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Abstract

Quantum field theories describe a wide variety of fundamental phenomena in physics. However, their

study often involves cumbersome numerical simulations. Quantum simulators, on the other hand, may

outperform classical computational capacities due to their potential scalability. Here, we report an experi-

mental realization of a quantum simulation of fermion-antifermion scattering mediated by bosonic modes,

using a multilevel trapped ion, which is a simplified model of fermion scattering in both perturbative and

nonperturbative quantum electrodynamics. The simulated model exhibits prototypical features in quantum

field theory including particle pair creation and annihilation, as well as self-energy interactions. These are

experimentally observed by manipulating four internal levels of a 171Yb+ trapped ion, where we encode the

fermionic modes, and two motional degrees of freedom that simulate the bosonic modes. Our experiment
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establishes an avenue towards the efficient implementation of fermionic and bosonic quantum field modes,

which may prove useful in scalable studies of quantum field theories in perturbative and nonperturbative

regimes.

Quantum simulators are devices designed to predict the properties of physical models associated with

target quantum systems [1, 2]. Their intrinsic physical behaviors are fully governed by the laws of quan-

tum mechanics, making it possible to efficiently study complex quantum systems that cannot be solved by

classical computers [3, 4]. Trapped ions and superconducting circuits have proved to be promising for exper-

imentally simulating a variety of paradigmatic quantum models such as various spin models [5, 6, 7, 8, 9],

relativistic Dirac equations [10, 11, 12, 13], embedding quantum simulators [14, 15, 16, 17, 18] and fermionic

models [19, 20]. More recently, a digital quantum simulation of a fermionic lattice gauge theory has been

performed in trapped ions [21]. However, it would be desirable to realize a quantum simulator that involves

interacting fermionic and bosonic fields as described by quantum field theories (QFT) [22]. In this sense,

fermionic modes could be mapped in the ion internal levels, while bosonic modes could be naturally encoded

in the motional degrees of freedom.

Here, we report the first experimental quantum simulation of interacting fermionic and bosonic quantum

field modes, where fermions are encoded in four internal levels of an Ytterbium ion and the bosonic modes in

two motional modes, following the proposal by Casanova et al. [23]. Therefore, this analog quantum simu-

lation constitutes a milestone towards a digital-analog quantum simulator [19, 24, 25, 26, 27] of perturbative

and nonperturbative quantum field theories. In this sense, a remarkable feature of our experiment is that it

contains all orders in perturbation theory, which is equivalent to all Feynman diagrams for a finite number of

fermionic and bosonic modes. Moreover, our approach can be scaled up by adding progressively more ions

allowing the codification of additional fermionic and bosonic field modes, which may lead to full quantum

simulations of quantum field theories such as quantum electrodynamics (QED) [22].
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Results

The most common classical way to analyze QFTs is via a Dyson series expansion in perturbation theory and

Feynman diagrams [22]. If we consider larger coupling parameters, standard perturbative methods become

cumbersome for a finite-mode Dyson expansion, mainly because only a reduced number of perturbative Feyn-

man diagrams can be calculated. On the other hand, a trapped-ion quantum simulator with its high degree

of quantum control [28] could overcome these limitations and simulate QFTs more efficiently than classical

computers [29]. Based on the proposal of Ref. [23], our experimental quantum simulation of finite-number

interacting quantized field modes includes all terms of the Dyson expansion. We experimentally imple-

ment a fundamental QFT model in a single trapped-ion considering i) one fermionic and one antifermionic

field modes, ii) one or two bosonic field modes, which already reveals interesting QFT features such as

self-interactions, particle creation and annihilation, perturbative and nonperturbative regimes. The general

Hamiltonian involving the continuum of fermionic and bosonic fields reads

H =
∫
dpω(b†pbp + d†pdp) +

∫
dk ωka

†
kak

+g
∫
dxψ†(x)ψ(x)A(x), (1)

where bp and dp are fermionic and antifermionic annihilation operators, respectively, while ak are the bosonic

annihilation operators. Here, ω (ωk) is the fermion and antifermion free energy (boson free energy), while

ψ(x) denotes the fermionic and A(x) the bosonic fields [23].

As a stepped experimental demonstration, we first consider the simplest situation with only one bosonic

mode, which can be represented as a single vibrational mode of the ion along the X or Y direction. The

fermion and antifermion modes are considered as two comoving modes describing incoming Gaussian wave

packets which are centered in the average momentum with distant average initial positions [23]. These modes

describe self-interaction dressed states by emission and absorption of virtual bosons. They also represent the

lowest-order in perturbation theory of the scattering of the incoming wave packets that will collide in a

certain region of spacetime. The pair creation and annihilation is local and takes place only when the two

wave packets of the fermion and antifermion overlap, namely, when the particles scatter. A diagram of these

interactions, in the spirit of a Feynman diagram, is shown in Fig. 1. Note that the loop of this diagram includes
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Figure 1: (a) Diagram of interactions between fermion, antifermion, and bosons. (b) Diagram of the encoding

of a QFT experiment in a trapped ion.

all terms in a finite-mode Dyson expansion, which is different from the standard perturbative approach with

only a reduced number of Feynman diagrams. By considering slow massive bosons, as described in Ref. [23],

the interaction Hamiltonian we would like to realize turns into

H = g1e
−iω0t(b†ba0 + dd†a0) + g2e

−(t−T/2)2/(2σ2
t )

×(eiδtb†d†a0 + e−i(2ω0+δ)td b a0) + h.c., (2)

where δ = ωf + ωf − ω0. Here, ωf , ωf , and ω0 represent the energy of the fermionic field mode b, the

antifermionic field mode d, and the bosonic field mode a0, respectively. The ratio g2/g1 gives the relative

strength between pair creation and self-interaction. T is the total time of the pair-creation process while σt is

the temporal interval of the interaction region.

Applying a Jordan-Wigner mapping [23] from fermionic modes to four internal levels of a single 171Yb+ ion,

b† = I ⊗ σ+, b = I ⊗ σ−,

d† = σ+ ⊗ σz, d = σ− ⊗ σz, (3)
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the Hamiltonian becomes

HI = g1(|1〉 〈1|+ 2 |2〉 〈2|+ |4〉 〈4|)a0e−iω0t

− g(t)(|1〉 〈4|a†0e−iδt + |1〉 〈4|a0e−i(2ω0+δ)t) + h.c., (4)

where the associated time-dependent coupling strength

g(t) = g2e
−(t−T/2)2/(2σ2

t ). (5)

The vacuum state and fermionic states are represented by

|1〉 = |vacuum〉 , |2〉 = |f〉 , |3〉 = −
∣∣f〉 , |4〉 = −

∣∣f, f〉 , (6)

while
∣∣f, f , n〉 denotes the state containing one fermion, one antifermion, and n bosons, respectively. The

experimental diagram for this implementation is shown in Fig. 1.

The Hamiltonian in Eq. (4) can be implemented with the following trapped-ion operations:

• (|1〉 〈1| + 2 |2〉 〈2| + |4〉 〈4|)a0e−iω0t: ω0 detuned displacement operators with σ+-polarized Raman

beams, as shown in Fig. 2.

• |1〉 〈4|a†0e−iδt: δ detuned red sideband transition between |1〉 ↔ |4〉.

• |1〉 〈4|a0e−i(2ω0+δ)t: 2ω0 + δ detuned blue sideband transition between |1〉 ↔ |4〉.

All optical transitions between 2S1/2 ↔2 P1/2 states have the same transition strength factor with respect

to absolute values. For this experimental case, the σ+-polarized Raman beams with frequency difference

ωm−ω0 give exactly the desired displacement Hamiltonian (|1〉 〈1|+2 |2〉 〈2|+|4〉 〈4|)a0e−ıω0t. In principle,

we can also implement other kinds of displacement Hamiltonians by applying additional σ− and π-polarized

Raman beams with specific ratios.

This experiment is realized with stimulated Raman transitions implemented by a 375 nm “MiraHP” mode-

locked pulse laser. We first cool down vibrational modes and initialize the ion in the vacuum state |1, n = 0〉

by resolved sideband cooling [30]. Then, a phonon displacement Raman beam component for all internal

levels, a detuned blue sideband Raman beam component and a detuned red sideband Raman beam com-

ponent (both for the clock transition) are applied simultaneously to realize this Hamiltonian in our trapped
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Figure 2: Diagram of the displacement operator with σ+-polarized Raman beams.

171Yb+ ion system. All these Raman laser beams introduce state-dependent forces and push the ion along

±∆k direction for certain internal states. After the evolution process, we measure the final distribution of

phonon number states by applying blue and red sideband transitions, while fitting the signals through the

maximum likelihood method with parameters of the Fock state populations. For the measurement step, we

observe the time evolution of blue and red sideband transitions up to 250 µs with 1 µs step by averaging over

200 repetitions in each step.

For the average boson (phonon) number measurement, we first use optical pumping to trace out internal

states and then make a phonon number fitting measurement with blue sideband time sweep. The populations

of fermion mode or fermion-antifermion pair at bosonic mode |n = 0〉 are measured based on the popula-

tion measurement of state |1, 0〉. In order to measure the population of |1, 0〉, we perform the following

experimental steps.

• Collapse bright states population to dark state |1〉 by standard detection process

• A “uniform red sideband” transition to transfer states |1, n 6= 0〉 to bright state |3, n− 1〉 with the same

Rabi frequency
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Figure 3: Trapped-ion experimental results of the quantum simulation of fermion-antifermion scattering

mediated by boson exchange in quantum field theory. Dots are experimental data and lines are numerical

simulation curves. (a) Self-interaction process, with g1 = 0.1ω0, 0.15ω0. (b) Self-interaction process for

two bosonic modes, with ω1 = ω0 and ω2 = 0.9ω0. (c) Fermion and antifermion annihilation process.

(d) Nonperturbative interaction process. Note that solid lines are numerical simulation curves. Dotted lines

are 6th order perturbation calculation with 50 iterations for each order by Feynman diagrams method.

• Carrier transition to swap bright state |3〉 and dark state |1〉

• Standard detection process to measure bright states population, which should be equal to the original

population of |1, 0〉

We first realize the fermion self-interaction processes with parameters

g2 = 0, σt = 3/ω0.

We choose the initial state to be one fermion state |f, 0, 0〉with no bosons. Then the self-interacting dynamics

is given by |f, 0, n〉 ↔ |f, 0, n± 1〉. Full-fledged details of our experimental results are shown in Fig. 3.
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We observe that the considered fermion emits and reabsorbs bosons at a period 2π/ω0. The experimental

results match well the theoretical simulation curve. This process is then extended to 2 bosonic modes by

using both X and Y phonon modes of a single trapped ion. By performing additional sequential “uniform

red sideband” transitions of X and Y modes, we calculate the population of the fermionic mode |f, 0, 0, 0〉 =

|2, nx = 0, ny = 0〉 with the following set relation

|2, nx = 0, ny = 0〉 = |2, nx = 0〉 − |2, nx = 0, ny 6= 0〉 . (7)

Next, we realize the pair annihilation process with parameters g1 = 0.01ω0, g2 = 0.21ω0, σt = 3/ω0.

We choose the initial state to be one fermion and one antifermion state
∣∣f, f , 0〉 with no bosons. Then, the

pair annihilation dynamics is given by
∣∣f, f , n〉 ↔ |0, 0, n± 1〉. Detailed experimental results are shown in

Fig. 3. We observe that the considered fermion and antifermion pair annihilates when the two modes overlap

and enter the interaction region, a process giving rise to the population of the bosonic mode.

Finally, we realize the nonperturbative process with parameters g1 = 0.1ω0, g2 = ω0, σt = 4/ω0.We also

choose the initial state to be one fermion and one antifermion state
∣∣f, f , 0〉 with no bosons. However, there

is no simple analytic description for this strong coupling situation. The associated experimental data is shown

in Fig. 3. For large g2 values (g2 ≥ ω0), we run into the nonperturbative regime, where Feynman diagram

techniques are not useful. When the two particles enter the interaction region, the theoretical curves calculated

with Feynman diagrams strongly deviate from numerical simulation curves as well as from experimental

data. We obtain that the number of created bosons is much larger due to the nonresonant terms present in

the interaction. In this sense, the dynamics becomes more complex and strongly dependent on the specific

coupling values.

Discussion

In conclusion, this work can be considered as the first experimental quantum simulation of interacting

fermionic and bosonic quantum field modes. Our approach can be scaled up by progressively incorporating

more fermionic and bosonic field modes, which may lead to a full-fledged digital-analog quantum simulation

of quantum field theories such as quantum electrodynamics (QED). In our current experimental system, an
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extension to multi phonon (bosonic) modes should be straightforward by loading a chain of ions and shining

Raman laser beams at one end of the ion chain. This experiment opens an avenue that aims at outperform-

ing the limitations of classical computers, with in principle scalable quantum simulations. In particular, we

remark that already with 10 two-level ions and 5 phononic levels per ion, one could perform quantum simula-

tions of interacting quantum field modes that are beyond the reach of classical computations, that is, a Hilbert

space dimension of 1010 ∼ 233, which would otherwise require a lengthy quantum algorithm with 33 qubits.
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