we have 
| | 12 = 12 | |CMdHSPY s OPT≤ . In conclusion, we have 

| | 12 | | .CMdHSP R CMdHSPOPT Y OPT− ≤ ≤  

By combining this result with Lemma 12, the number of 
sinks introduced by Algorithm 2 is at most 

( ) ( )( )2 22 | | 12 2 ,CMdHSP R CMdHSPO d OPT O d OPT−+ ≤ +  

and this theorem holds. 

Algorithm 3 MdHSPA-qUDG (G = (V,E), d, P, p) 

1: Let w = plog  P⎢ ⎥⎣ ⎦ . /* maximum number of unreliable 
links permitted in a routing path */ 

2: From the δ-qUDG G, we induce G  as follows: (a) copy 
G to G , (b) for each u, v ∈ V ( G ), add an unreliable link 
(u, v) to E( G ) if δ < Eucdist(u, v) ≤ 1. 

3: Execute SatisfiabilityTest ( G , w), and keep all ,
m
i jM s 

returned by the function. 
4: Set S ← ∅. 
5: Colour all nodes in V white. 
6: while there is a white node u ∈ V ( G ) do 
7:      Colour u black and set S ← S ∪ {u}. 
8:      Colour each white node v ∈ V grey if ,

m
i jM d≤ . 

9: end while 
10: Place a sink s on (or nearby) each node u in S. 

3.2.2 Approximation Ratio of CMdHSP in UDG 

Now, we analyse the performance ratio of Algorithm 2 for 
CMdHSP in UDG. 

Theorem 5: Given a UDG G and a constant k, 
Algorithm 2 produces an approximation solution with at 
most (5( 2)) | |CMdHSPO d OPT+  clusters. 

Proof: Suppose D is the set of sinks placed by Algorithm 2. 
We will show | | ( ( ) 2) | |CMdHSP RD O d OPT −≤ +  first and later 
show | | 5 | |CMdHSP R CMdHSPOPT OPT− ≤ . Then, the correctness 
of this theorem naturally follows. 
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Now, we prove | | ( ( ) 2) | |CMdHSP RD O d OPT −≤ +  is true 
by modifying the proof of Lemma 12. For this purpose, we 
simply need to employ Lemma 10 instead of Lemma 5. As a 
result, we have ( ) | |CMdHSP Rp O d OPT −≤ . Since 2q ≤  
| |CMdHSP ROPT −  is still true in UDG, we have | | ( )D p q≤ +  

( )( ) 2 |CMdHSP R CMdHSP ROPT O d OPT− −≤ + . 

Next, we show | | 5 | |CMdHSP R CMdHSPOPT OPT− ≤ . This can 
be directly obtained from the proof of Theorem 4 if we 
employ Lemma 11 instead of Lemma 6. As a result this 
theorem is true.  

4 Extensions to δ-quasi unit disk graph 

In the previous section, we studied MdHSP and CMdHSP in 
UDG and UBG. However, due to the salient features of 
wireless communication such as signal collision and 
interference, UDG and UBG may not be accurate enough 
for some applications. To overcome this limitation, we 
study the MdHSP and CMdHSP in δ-qUDG and δ-qUBG, 
which are known to be more precise and realistic than UDG 
and UBG, and propose new heuristic algorithms for them 
based on our results in the previous section. 

4.1 A heuristic for MdHSP in δ-qUDG 

Let us first introduce a heuristic algorithm for MdHSP in δ-
qUDG, namely MdHSPA-qUDG (Algorithm 4). Roughly 
speaking, this algorithm consists of two phases. The first 
phase (Lines 1–3) consists of several pre-processing steps 
for the second phase (Lines 4–10). Algorithm 4 uses a 
popular variation of δ-qUDG as a network abstraction, in 
which a routing path from a node to a sink can include both  
reliable links (whose length is at most δ) and unreliable 
links (whose length is between δ and 1, and each of which 
will be available with a probability p). Clearly, if the routing 
path includes more number of unreliable links, it is less likely 
that a message can be successfully delivered over the path. 

In such environment, we claim that a wireless sensor 
network can sufficiently support a user’s worst case node-to-
sink latency requirement if there is a path from each node to a 
sink whose hop length is no greater than d and the probability 
that the communication over the path is successful is at least 
some probability P given by the user. Note that under the 
second condition, the number of unreliable links in a routing 
path should not exceed = log pw P⎣ ⎦ . 

Now, we describe the detail of Algorithm 4. In Line 1, the 
algorithm computes w. In Line 2, a new graph G  is copied 
from given a δ-qUDG G such that ( ) ( )V G V G←  and 

( ) ( )E G E G← . In a δ-qUDG G, there is no link between two 
nodes u, v whose Euclidean distance is < ( , ) 1Eucdist u vδ ≤ . 

However, in G , we add an edge between every such pair of 
nodes. We will call ( ) ( )E G E G∩  as reliable links and 

( ) ( )E G E G  as unreliable links. In Line 3, for each pair of  
 

nodes, we check the length of shortest path with at most w 
unreliable links between every pair of nodes. We call the path 
between two nodes by a satisfying path if (a) the hop length of 
the path is at most d and (b) the path does not include not more 
than w unreliable links. In the following subsection, we will 
discuss about the detail of our algorithm (Algorithm 4) to 
compute the length of a shortest satisfying path between each 
pair of nodes in G . 

Lines 4–9 is a colouring algorithm similar to Algorithm 1. 
The major difference is that while in Algorithm 1, when a node 
u is coloured black, all white nodes v’s such that there is a 
shortest hop path from u to v with length at most d becomes 
grey, Algorithm 3 colour a white node v grey if there is a path 
from u to v whose length is at most d and which does not 
include no more than w unreliable links. Finally, in Line 10, by 
putting a sink on each black node, we have a feasible solution 
of MdHSP in δ-qUDG. 

4.2 SatisfiabilityTest: testing the existence of 
satisfiable path between nodes 

Algorithm 4 that we introduced in the previous section 
relies on an algorithm to compute the length of the shortest 
path between two nodes with at most w unreliable paths. In 
this section, we implement this algorithm as a dynamic 
programming (Algorithm 4). 

Algorithm 4 SatisfiabilityTest (G,w) 
1: Suppose = ( )n V G . Let ,

m
i jM  be the length of the shortest 

path from i-th node to j-th node with no more than m 
unreliable edges. Initialise each ,

m
i jM  with ∞. 

2: for each 1 ,i j n≤ ≤  pair do 

3:     0
, 1i jM ←  if ( , ) ( )i j E G∈ and is reliable, i.e. ( , )i j G∈ . 

4: end for 
5: Optimise 0

,i jM s using an all-pair shortest path algorithm 

in G  excluding any unreliable link, i.e. in G. 
6: for each 1 ,i j n≤ ≤  pair do 

7: 1
, 1i jM ←  if ( , ) ( )i j E G∈ . 

8: end for 
9:   for each 1 ≤ m ≤ w do 
10:    for each 1 ≤ l ≤ n − 1 do 
11:      for each 1 ≤ i, j ≤ n pair do 
12: { }1

1, ,= min , ( , , , )minm m
k ni j i jM M f i j k m−

≤ ≤ , where 

( , , , )f i j k m ←  
1

,

,

1 if( , ) ( ) and is unreliable.
1 if( , ) ( ) and is reliable.

Ignore if ( , ) ( ).

m
i k
m
i k

M k j E G
M k j E G

k j E G

−⎧ + ∈
⎪

+ ∈⎨
⎪ ∈⎩

 

13:          end for 
14:      end for 
15:   end for 
16: Return all ,

m
i jM s. 
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The detail of this algorithm is as follows. In this algorithm, 
,
m
i jM  is the length of the shortest path from i-th node to j-th 

node with no more than m unreliable edges. In Line 1, we 
initialise each ,

m
i jM  with ∞. In Lines 2–5, the hop distance 

of every pair of nodes vi, vj in G (which does not include 
any unreliable link) is computed and stored in 0

,i jM . Lines 
6–15 is a variation of an all-pair shortest path computation 
algorithm. The main difference is that we compute the 
length of the shortest hop path with at most m unreliable 
links between every pair of nodes such that m gradually 
increases from 1 to w. At Line 16, the algorithm returns all 

,
m
i jM s. Note that if ,

w
i jM d≤ , then there is a satisfying path 

from vi to vj. 

4.3 Extension of CMdHSPA for δ-qUDG 

This can be done in a very straightforward way by changing 
two parts of Algorithm 2. First, Line 1 of Algorithm 2 should 
use Algorithm 4 instead of Algorithm 1 to have a feasible 
solution of MdHSP in δ-qUDG. Second, the shortest path tree 
T in Line 5 of Algorithm 2 should be constructed only using 
the subset of shortest path identified during the computation 
of ,

m
i jM s, where si is the sink and ( )j iv M s∈  is the member 

of sensor nodes being serviced by si. 

4.4 Remark on δ-qUBG extensions 

The extensions of MdHSPA and CMdHSPA for δ-qUDG do 
not use any dimensional property. That is, MdHSPA is 
based on a greedy colouring strategy. CMdHSPA is an 
extension of MdHSPA with a tree partitioning strategy 
Therefore, those extensions still work in the 3-D counterpart 
of δ-qUDG, namely δ-qUBG. 

5 Simulation results and discussions 

In this section, we study the average behaviour 
characteristics of our strategy via simulation. In particular, 
we will perform this study using Algorithm 1 in the physical 
interference model. We use the parameters for the physical 
model from Shi et al.’s (2011) study. Note that for the ease 
of exposition, we also normalised all units for bandwidth, 
distance, rate and power with appropriate dimensions as was 
done in  the work of Shi et al. (2011). We set the path-loss 
exponent, α, to 4 and the SINR threshold, β, to 3. We also 
ignore the ambient noise, which is very tiny value.  
We assume each node can transmit a signal at most  
20 unit distances. Then, the maximum transmission power 
of each node is Pmax = α (204). We also assume that  
each node is using its maximum transmission power for 
communication. 
 
 

Under the parameter setting, we prepare a 60 × 60× 60 
3-dimensional space and randomly generate N nodes, which 
varies to 30, 40, …, 100. Once N nodes are deployed, we 
check whether a graph induced by the nodes is connected 
with the maximum transmission power of each node if each 
communication link is not affected by any interference. If 
the graph is disconnected, we discard the graph and produce 
a new graph so that we can have a connected network. We 
set the maximum hop distance D from a sink to its members 
to 1, 2 and 3. Per each parameter setting, we produce  
100 graphs and average the results. 

In this simulation, we introduce the following strategy to 
optimise the performance of MdHSPA and use it. That is, 
once MdHSPA is applied and a graph is partitioned such 
that each partition has a single sink, we relocate the sink 
very near to another node in the partition such that the 
average hop distance from a node in the partition to the sink 
is minimised while the maximum hop distance from a node 
in the partition to the sink does not exceed D. 

Figure 1 is the result of our simulation. Note that in this 
figure, N represents the number of nodes. The methodology 
of this simulation is as follows. Given a graph instance, we 
apply MdHSPA and install a set of sinks. Next, each sink is 
relocated as described above for optimisation. Then, we set 
the probability of each node to generate a node to 0.5%. For 
each unit time slot, which last for 100 unit time, following 
series of events will happen. First, each node generates a 
message using the probability (0.5%), and the node 
forwards it to the next hop in the shortest hop path to its 
sink. If the node also has a message to forward since it 
received the message from another node, the messages can 
be merged and transmitted altogether. Apparently, there can 
be more than one node which tries to transmit within one 
time slot, and therefore there can be some interfere among 
the concurrent transmissions. In such case, we simply drop 
all of those interfered messages. In reality, such problem 
can be solved by using appropriate scheduling algorithm, 
but will cause some extra delay. However, for our purpose, 
it is sufficient to count the number of such lost messages to  
see the severity of signal interference in our problem model 
since the actual worse case delay will increase proportional 
to drop ratio. 

Before the discussion of our result, let us explain how 
dense the networks that we are working on by using 
following simple argument. In this simulation, we prepare a 
60 × 60× 60 and deploy N wireless sensor nodes whose 
maximum communication radius is 20. Therefore, 

theoretically, we can place at most 3 3460 20 = 6.445
3

π× ×  

sensor nodes in the 3-D space such that the communication 
ranges of any two nodes do not overlap with each other. 
Therefore, when N = 30, the network is already quite dense 
in this space. 
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Figure 1 Performance of Algorithm 1 with D = 1, 2, and 3 

 
 (a) The average number of sinks deployed. 

 
 (b) The average number of nodes serviced by a sink. 

 
 (c) The average packet drop rate. 

From Figure 1a, we can learn that (a) as the number of 
nodes, N, increases, the algorithm places more sinks, and  
(b) as the maximum allowable hop distance from a node to 
its nearest sink, represented by D, increases, the algorithm 
places less sinks. Figure1b shows the average number of 
nodes dominated by a sink by our algorithm against the 
upper bound, which is the average of the largest number of 
nodes which d-hop dominates a single node in the graphs 
tested per each parameter setting. As we can see from 
Figure1b, the size of each cluster increases as either N 
increases (since as network density increases, one sink can 
dominate more number of nodes) and D increases (since 
with a larger D, a sink can dominate more nodes). Beside 
from the fact that our bound is not tight, the simulation 
results show there are still a room to obtain a better result by 
making an extra effort, which is reserved as our future work. 
In general, the drop ratio increases as the size of each cluster 

increases. For example, the average cluster size with D = 2, 
N = 60 is 5.203 while that with D = 3, N = 30 is 5.825. In 
each case, the drop ratios are 5.8124% and 4.8070%, 
respectively. This means that D has a significant impact on 
the delay if the interference is considered. This also implies 
that CMdHSPA will work more efficiently than MdHSPA 
in busy network since it can suppress the drop ratio by 
limiting the number of nodes which can potentially send a 
message to the sink. Overall, our simulation result shows 
that hop distance is a good metric to represent the worst 
case latency of WSN if the network density (which is 
proportional to N) is low and the probability that each node 
produces a message in each unit time slot is low. However, 
if we want to deploy our algorithm in a large scale dense 
WSN with large D value, we have to further investigate a 
good scheduling strategy for our problem. We believe this is 
quite difficult to be done and thus reserve it as a part of our 
future work. 

6 Related work 

6.1 Related work in network community 

Recently, several efforts are made to bound the node-to-sink 
data latency in WSNs (Sohrabi et al., 2000; Caccamo et al., 
2002; Lu et al., 2002; Akkaya and Younis, 2003; He et al., 
2003; Felemban et al., 2005). One of the earliest efforts to 
provide a bounded node-to-sink data latency guarantee for 
WSN was made by Sohrabi et al. (2000) who proposed the 
Sequential Assignment Routing (SAR) algorithm. This 
algorithm assigns the same priority to all the packets in the 
same flow. Each intermediate router forwards packets based 
on their priority. To find a routing path which can support a 
given worst case node-to-sink data latency requirement for a 
specific flow, multiple paths from the originator of the flow 
to its receiver are calculated and the one satisfying the 
requirement is used. Akkaya and Younis (2003) proposed a 
QoS protocol in which low priority is given to best-effort 
packets and high priority is given to real-time packets. Each  
intermediate router uses a scheduler and spends most of its 
resources for the real-time traffic, but also makes sure of 
assigning some resources for the best-effort traffic. As a 
result, packets with lower priority are not starved. 

He et al. (2003) proposed the Stateless Protocol for 
Real-Time Communication (SPEED) algorithm for WSN. 
This algorithm also uses a per-flow based priority 
assignment strategy like SAR. However, instead of looking 
for a path satisfying a given worst case node-to-sink data 
latency requirement among multiple paths between a sender 
and a receiver, it uses a geographic forwarding strategy, 
which does not require to find a routing path before sending 
packets. One interesting feature of this algorithm is that the 
algorithm does not admit a packet whose required maximum 
tolerable latency is smaller than what the system can 
possibly support. Felemban et al. (2005) introduced the 
multi-path multi-SPEED (MMSPEED) routing protocol, 
which considers not only the maximum node-to-sink delay 
guarantee issue, but also the reliable transfer in WSN. The 
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first feature for guaranteed maximum node-to-sink delay is 
similar to that of SPEED, in the sense that it is using a 
geographic forwarding. However, in MMSPEED, each 
packet may have a different priority, which can be changed 
at any intermediate router based on its deadline and 
remaining geographical distance between the router and the 
receiver of the packet like the real-time communication 
architecture for large-scale wireless sensor networks (RAP) 
by Lu et al. (2002). For the second feature for reliable 
transfer, multiple nodes and edge disjoint paths which can 
satisfy a worst case node-to-sink data latency are selected 
and the multiple copies of the packet are forwarded through 
the multiple disjoint paths. 

The implicit Earliest Deadline First (EDF) packet 
scheduling algorithm by Caccamo et al. (2002) is a 
decentralised variation of the traditional EDF scheduling 
algorithm. If most traffic is periodic and all periods are 
known in advance, the implicit EDF can find the schedule 
which meets the real-time constraint of each packet as long 
as it does exist. 

6.2 Related work in algorithm community 
To the best of our knowledge, there are only few works 
which used multiple sinks to provide a worst case node-to-
sink data latency in WSN. In the work of Kim et al. (2011), 
we studied the k-Sink Placement Problem (k-SPP), whose 
goal is to place k-sinks such that the maximum hop distance 
between a node and its nearest sink is minimum. That is, the 
goal of k-SPP is to best-utilise limited number of sinks so 
that the worst case node-to-sink delay is minimised. In 
opposition, in MdHSP studied in this paper, we have a 
maximum tolerable node-to-sink delay requirement, which 
cannot be negotiated unlike k-SPP, and we would like to 
minimise the number of sinks to meet the requirement so 
that our solution is the most cost-efficient. Algorithmically, 
they are completely different problems, since k-SPP  
is proven to be APX-complete and does not allow  
any approximation better than 2 (Kim et al., 2011), and 
MdHSP exhibits a structure to admit a PTAS and allow 
(1 + ε)-approximation for a small constant ε (Wang et al., 
2009a). 

MdHSP resembles the minimum d-hop dominating set 
(d-DS) problem in a sense that both of them are looking for 
a subset S of nodes which d-hop dominate a given graph  
G = (V, E). However, there is a big difference between 
them: in the minimum d-DS problem, the S V⊆ , but in 
MdHSP, the nodes in S can be located in any locations. In 
the work of Kim et al. (2011), we showed that we can 
compute a set of positions S′ with size ( )2| |O V  which 
includes an optimal solution of MdHSP. Even with this 
technique, those problems are still algorithmically different. 

As we will in this paper, an approximation for the d-hop 
dominating set problem is a feasible solution for MdHSP 
since (a) in UDG, this approach will require at least five 
times larger S than an optimal solution by Lemma 7 and in 
UBG, it is 12 times larger than an optimal solution by 
Lemma 1, and (b) the worst case performance analysis of 
this approach is not trivial. 

7 Conclusion and future works 

In this paper, we introduced two new problems, MdHSP and 
CMdHSP and proved their NP-hardness. We showed a 
simple colouring algorithm to compute a d-hop dominating 
set is in fact an O(d)-approximation for MdHSP in UDG, 
and an O(d2)-approximation in UBG. Based on this result, 
we proposed another algorithm for CMdHSP and proved its 
performance ratio is O(d) in UDG and O(d2) in UBG. 
Moreover, we extended those algorithms so that they can 
work in δ-qUDG. We believe that our approach can help to 
reduce the worst case data collection latency of a WSN in 
conjunction with the other existing latency control 
mechanisms harmoniously. As a future work, we plan to 
study a variation of our MdHSP and CMdHSP in which 
sinks cannot be located on arbitrary place, but on the subset 
of designated places. We are also interested in studying the 
problems in more realistic abstraction of WSN such as 
physical interference model (i.e. Signal-to-Inference and 
Noise Ratio (SINR) model). 
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Appendix 

Theorem A1: MdHSP and CMdHSP are NP-hard in UDG.  

Proof: Throughout the rest of this section, we prove the 
decision version of MdHSP is NP-complete in UDG, and 
therefore MdHSP is NP-hard in UDG. Then, CMdHSP is 
also NP-hard in UDG since a subclass of CMdHSP, where 

| ( ) |d G V≥  is equal to MdHSP in UDG. 

Corollary A1: MdHSP and CMdHSP are NP-hard in δ-
qUDG. 

Proof: It follows immediately from the fact that UDG is a 
special case of δ-qUDG. 

The decision version of MdHSP with d = 1 is the same as 
UDCP, which is proved to be NP-complete (Johnson, 1974). 
However, this does not necessarily mean the decision version 
of MdHSP is NP-complete. For instance, it was necessary to 
show the minimum connected d-hop dominating set problem is 
NP-hard even though the minimum (1-hop) dominating set 
problem is a well-known NP-hard problem (Nguyen and 
Huynh, 2006). In the rest of section, MdHSP means the 
decision version of MdHSP. It is easy to see that MdHSP is in 
the class-NP. In this section, we assume d ≥ 2 and prove that 
MdHSP is still NP-complete. Formally, given a Boolean 
expression 1 2= mC C C C∧ ∧ ∧ , where = , ({ , , }i i i i i i iC x y z x y z∨ ∨  

V V⊆ ∪ , 1= { ,V v  2 , , }nv v , 1 2= { , , , }nV v v v ), the 3-
SATisfiability (3-SAT) problem is to determine if there is a set 

1 1 2 2{ , , , , , , }n nS v v v v v v⊆  such that { , , } ,i i iS x y z ≠ ∅∩  
1forall i m≤ ≤  and | { , } |= 1,j jS v v∩  1forall j n≤ ≤ . 

To show the NP-completeness of our problem, we 
reduce from the PLANAR 3-SAT problem, which is 
strongly NP-complete (Lichtenstein, 1982). In an instance 
of PLANAR 3-SAT, we are given a planar bipartite graph 
whose nodes on one class of the bipartition represent the 
variables u1, …, un, and whose nodes on the other class 
represent the clauses, C1, C2,…,Cm, and edges connect each 
clauses to the three variables it contains. Moreover, there 
are edges like 1 2 2 3 1 1( , ), ( , ), , ( , ), ( , )n n nu u u u u u u u−… . Later we 
will show that from any PLANAR 3-SAT instance, we can 
make an equivalent formula such that each variable appears 
at most three times. 

Here is the general idea of our reduction. For a 
PLANAR 3-CNF 1 2= mC C C C∧ ∧ ∧ , we construct an 
UDG Gc on a grid space such that a satisfiable assignment 
for C implies an optimal solution T of MdHSP on Gc and 
vice versa. In MdHSP, each sink can be placed at any point 
on the plane. We will construct Gc carefully so that there is 
an optimal solution T such that ( )CT V G⊆ . Precisely, in 
our construction, the maximum degree of Gc is at most four. 
By Valiant (1981), a Planar graph with maximum degree 
four always can be embedded in a grid. Therefore, cases as 
shown in Figure A2(a)–A2(c) will never happen. Figure 
A3(d)–A3(g) illustrate that a sink can move to the location 
of one of the nodes of the graph while it is d-hop 
dominating the same set of nodes of Gc. In our construction 
of Gc, a sink normally 1-hop dominates at most three nodes. 
Only exception is the case (g) in Figure A3, where a sink is 

placed on one of existing sensor node in Gc. In this way, we 
can show the NP-completeness of our problem by showing 
that finding an optimal d-DS on Gc is NP-complete. In the 
following sections, we give some details of our constructions. 
We always assume that all edges in the UDG have unit 
length, which is one. 

Figure A1 This planar graph is induced from a 3-SAT instance, 

( ) ( ) ( )3 1 4 32 4 2 1 2=C v v v v v v v v v∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ . 

Therefore, C is a PLANAR 3-SAT instance 

 

Figure A2  (a),(b), and (c) are prohibited in our construction. 
When a sink is located and dominates its neighbours as 
like (d), (e), and (f), we can move the sink on one of 
existing nodes 1-hop dominated by the sink such that 
the same nodes are still 1-hop dominated by the sink. 
(g) is only case that a sink 1-hop dominates four nodes. 
Other than this case, a sink 1-hop dominates at most 
three nodes 

 

A1. Constructing a graph representing variables: In the 
reduction, both variables vi and iv  are represented by the 

same 1 2 2= ( , )i i i i
dP P P P  of length 2d – 1 [Figure A3(a)] 

for = 1, 2, ,i n . Clearly, we can d-hop dominate the 
vertices in path Pi using only one sink. There are exactly 
two ways to place the sink. That is, we can put it at either 

i
dP  or 1

i
dP + , and call them a true point and false point, 

respectively. In our truth assignment, if we assign a true 
value to vi, the sink can be placed on the true point in Gc. 
Otherwise, on false point. 

Figure A3 Figure (a), (b), and (c) are a variable vi, Type A, and 
Type B gadgets, respectively, when d = 3 

 

A2. Structure of two gadgets for Gc: Gadgets are important 
building blocks in our construction. They can be obtained 
from a path of length 2d by adding two pendent paths of 
length d–1 at the d-th and the (d+1)-th vertices, respectively. 
Both of these pendent paths are perpendicular to the original 
path and on the opposite sides. We will call i-th vertex in 
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the path gi. Based on definition, we will have two types of 
gadgets, Type A and Type B, as it illustrated in Figure A3(b) 
and A3(c). Basically they are the same UDGs, but are used 
in different ways. There are two special points in a gadget, 
namely, gd and gd+1, which play a key role in our arguments. 
We want to emphasise that a gadget can be d-hop 
dominated by exactly one point on it – gd. However, it 
cannot be d-hop dominated by two any other sinks placed 
on the nodes in other gadgets, if we connect more gadgets 
together to form a chain (as we will do later). This means 
that to d-hop dominate a gadget in a graph, we need to place 
at least one sink in each gadget. Furthermore, because of its 
special structure, if we place the sink on any other vertex 
except gd and gd+1 in a given gadget, one of the endpoints of 
pendent paths may not be d-hop dominated simultaneously. 
Note that both endpoints of the two pendent paths cannot be 
dominated by sinks lying outside the given gadget. 
Therefore, if we do not want to put a sink on gd or gd+1, we 
need at least two sink on one gadget to d-hop dominate. 
Thus, as we shall see later, when we try to minimise the 
total number of sinks placed in our constructed graph Gc or 

Ci
G , we have to put sinks at either gd or gd+1 in each gadget. 

A3.  Constructing a graph representing a clause: Let 
=i i i iC x y z∨ ∨  be one clause in a given Boolean 

expression of PLANAR 3-SAT C. Ci is represented as an 
UDG Ci

G , as shown in Figure A4. There are four special 

vertices in Ci
G , denoted by i

xE , i
yE , i

zE  and Ei, 

corresponding to three literals xi, yi, zi and clause Ci, 
respectively. Ei is connected to literal xi through a chain of 
gadgets and a path of length d – 1. The endpoint of this path 
is connected (by adding an edge) to true or false point 
(depending on whether xi = vj or jv ) of the path Pi 
representing xi, while the other endpoint of the path is 
connected to an endpoint of a gadget. Similarly, we can 
connect Ei and yi, Ei and zi. The number of gadgets does not 
affect the structure of the graph. So, we use  
enough gadgets to make the graph planar on grid. Ei and xi  
 

(resp. yi and zi) are connected with a chain of Type A 
gadgets and Type B gadgets and there is an overlap point 

i
xE  (resp. i

yE  and i
zE ) on this path. (This is a key point to 

our construction). Ei does not belong to any gadget. Denote 
by Ci

N  the number of gadgets in Ci
G . By xi = True (resp. 

xi = False) we mean that the sink is placed at the truth point 
(resp. the false point) of xi. Now we introduce an important 
property of the above construction. 

Lemma A1: Ci
G  has an optimal solution of size 3Ci

N +  for 

MdHSP if and only if Ci is true. 

Proof: First we show if Ci is true, then 3Ci
N +  sinks are 

enough to d-hop dominate Ci
G , with the special point Ei 

being d-hop dominated by some sink on a gadget adjacent to 
Ei. In fact, if Ei is true, one of xi, yi and zi has to be true. 
Without loss of generality, we call this (the one with true 
assignment) xi. Now, put one sink as follows: true point of 
literal xi, true (or false) point of yi, true (or false) point of zi; gd 
points of each gadget of Type A (resp. B) connecting i

xE  and 
xi (resp. connecting Ei and i

yE , connecting Ei and i
zE ); gd+1 

points of each gadget of type B (resp. A) connecting i
xE  and 

Ei (resp. connecting i
yE  and yi, connecting i

zE  and zi). Then it 
can easily be verified that Ei is d-hop dominated by the sink 
on the gd+1 point of the gadget adjacent to Ei, and Ci

G  is d-

hop dominated by exactly 3Ci
N +  sinks. This number is 

optimal, since to d-hop dominate each variable or each 
gadget, we need at least one sink. On the contrary, if Ci is 
false, to dominate Ci

G  in an optimal way, we have to choose 

gd+1 point for each gadget of Type A and choose the gd point 
for each gadget of Type B. This results that the special point 
Ei cannot be d-hop dominated invariably. Therefore, we need 
at least 4Ci

N +  sinks to d-hop dominate Ci
G . 

Figure A4 A structure of a graph Ci
G , which represents a Boolean expression =i i i iC x y z∨ ∨ , where { , , }i i ix y z V V⊆ ∪  
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A4. Construction of the UDG Gc on the Grid Space from 
G(C): In this section, we will show how we can reduce 
PLANAR 3-SAT to MdHSP problem. Given a PLANAR 3-
SAT Boolean expression C, we can construct a planar UDG 
Gc such that a truth assignment for CE implies a d-hop 
clustering of size Nc + n and vice versa, where Nc is number 
of gadgets in Gc and n is number of variables in C. As we 
mentioned 3-PLANAR 3-SAT remains NP-complete, where 
any variable appears at most three times in any instance of 
3-PLANAR 3-SAT. The idea of proof can be summarised as 
follow. We take a planar embedding of G(E) for some 
instance of PLANAR 3-SAT. Let 1 2( , ), ( , ), , ( , )ku c u c u c  
be the edges adjacent to variable-vertex u in the  
graph G(C), which are arranged in clockwise order 
according to the planar embedding. Now introducing new 
variables 1 2, , , kw w w  and clause 1 2 2 3{ },{ }, ,w w w w∨ ∨  

1 1{ },{ }k k kw w w w− ∨ ∨ . Replace literals ,v v  in Ci by ,i iw w , 
respectively, for = 1, 2, ,i k . It is easy to see that the 
modified formula C is satisfiable if and only if C is 
satisfiable. Moreover G(C′) is a planar graph. In this way, 
the occurrences of variables in any clauses can be reduced 
to at most three. Now let C be an instance of PLANAR  
3-SAT with each variable appearing in at most three 
clauses. We show how to construct graph Gc from a planar 
embedding of G(C): (a) remove the edges 

1 2 1 1( , ), , ( , ), ( , )n n nu u u u u u−  in G(C). (b) Replaced each 
variable-vertex u in G(C) with a path of length 2d as in 
Figure A3. (c) If vi or iv  occurs in a clause Ci, replace the 
edge connecting ci and vi (resp. iv ) by an edge connecting ci 
and the truth (resp. false) point of variable vi in the path. (d) 
Note that since each variable-vertex has degree at most 
three, we can always replace the edges incident to the it by 
introducing a new vertex of degree at most four [Figure 
A5(a) and A5(b)]. Embed the planar graph obtained (whose 
maximal degree is at most four) into a grid space. (e) 
Regarding clause-vertex ci in Gc as a special point Ei, we  
 

can construct an UDG Ci
G  by replacing each edge adjacent 

to ci in G(C) with some chains of gadgets constructed 
previously (Figure A4). Note that each variable-vertex has 
degree at most three, so we can always replace the edges 
incident to that by some gadgets as it is shown in Figure 
A5(c). (f) After the above operations, we can obtain the 
UDG Gc. 

A5. Correctness of our reduction: Let Nc be the number 
of gadgets used in Gc, and | |= CT N n+ .  
Lemma A1: Gc has optimal solution of size | |= CT N n+  for 
MdHSP if and only if C is satisfiable.  

Proof: First assume that C is satisfied by a truth assignment. 
Note Ci is true, as we have shown before, C j

G  can be d-hop 

dominated by 3Ci
N +  sinks – each literal and each gadget 

are dominated by exactly one sink. It follows that Gc can be 
dominated by Nc + n sinks. Note each gadget and each 
literal in Gc need a relay to d-hop dominate them. Thus, T is 
the minimum number of sinks that can d-hop dominate Gc. 
Suppose that Gc has an optimal solution T, we show that 
there exists a truth assignment for each variable such that C 
is satisfiable. We prove by contradiction. Assume that for 
each assignment there exists a clause Cj which is false. Then 
by Lemma A1, to d-hop dominate the subgraph C j

G  of Gc, 

we need at least 4C j
N +  sinks. Thus, for all assignments of 

variables we need at least Nc + 4 sinks to d-hop dominate 
Gc. That means to d-hop dominate Gc, we need at least 
Nc + 4 nodes, which contradicts the assumption. It is easy to 
verify that the reduction is polynomial. This completes the 
proof.  

Finally, we mention that when we are concerned with 
connected UDGs for our problems, it is always possible to 
make Gc to be connected by adding some ‘blocks’, and our 
proof can be easily adapted to this situation; we omit the 
details. 

Figure A5 We assume that one variable can be used at most three times. We will use this structure to make the maximum degree of Gc at 
most four when a variable is used in three clauses 

 

 


