
On Incentive Compatible Competitive
Selection Protocol
(Extended Abstract)

Xi Chen1, Xiaotie Deng2,�, and Becky Jie Liu2

1 Department of Computer Science, Tsinghua University
xichen00@mails.tsinghua.edu.cn

2 Department of Computer Science, City University of Hong Kong
csdeng@cityu.edu.hk, jliu@cs.cityu.edu.hk

Abstract. The selection problem of m highest ranked out of n candi-
dates is considered for a model while the relative ranking of two can-
didates is obtained through their pairwise comparison. Deviating from
the standard model, it is assumed in this article that the outcome of a
pairwise comparison may be manipulated by the two participants. The
higher ranked party may intentionally lose to the lower ranked party
in order to gain group benefit. We discuss incentive compatible mecha-
nism design issues for such scenarios and develop both possibility and
impossibility results.

1 Introduction

Ensuring truthful evaluation of alternatives in human activities has always been
an important issue throughout the history. In sport, in particular, such an issue
is vital and the practice of the fair play principle has been consistently put
forth at the foremost priority. In addition to reliance on the code of ethics and
professional responsibility of players and coaches, the design of game rules is an
important measure to make fair play enforced. The problem of tournament design
consists of issues such as ranking, round-robin scheduling, timetabling, home-
away assignment, etc. Ranking alternatives through pairwise comparisons is the
most common approach in sports tournaments. Its goal is to find out the ‘true’
ordering among alternatives through complete or partial pairwise comparisons,
and it has been widely studied in the decision theory.

In [4], Harary and Moser gave an extensive review of the properties of round-
robin tournaments, and introduced the concept of ‘consistency’. In [7], Rubin-
stein proved that counting the number of winning matches is a good scheme to
rank among alternatives in round-robin tournaments; it is also the only scheme
that satisfies all the nice rationality properties of ranking. Jech [5] proposed a
ranking procedure for incomplete tournaments, which mainly depended on tran-
sitivity. He proved that if all players are comparable, i.e. there exists a beating
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chain between each pair of players, then the ranking of players under a spe-
cific scheme uniquely exists. Chang et al. [1] investigated the ability of methods
in revealing the true ranking in multiple incomplete round-robin tournaments.
Works have also been done on evaluating the efficiency and efficacy of ranking
methods. Steinhaus [8] proposed an upper bound for the number of matches re-
quired to reveal the overall ranking of all players. Mendonca et al. [6] developed
a methodology for comparing the efficacy of ranking methods, and investigated
their abilities of revealing the true ranking.

Such studies have been mainly based on the assumption that all the players
play truthfully, i.e. with their maximal effort. It is, however, possible that some
players cheat and seek for group benefit. For example, in the problem of choosing
m winners out of n candidates, if the number of winning matches is the only
parameter considered in selecting winners, some top players could intentionally
lose some matches when confronting their ‘friends’, so the friends could earn a
better ranking while the top players remain highly ranked. Such problems will
be the focus of our study: Is there an ideal protocol which allows no cheating
strategy under any circumstances, even when a majority of players, possibly
many with high ranks, form a coalition to help lower ranked players in it?

The problem, that is, choosing m winners out of n players, is studied under two
models. Under both models, a coalition will try to have more of its members be
selected as winners than that under the true ranking. For the collective incentive
compatible model, its only goal is to have more members be selected as winners,
even by sacrificing some highly ranked players who ought to be winners. For
the alliance incentive compatible model, it succeeds not only by having more
winners, but also by ensuring the ones who ought to win remain winners, i.e.
no players sacrifice their winning positions in order to bring in extra winners.
Under both models, our objective is to find an incentive compatible protocol if
it exists, or to prove the non-existence of such protocols.

We will formally introduce the models, notations and definitions in Section
2. In Section 3, we discuss the collective incentive compatible model and prove
the non-existence of incentive compatible protocols under it. In Section 4, we
present an incentive compatible selection protocol under the alliance incentive
compatible model. Finally, we conclude with remarks and open problems.

2 Issues and Definitions

Firstly, we describe a protocol which is widely used in bridge tournaments, the
Swiss Team Protocol. Using it as an example, we show collaboration is possible
to improve the outcome of a subgroup of players, if the protocol is not properly
designed.

2.1 Existence of Cheating Strategy Under the Swiss Team Protocol

The Swiss Team protocol chooses two winners out of four players. Let the four
players P4 = {p1, p2, p3, p4} play according to the following arrangements. After
all the three rounds, two of them will be selected as winners.
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- Assign a distinct ID in N4 = {1, 2, 3, 4} to each player in P4 by a randomly
selected indexing function.

- In round 1, player (with ID) 1 vs. player 2, and player 3 vs. player 4.
- In round 2, two winners of the first round play against each other, and so

as the two losers. The player continuously wins twice will be selected as the
first winner of the whole game; the player continuously loses twice will be
out. Therefore, there are only two players left.

- In round 3, the two remaining players play against each other. The winner
will be selected as the second winner of the whole game.

Suppose the true capacity of the four players in P4 is p1 > p2 > p3 > p4 and we
consider the case in which p1 and p3 form a group. Their purpose is to get both
winning positions by applying a cheating strategy, while the winners should be
p1 and p2 according to the true ranking. Under the settings of the Swiss Team
Protocol described above, the probability of this group {p1, p3} having effective
cheating strategies is non-negligible. Following is their strategy.

- Luckily, the IDs assigned to p1, p2, p3 and p4 are 1, 2, 3 and 4 respectively.
- In round 1, p1 plays against p2 and p3 plays against p4. p1 and p3 win.
- In round 2, p1 plays against p3 and p2 plays against p4. In order to let p3

be one of the winners, p1 loses the match to p3 intentionally. p3 will then be
selected as the first winner for winning twice. In the other match, both p2
and p4 play truthfully and p2 wins.

- In round 3, p1 and p2 play against each other, and p1 wins. Therefore, p1
is selected as the second winner.

By applying the cheating strategy above, the group of bad players {p1, p3} can
break the Swiss Team protocol by letting p1 confront p2 twice, and earn an extra
winning position.

2.2 Problem Description

Suppose a tournament is held among n players Pn = {p1...pn} and m winners
are expected to be selected by a selection protocol. Here a protocol fn,m is a
predefined function to choose winners through pairwise competitions, with the
intention of finding m players of highest capacity. When the tournament starts,
a distinct ID in Nn = {1...n} is assigned to each player in Pn by a randomly
picked indexing function I. Then a match is played between each pair of players.
The competition outcomes will form a tournament graph [2], whose vertex set
is Nn and edges represent results of all the matches. Finally, the graph will be
treated as input to fn,m, and it will output a set of m winners.

Assume there exists a group of bad players play dishonestly, i.e. they might
lose a match on purpose to gain overall benefit of the whole group, while all the
other players always play truthfully, i.e. they try their best to win matches. We
say that the group of bad players gains benefit if they are able to have more
winning positions than that according to the true ranking. Given knowledge of
the selection protocol fn,m, the indexing function I and the true ranking of all
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players, the group of bad players tries to find a cheating strategy that can fool
the selection protocol and gains benefit.

The problem is considered under two models in which the characterizations
of bad players are different. Under the collective incentive compatible model, bad
players are willing to sacrifice themselves to win group benefit; while the ones
under the alliance incentive compatible model only cooperate if their individual
interests are well maintained in the cheating strategy.

Our goal is to find an incentive compatible selection protocol, under which
players or group of players maximize their benefits only by strictly following the
fair play principle, i.e. always play with maximal effort. Otherwise, we prove the
inexistence of such protocols.

2.3 Formal Definitions

When the tournament begins, an indexing function I is randomly picked and a
distinct ID I(p) ∈ Nn is assigned to each player p ∈ Pn. Then a match is played
between each pair of players, and results are represented as a directed graph G.
Finally, G is feeded to the predefined selection protocol fn,m, to produce a set
of m winners W = fn,m(G) ⊂ Nn.

Definition 1 (Indexing Function). An indexing function I for a tournament
attended by n players Pn = {p1, p2, ...pn } is a one-to-one correspondence from
Pn to the set of IDs: Nn = {1, 2, ...n}.

Definition 2. A tournament graph of size n is is a directed graph G = (Nn, E)
such that, for any i �= j ∈ Nn, either edge ij ∈ E (player with ID i beats player
with ID j ) or edge ji ∈ En. We use Kn to denote the set of all such graphs.

A selection protocol fn,m which chooses m winners out of n candidates is a
function from Kn to { S ⊂ Nn and |S | = m }.

The group of bad players not only know the selection protocol, but also the
true ranking of players. We say a bad player group gains benefit if it has more
members be selected as winners than that according to the true ranking.

Definition 3 (Ranking Function). A ranking function R of is a one-to-one
correspondence from Pn to Nn. R(p) ∈ Nn represents the underlying true ranking
of player p among the n players. The smaller, the stronger.

Definition 4 (Tournament). A tournament Tn among n players Pn is a pair
Tn = (R, B), where R is a ranking function from Pn to Nn and B ⊂ Pn is the
group of bad players.

Definition 5 (Benefit). Given a protocol fn,m, a tournament Tn = (R, B), an
indexing function I and a tournament graph G ∈ Kn, the benefit of the group of
bad players is

Ben(fn,m, Tn, I, G) =
∣
∣
∣

{

i ∈ fn,m(G), I−1(i) ∈ B
}

∣
∣
∣ −

∣
∣
∣

{

p ∈ B, R(p) ≤ m
}

∣
∣
∣.
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Given fn,m, Tn and I, not every graph G ∈ Kn is a feasible strategy for the
group of bad players. First, it depends on the tournament Tn = (R, B), e.g. a
player pb ∈ B cannot win player pg /∈ B if R(pb) > R(pg). Second, it depends
on the property of bad players which is specified by the model considered.

We now, for each model, characterize tournament graphs which are recognized
as feasible strategies. The key difference is that a bad player in alliance incentive
compatible model is not willing to sacrifice his own winning position, while a
player in the other model fights for group benefit at all costs.

Definition 6. Given fn,m, Tn = (R, B) and I, a graph G ∈ Kn is c-feasible if

1. For every two players pi, pj /∈ B, if R(pi) < R(pj), then I(pi)I(pj) ∈ E;

2. For all pg /∈ B and pb ∈ B, if R(pg) < R(pb), then edge I(pg)I(pb) ∈ E.

Graph G ∈ Kn is a-feasible if it is c-feasible and also satisfies

3. For every bad player p ∈ B, if R(p) ≤ m, then I(p) ∈ fn,m(G).

A cheating strategy is then a feasible tournament graph G that can be employed
by the group of bad players to gain positive benefit.

Definition 7 (Cheating Strategy). Given fn,m, Tn and I, a cheating strategy
for the group of bad players under the collective incentive compatible (alliance
incentive compatible ) model is a graph G ∈ Kn which is c-feasible (a-feasible )
and satisfies Ben(fn,m, Tn, I, G) > 0.

We ask the following two natural questions.

Q1: Is there a protocol fn,m such that for all Tn and I, no cheating strategy
exists under the collective incentive compatible model?

Q2: Is there a protocol fn,m such that for all Tn and I, no cheating strategy
exists under the alliance incentive compatible model?

In the following sections, we will present an impossibility proof for the first
question, and design an incentive compatible protocol for the second model.

3 Incentive Compatible Protocol Under the Collective
Incentive Compatible Model

In this section, we prove the inexistence of incentive compatible protocol under
the collective incentive compatible model. For every fn,m, we are able to find a
large number of tournaments Tn where cheating strategy exists.

Definition 8. For all integers n and m such that 2 ≤ m ≤ n − 2, we define a
graph Gn,m = (Nn, E) ∈ Kn which consists of 3 parts, T1, T2 and T3.

1. T1 = {1, 2, ... m − 2}. For all i < j ∈ T1, edge ij ∈ E;
2. T2 = {m − 1, m, m + 1}. (m − 1)m, m(m + 1), (m + 1)(m − 1) ∈ E;
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Fig. 1. Tournament Graph G9,5

3. T3 = {m + 2, m + 3, ...n}. For all i < j ∈ T3, edge ij ∈ E;
4. For all i′ ∈ Ti and j′ ∈ Tj such that i < j, edge i′j′ ∈ E.

Players in T1 and T3 are well ordered among themselves, but the ones in T2 are
not due to the existence of a cycle. All players in T1 beat the ones in T2 and
T3, and all players in T2 beat the ones in T3. Sample graph G9,5 is shown in
Figure 1. Proof of Lemma 1 can be found in the full version [3].

Lemma 1. For every fn,m where 2 ≤ m ≤ n − 2, if Tn = (R, B) satis-
fies that B = {pm−r+1...pm+1, pm+2} where r ≥ 2 and R(pi) = i for all
1 ≤ i ≤ n, then there exists an indexing function I such that Gn,m is a cheating
strategy.

Corollary 1. For every fn,m where 2 ≤ m ≤ n−2, if Tn = (R, B) satisfies that
B = R−1 (m − r + 1 ...m + 1, m + 2) where r ≥ 2, then there exists an indexing
function I such that Gn,m is a cheating strategy.

Corollary 2 can be derived from Lemma 1 immediately. Figure 2 shows the true
ranking of a tournament Tn in which a cheating strategy exists.

By Lemma 2, one can extend Corollary 2 to Theorem 1 below.

Lemma 2. Given fn,m and I, if G ∈ Kn is a cheating strategy for tourna-
ment Tn = (R, B), and there exist players pb ∈ B and pg /∈ B such that
R(pb) = R(pg)+1 ≤ m, then graph G remains a cheating strategy of T ′

n = (R′, B)
where R′(pb) = R(pg), R′(pg) = R(pb) and R′(p) = R(p) for every other
player p.

Theorem 1. For every fn,m where 2 ≤ m ≤ n − 2, if Tn = (R, B) satis-
fies: 1). at least one bad player ranks as high as m − 1; 2). the ones ranked
m + 1 and m + 2 are both bad players; 3). the one ranked m is a good player,
then there always exists an indexing function I such that Gn,m is a cheating
strategy.

Theorem 1 describes a much larger class of tournaments in which cheating strat-
egy exists. An example of such tournaments is shown in Figure 3.
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Top m players

Bad players Good players

Fig. 2. An Example of Tournaments

Top m players

Bad players Good players

Fig. 3. An Example of Tournaments

4 Incentive Compatible Protocol Under the Alliance
Incentive Compatible Model

In this section, we answer question Q2 for arbitrary n and m. We prove that
whether a successful protocol exists is completely determined by the value of
n − m. When n − m ≤ 2, cheating strategies can always be constructed, and
thus we prove the inexistence of ideal protocol. When n − m ≥ 3, we present a
selection protocol f∗

n,m under which no cheating strategy exists.

4.1 Inexistence of Selection Protocol When n − m ≤ 2

Definition 9. We define two classes of tournament graphs, graph G∗
n for any

n ≥ 3 and graph G′
n for any n ≥ 4. Their structures are similar to Gn,m.

- For G∗
n, T1 = { 1, 2, ... n − 3 }, T2 = { n − 2, n − 1, n } and T3 = ∅ with edges

(n − 2)(n − 1), (n − 1)n, n(n − 2) ∈ G∗
n. Graph G∗

6 is shown in Figure 4.

- For G′
n, T1 = { 1, 2, ... n− 4 }, T2 = { n− 3, n− 2, n− 1} and T3 = {n} with

edges (n − 3)(n − 2), (n − 2)(n − 1), (n − 1)(n − 3) ∈ G′
n. Sample graph G′

7
is shown in Figure 5.

By the following two lemmas, no ideal protocol exists when n − m ≤ 2. The
proofs can be found in the full version [3].

Lemma 3. For every fn,m where n−m = 1 and m ≥ 2, if Tn = (R, B) satisfies
B = { p1, p2, ... pn−2, pn } and R(pi) = i for all 1 ≤ i ≤ n, then there exists an
indexing function I such that graph G∗

n is a cheating strategy for the group of
bad players under the alliance incentive compatible model.

Lemma 4. For every fn,m where n−m = 2 and m ≥ 2, if Tn = (R, B) satisfies
B = { p1, p2, ... pn−3, pn−1, pn } and R(pi) = i for all 1 ≤ i ≤ n, then there exists
an indexing function I such that graph G′

n is a cheating strategy for the group
of bad players under the alliance incentive compatible model.

4.2 Selection Protocol f ∗
n,m for Case n − m ≥ 3

In this section, we’ll first introduce some important properties of tournament
graphs. Then a selection protocol f∗

n,m will be described for case n − m ≥ 3. Fi-
nally, we prove that for any tournament Tn and indexing function I, no cheating
strategy exists for the group of bad players.
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Fig. 4. Tournament graph G∗
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Fig. 5. Tournament graph G′
7

Definition 10. A directed graph G is said to be strongly connected if there’s a
directed path between every pair of vertices. Any maximal subgraph of G that is
strongly connected is called a strongly connected component of graph G.

Let G ∈ Kn be a tournament graph. We use G1... Gk to denote its strongly
connected components which satisfy that for all u ∈ Gi and v ∈ Gj such that
i < j, edge uv ∈ G. The proof of Lemma 5 below can be found in [2].

Definition 11. A directed graph G of order n ≥ 3 is pancyclic if it contains a
cycle of length l for each l = 3, 4, ... n, and is vertex-pancyclic if each vertex v
of G lies on a cycle of length l for each l = 3, 4, ... n.

Lemma 5. Every strongly connected tournament graph is vertex-pancyclic.

Corollary 2. Let G be a tournament graph with strongly connected components
G1... Gk. If there is no cycle of length l in G, then |Gi | < l for all 1 ≤ i ≤ k.

Our protocol f∗
n,m described in Figure 6 is an algorithm working on tournament

graphs. The algorithm checks whether 3 |n − m.

- When n − m ≡ 1 (mod 3), if there exists a cycle of 4 vertices, delete all the
vertices in the cycle; otherwise, delete the lowest ranked vertex in G. As a
result, we have n′ − m ≡ 0 (mod 3) where n′ is the number of remaining
candidates after deletion.

- When n − m ≡ 2 (mod 3), if there exists a cycle of 5 vertices in G, delete
all the vertices in the cycle; otherwise, delete the two lowest ranked vertices.
Similarly, it can also be reduced to the case of n′ − m ≡ 0 (mod 3).

- When n − m ≡ 0 (mod 3), if there exist cycles of 3 vertices, continuously
delete them until either 1) no such cycle exists, then choose the m highest
ranked ones as winners; or 2) there’re m vertices left, then choose all of the
remaining candidates as winners.

The proof of the following theorem can be found in the full version [3].

Theorem 2. For all Tn, I and a-feasible graph G, Ben(fn,m, Tn, I, G) ≤ 0.
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1: Ensure n − m ≥ 3 and graph G ∈ Kn

2: let G1, G2, ... Gk be the strongly connected components of graph G = (Nn, E )
3: if n − m ≡ 1 (mod 3) then
4: if there exists a cycle C of length 4 in G then
5: delete all the 4 vertices in C from graph G

6: else
7: let t be the smallest vertex ( integer) in Gk, and delete vertex t from G

8: endif
9: else if n − m ≡ 2 (mod 3) then

10: if there exists a cycle C of length 5 in G then
11: delete all the 5 vertices in C from graph G

12: else if |Gk | = 1
13: let t1 ∈ Gk and t2 be the smallest vertex ( integer) in Gk−1, delete t1, t2

14: else
15: let t1 and t2 be the two smallest vertices ( integers) in Gk, delete t1, t2

16: end if
17: end if
18: while the number of vertices in G is larger than m do
19: if there exists a cycle C of length 3 in G then
20: delete all the 3 vertices in C from graph G

21: else
22: vertices can be sorted as k1 ... km′ such that kikj ∈ E, ∀ 1 ≤ i < j ≤ m′

23: output set { k1, k2, ... km } and return
24: end if
25: end while
26: output all the remaining vertices in G and return

Fig. 6. Details of Selection Protocol f∗
n,m

5 Conclusion Remarks

In this article, we discussed the possibility of an incentive compatible selection
protocol to exist, by which the benefits of either individual players or a group
of players are maximized by playing truthfully. Under the collective incentive
compatible model, our result indicates that cheating strategies are available in
at least 1/8 tournaments, if we assume the probability for each player to be in
the bad group is 1/2. On the other hand, we showed that there does exist an
incentive compatible selection protocol under the alliance incentive compatible
model, by presenting a deterministic algorithm.

Many problems remain and require further analysis. Under the first model,
could the general bound of 1/8 be improved? Could we find good selection pro-
tocols in the sense that the number of tournaments with cheating strategies is
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close to this bound? Though we have proved the inexistence of ideal protocol
under this model, does there exist any probabilistic protocol, under which the
probability of having cheating strategies is negligible?

Finally, we’d like to raise the issue of output truthful mechanism design. In
our model, an output truthful mechanism would output a list of k players, each
of which is among the top k players in the true ranking. It would be interesting
to know whether there is such a mechanism or not. For a related problem we are
going to describe next, this is possible. Consider a committee of 2n+1 to select
one out of candidates. The expected output is the one favored by the majority
of the committee. The following protocol will return the true outcome but not
everyone will vote truthfully: After the voting, a fixed amount of bonus will be
distributed to the voters who voted for the winner. Using this mechanism, every
committee member will vote for the candidate favored by the majority though
not everyone likes him or her.
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