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Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if
no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement
can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic
states that can minimize the detection error and the photon loss in detecting the presence or absence of the
object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite.
Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled
photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement
does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.
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I. INTRODUCTION

Quantum measurement is a fundamental concept in quan-
tum theory. The measurement process extracts the information
stored in a quantum system to the classical world. In many
scenarios, measurement on the target system, say A, is
accomplished indirectly by coupling it to another system B.
However, even the nonobservance of a particular result of
B would modify the quantum state of A, which is called
the “negative result measurement” [1,2]. In addition, Elitzur
and Vaidman introduced a “counterfactual” protocol, called
interaction-free measurement (IFM) [3]. In this protocol, a
photon is sent to a standard Mach-Zehnder interferometer
to detect an opaque object, where the maximum efficiency
for a successful detection without photon absorption is 50%
[3,4]. However, by a modification on account of the quantum
Zeno effect [5], the efficiency can approach 100% as the
interrogation cycle goes to infinity [4,6]. Interaction-free
measurement has been applied to detecting fragile objects,
such as individual atom [7,8] or photon-sensitive substances
[9], and even electron microscopy [10–12].

Apart from the original optical setup [4,6], there are
several theoretical proposals [10,13–15] and experimental
demonstrations [16–18] for achieving “quantum-Zeno-like”
IFM. The physical model behind them is essentially the same;
they all utilized the quantum Zeno effect to keep the photon
state unchanged, in the presence of an object.

Here we consider a more general scenario, where we
consider the problem of detecting the object as a problem
of channel discrimination, which means that we aim at
minimizing the error rate in identifying the presence of a
target. We shall consider all possible input states, including
entangled states, for the incident photon, and at the end the
best positive operator-valued measure (POVM) measurement
for minimizing the detection error.

To be specific, we focus on the same optical setup as in
Ref. [6] to illustrate our main results (see Fig. 1). In particular,

*yung@sustc.edu.cn

our paper takes into account the possibility that the photon may
be lost in the middle of the detection process. Let us denote,
respectively, the states |1〉, |2〉, and |3〉 as the representation
for

up ⇔ |1〉, down ⇔ |2〉, loss ⇔ |3〉 (1)

states of the incident photon. A light-absorbing object (e.g., a
photon-sensitive explosive in Ref. [3]) is placed in the path of
the down state photon. And the probability for this object to
appear is denoted by Pr(here) = q.

In fact, in order to describe the photon state transformation
when the object is present explicitly, we shall mimic the effect
of the object with a mirror, followed by a photon detector [4]
(see Fig. 1 for detailed illustration).

A. Interaction-free measurement

Let us first summarize the essential idea of the standard
interaction-free measurement: first, an incident photon is
prepared in the up path, with a quantum state labeled by |1〉.
Then, the incident photon is rotated by an angle θ through a
beamsplitter,

Rθ |1〉 = cos θ |1〉 + sin θ |2〉, (2)

where

θ ≡ π

2N
(3)

depends on N , the total number of interrogation cycles.

1. Presence of the object

If there exists an object along the down path, the photon in
the down state |2〉 will be completely transferred to the lost
state |3〉 by the mirror, i.e.,

UI|2〉 = |3〉, (4)

where the subscript of UI stands for interaction. Furthermore,
when applying it to a quantum superposition, we have

UI(cos θ |1〉 + sin θ |2〉) = cos θ |1〉 + sin θ |3〉. (5)
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FIG. 1. The “quantum-Zeno-like” IFM setup. We illustrate the
principle of IFM using the optical scheme in Ref. [6]. The polarization
rotator rotates the photon polarization by θ = π

2N
in each cycle. And

the polarizing beamsplitter separates the photon to an up or down path
if the photon is horizontal polarized H or vertical polarized V . So the
polarizations of the photon label the up state |1〉 and the down state
|2〉 in Eq. (1), respectively. In addition, the object is mimicked with a
mirror followed by a photon detector. The mirror transforms the down
state |2〉 to the loss state |3〉. And the photon detector implements the
projective measurement on the two {|1〉,|2〉} and {|3〉} subspaces. As
interrogation cycle N goes to infinity, we can judge whether there
is an object in the down path with the final polarization state of the
photon, without any photon absorption.

Then, followed by the projective measurement of the photon
detector,

P0 = |1〉〈1| + |2〉〈2|,
P1 = |3〉〈3|, (6)

the final state in Eq. (5) becomes a mixed state,

cos2 θ |1〉〈1| + sin2 θ |3〉〈3|, (7)

where the probability of the photon traveling along the up
path without absorption is given by Pr(|1〉) = cos2 θ . And the
probability that the photon is transformed to the loss state |3〉
and absorbed by the detector is Pr(|3〉) = sin2 θ .

In the probability subspace of P1, the lost photon does not
participate in the following interrogation cycle, i.e., the IFM
process halts in this case. Consequently, the probability of
finding |1〉 after N cycles equals to Pr(|1〉) = cos2N (θ ). When
N approaches infinity, we have

lim
N→∞

cos2N (θ ) = 1. (8)

Therefore, one can find the final state to be |1〉 with probability
1 without any photon loss, in the presence of an object.

2. Absence of the object

If there is no object, i.e., the down state |2〉 will travel
straight through without getting absorbed (or reflected by the
mirror), the rotation Rθ is directly applied N times. Thus, the
input photon state |1〉 can be rotated to |2〉 at the end, that is,

(Rθ )N |1〉 = RNθ |1〉 = |2〉. (9)

In summary, after N cycles, if we get |1〉, it implies
the existence of the object, while |2〉 implies the absence;
we can therefore unambiguously detect the presence of an
object (because state |1〉 and |2〉 are orthogonal), without any
photon absorption by the object. This is the essential idea
of the interaction-free measurement, based on the physics of
quantum Zeno effect.

B. Finite rounds and imperfect absorption

In practice, there are two problems one should consider,
in implementing the interaction-free measurement. First, the
number of interrogation cycles N has to be finite; it is also
impossible to make the rotation angle arbitrarily small.

Second, the absorption of the photon by the object may not
be perfect, as assumed in Eq. (4). In this paper, we consider
the absorption probability to be less than unity, i.e.,

UI|2〉 = a|2〉 +
√

1 − a2|3〉, (10)

where a2 characterizes the transparency of the object. Here a

is assumed to be a non-negative real number for simplicity.
In this scenario, we can substitute a beamsplitter, the

transparency of which is a2, for the mirror in Fig. 1 to mimic
the corresponding semitransparent object. This treatment is
similar to Ref. [19], and other works [11,20] gave different but
equivalent treatments.

C. Related works

Previous work has shown that the successful rate of IFM
decreases if the object is semitransparent, compared with the
opaque case [19,21,22]. The performance can be improved by
increasing the interrogation cycle number N and the object
can also be detected perfectly without any photon absorption
when N → ∞ [23,24].

However, in the literature [19,21,23,24], the initial input
state is usually taken as a pure state, namely, |1〉. In the presence
of an object, the successful probability

Psuc = |〈1|ÔIFM|1〉|2 (11)

is used to characterize the performance of the IFM process.
Here ÔIFM is a linear operator, but not necessarily unitary due
to the possibility of photon loss. The value of Psuc specifies
the probability that one can receive a |1〉 photon after sending
a |1〉 photon at the beginning, in the presence of an object. In
this case, one can confirm the presence of an object without
the photon being absorbed.

To the best of our knowledge, there is no work aiming
to optimize the IFM process through a search of optimal
input states of the photon. In particular, the possibility of
using quantum correlation to enhance the ability of channel
discrimination has been achieved in the context of quantum
illumination [25], which is analyzed in this paper.
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D. Main results

In this paper, we provide analytic solutions to a generalized
IFM model. To be specific, we focus on two main quantities
to benchmark the performance of IFM, namely, (i) the loss
probability Ploss and (ii) the error probability Perror, which,
respectively, describe the photon loss rate and the minimum
error of discriminating the object. Specifically, the minimum
values of these two probabilities are investigated analytically,
for any given values of the object transparency a2 and the
interrogation number N .

Our main results for unentangled input states are summa-
rized as follows.

(1) For any finite N , there exists a unique quantum state
|ϕ0〉 minimizing Ploss, which approaches zero asymptotically
as N → ∞.

(2) There are two states |ϕ±〉 that lead to Perror = 0, i.e.,
perfect discrimination, as long as the following inequality is
fulfilled:

1 + a

1 − a
sin

(
π

2N

)
� 1. (12)

(3) The photon loss rate of |ϕ+〉 is smaller than that of |ϕ−〉,
i.e., (Ploss)|ϕ+〉 < (Ploss)|ϕ−〉, which means |ϕ+〉 is better than
|ϕ−〉 in terms of Ploss.

(4) For N → ∞, both |ϕ0〉 and |ϕ+〉 approach the same
state |1〉, where both (Ploss)|ϕ0〉 and (Ploss)|ϕ+〉 share similar
asymptotic behavior O(1/N).

In addition, we studied how quantum correlation of input
states can facilitate the IFM process by utilizing entangled
photons in the setting of quantum illumination [25]: send one
photon in an entangled pair to the IFM cycle but keep the other
photon. At the end, a joint POVM measurement is performed
on both photons. Our main results for entangled input states
are summarized as follows.

(1) The optimal state to reach the minimal Ploss is the
product state |ϕ0〉|φ0〉, where |φ0〉 is any state of the second
photon, which means that entanglement can only increase Ploss.

(2) The two solutions |ϕ±〉 expand to a family of quantum
states in the larger Hilbert space. Specifically, all members of
the form

α|ϕ+〉|φ1〉 + β|ϕ−〉|φ⊥
1 〉 (13)

can be employed to achieve Perror = 0, where |φ1〉 and |φ⊥
1 〉

are any two orthogonal states of the second photon. However,
the one with the minimal Ploss in this family is the unentangled
state |ϕ+〉|φ1〉.

In other words, entangled photons cannot minimize Ploss or
Perror better than the case with a single photon. Therefore, we
conclude that entanglement cannot improve the IFM process
in our setting.

The rest of the paper is organized as follows. In Sec. II, we
construct a general model with the use of a quantum channel. In
Sec. III, we simplify the quantum channels for pure input state.
In Secs. IV and V, we study the case with an opaque object and
a semitransparent object, respectively. We conclude in Sec. VI.

II. GENERAL MODEL

In this section, we present a general model of interaction-
free measurement, taking into account a semitransparent object

and a finite number of interrogation cycles. Later, we shall
consider sending entangled photons as the input state.

First of all, the IFM process can be described as a quantum
channel, which is sequentially applied N times on the input
photon state, depending on the presence or absence of the
object. Thus, detecting the object is equivalent to a channel
discrimination problem.

In both cases, a unitary rotation operator [see Eq. (2)], in
the basis |1〉,|2〉, and |3〉,

Rθ =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠, (14)

is applied at each step. It can be regarded as the following
channel:

Eθ (ρ) = Rθ ρ R
†
θ , (15)

where ρ is the density matrix of the input state.
If a semitransparent object is present, partial absorption can

be represented by an effective quantum channel EI (I stands for
interaction) on the photon state (see Appendix A for detailed
derivation):

EI (ρ) =
∑
i=0,1

AiρA
†
i , (16)

A0 = |1〉〈1| + a|2〉〈2| + |3〉〈3|,
A1 =

√
1 − a2|3〉〈2|, (17)

where A0 and A1 are the Kraus operators satisfying∑
i=0,1 A

†
i Ai = I .

Then the channels that describe the whole interrogation can
be written down by cycling the above channels for N times as
below:

ρ ′ = [EI Eθ ]N (ρ) = E ′(ρ), (18)

ρ ′′ = [Eθ ]N (ρ) = E ′′(ρ), (19)

where ρ ′ is the output density matrix, if the object is present;
ρ ′′ is the output density matrix for the object absence case.
The corresponding overall quantum channels are denoted by
E ′ and E ′′, respectively.

In our setting, the photon can be absorbed when the object
is present, and the photon is left in the |3〉 state, which implies
that

Ploss = q 〈3|E ′(ρ)|3〉, (20)

where q is the probability for the presence of the object.
Given the object existing probability Pr(here), the error

occurs when one gives the wrong judgment (see Fig. 2), i.e.,

Perror = Pr(here) Pr(NO|here)

+ Pr(not here) Pr(YES|not here),
(21)

where one gives the judgment NO in the presence of the object,
or YES in the absence of the object.

To be specific, one sends an input photon state ρ, and
receives the output photon state E ′(ρ)/E ′′(ρ) depending on
the presence or absence of the object. Then one makes the
judgment by implementing a two-value POVM measurement
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FIG. 2. Illustration for the error happening in IFM. At the end
of IFM, one implements the POVM on the final output photon state,
and we will make an error when giving the judgment NO (YES) in
the presence (absence) of the object. The final line shows the result
(right or wrong) of the judgment. And it also shows that if the photon
is lost one can definitely confirm the presence of the object since the
photon should not be lost in the absence of the object. Hence one can
give the right judgment YES and make no error in this case.

{	1,	2} on the final output photon. Here 	1 and 	2 are
positive operators fulfilling 	1 + 	2 = I.

The corresponding conditional probabilities in the
above equation become Pr(NO|here) = Tr[	2E ′(ρ)] and
Pr(YES|not here) = Tr[	1E ′′(ρ)]. Substituting them into
Eq. (21), we get

Perror = qTr[	2E ′(ρ)] + (1 − q)Tr[	1E ′′(ρ)]. (22)

where we applied Pr(here) = q. Actually, we can rewrite the
error probability with the condition 	1 + 	2 = I as

Perror = 1
2 {1 − [qE ′(ρ) − (1 − q)E ′′(ρ)](	1 − 	2)}. (23)

Following Refs. [26,27], the minimal error is given by

Perror = 1
2 [1 − ‖qE ′(ρ) − (1 − q)E ′′(ρ)‖], (24)

where ||O|| ≡ Tr(
√

O†O) denotes the trace norm of any
operator O. In fact, the specific POVM reaching this minimal
error is constituted by the two projectors on the positive part
and negative part of the Hermitian operator qE ′(ρ) − (1 −
q)E ′′(ρ).

Note that at each cycle, if the photon detector clicks (bomb
exploding in Ref. [3]), then the presence of the object can
be confirmed at the middle, which makes it unnecessary to
continue the following interrogation and discriminate the state
at the end.

The main focus of our IFM study is to find the minima of
these two probabilities Ploss and Perror, and the initial input
photon states to reach them. Fortunately, with the following
theorem, we can reduce the range of the input state from any
density matrix ρ, say mixed or pure, to just pure state |ϕ〉 in
the Hilbert space of the photon.

Theorem 1. The minima of the loss probability Ploss and the
error probability Perror can be both reached by pure states.

Proof. Due to the linearity of the quantum channel, we
have Ploss = q〈3|E ′(ρ)|3〉 = q〈3|E ′(

∑
i piϕi)|3〉, which im-

plies that

Ploss =
∑

i

piq〈3|E ′(ϕi)|3〉 =
∑

i

piP
i
loss, (25)

where ϕi ≡ |ϕi〉〈ϕi | represents the density matrix of the pure
state |ϕi〉, P i

loss is the corresponding loss probability, and∑
i piϕi is any convex decomposition of the input state ρ.
Equation (25) shows that the loss probability Ploss of the

mixed state ρ equals to the weighted average of P i
loss of the

corresponding pure state. Thus there is at least one pure state
ϕi with loss probability P i

loss � Ploss.
On the other hand, for Perror = 1

2 [1 − ‖qE ′(ρ) − (1 −
q)E ′′(ρ)‖] = 1

2 [1 − ‖qE ′(
∑

i piϕi) − (1 − q)E ′′(
∑

i piϕi)‖],
combining the convex property of the trace norm, we also
have

Perror = 1

2

{
1 −

∥∥∥∥∥
∑

i

pi[qE ′(ϕi) − (1 − q)E ′′(ϕi)]

∥∥∥∥∥
}

�
∑

i

pi

{
1

2
[1 − ‖qE ′(ϕi) − (1 − q)E ′′(ϕi)‖]

}

=
∑

i

piP
i
error. (26)

Similarly, one can always find a pure state in the decompo-
sition, with P i

error � Perror. Consequently, we can confine our
paper to the optimal values of the two probabilities’ pure states
only. �

Quantum entanglement is an essential resource for quantum
communication and computation [28], and also for quantum
metrology [29,30]. The efficiency of many tasks can be
enhanced utilizing quantum entanglement, e.g., quantum
illumination [25]. Here we also study if quantum entanglement
can be employed to enhance the detection efficiency.

The idea is illustrated in Fig. 3, where a pair of entangled
photons is employed as the input state. Photon A goes through
the same IFM apparatus (Fig. 1) and photon B is kept at
the same location during the detection period. Finally, a joint
measurement is performed on the bipartite photon state.

Although physically the quantum channel is applied only
on photon A, mathematically, it can be viewed as a quantum
channel acting on the combined system A and B. Therefore,
the argument of Theorem 1 can also be applied to this case.
As a result, we only need to consider the pure state for the
entangled photons. �

IFM process
A

A

B

Aρ

ABρ

IFM process

Quantum correla on

Measurement

Measurement

FIG. 3. The single-photon and entangled photon input IFM.
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Furthermore, we show another theorem below, which
describes the relation between the single-photon input case and
entangled photon input about the two important probabilities
Ploss and Perror.

Theorem 2. Entangled photon input is the same as single-
photon input for Ploss, but not worse than single-photon input
for Perror. More precisely,

Ploss(ρAB) = Ploss(ρA), (27)

Perror(ρAB) � Perror(ρA) (28)

where ρAB is the bipartite input state and ρA = TrB(ρAB).
Proof. For Ploss, by the definition in Eq. (20), Eq. (27)

shows

〈3|TrB[E ′(ρAB)]|3〉 = 〈3|E ′(ρA)|3〉, (29)

since the partial trace operation on system B and the quantum
channel on system A commute with each other.

For Perror, using the definition in Eq. (24), Eq. (28) is
equivalent to

‖qE ′(ρAB) − (1 − q)E ′′(ρAB)‖
� ‖qE ′(ρA) − (1 − q)E ′′(ρA)‖. (30)

This is because partial trace operation on B is certainly a trace-
preserving operation that is contractive under the measure of
trace distance (see Ref. [28] and Appendix B), i.e.,

‖qE ′(ρAB) − (1 − q)E(ρAB)‖
� ‖qTrB[E ′(ρAB)] − (1 − q)TrB[E(ρAB)]‖
= ‖qE ′(ρA) − (1 − q)E(ρA)‖,

where the last line is due to partial trace on system B
commuting with the quantum channel on system A. �

III. SIMPLIFICATION OF THE QUANTUM CHANNEL
FOR THE PURE STATE

From Theorem 1, we just need to focus on the pure input
state scenario for the optimal solutions. The quantum channels
defined in Sec. II can be simplified when the input state is pure.

First, let us consider a general input state, |ϕ〉 = α|1〉 +
β|2〉. In the presence of the object scenario, since the IFM
process halts in the probability subspace where the photon
decays to the loss state |3〉, we just need to consider the
probability subspace where the photon is not absorbed, and
the corresponding un-normalized state (due to absorption) is
denoted as |ϕ′〉.

The final photon state, in the presence of the object, is of
the following form:

ρ ′ = |ϕ′〉〈ϕ′| + (1 − 〈ϕ′|ϕ′〉)|3〉〈3|. (31)

The quantum channels can be replaced by the corresponding
transforming matrix for the pure state in the |1〉,|2〉 basis as

M ′|ϕ〉 = |ϕ′〉, (32)

where

M ′ ≡
[(

1 0
0 a

)(
cos θ − sin θ

sin θ cos θ

)]N

. (33)

In the absence of the object, the final output photon state is
given by

M ′′|ϕ〉 = |ϕ′′〉, (34)

where

M ′′ ≡
[(

cos θ − sin θ

sin θ cos θ

)]N

=
(

0 −1
1 0

)
. (35)

Here, Eqs. (32) and (34) give the relations between
|ϕ〉 = α|1〉 + β|2〉 and |ϕ′〉, |ϕ′′〉. Equation (34) is just the
unitary transformation generated by the rotation operation Rθ

[Eq. (14)] on the photon state in each cycle, and we obtain the
final state by iterating it N times. However, Eq. (32) is not a
unitary transformation, as it includes the effect of irreversible
photon loss.

Consequently, Ploss = q 〈3|ρ ′|3〉 is given by

Ploss = q 〈3||ϕ′〉〈ϕ′| + (1 − 〈ϕ′|ϕ′〉)|3〉〈3||3〉
= q (1 − 〈ϕ′|ϕ′〉). (36)

Now, since 〈3|ϕ′′〉 = 0, with the definition of Perror in Eq. (24)
we have

Perror = 1
2 {1 − Ploss − ‖q|ϕ′〉〈ϕ′| − (1 − q)|ϕ′′〉〈ϕ′′|‖}.

(37)

On the other hand, the general form of the entangled photon
input state can be written as

|ϕe〉 ≡ α|1〉|φ1〉 + β|2〉|φ2〉, (38)

where |φ1〉, |φ2〉 are some pure states of the ancillary photon B.
Now the transfer matrices in Eqs. (32) and (34) should be

applied on photon A of the entangled input state, that is,

M ′ ⊗ I|ϕe〉 = |ϕ′
e〉,

M ′′ ⊗ I|ϕe〉 = |ϕ′′
e 〉. (39)

If photon A has been transformed to the loss state |3〉, it
accounts for photon loss no matter the state of photon B. In
this case, one can confirm the presence of the object without
detection error. Thus, the final expressions of Ploss and Perror

in Eqs. (36) and (37) are also suitable for the entangled input,
if |ϕ′

e〉 and |ϕ′′
e 〉 are employed.

In the following, the single-photon and entangled photon
input states we consider are |ϕs〉 = α|1〉 + β|2〉 and |ϕe〉 =
α|1〉|φ1〉 + β|2〉|φ2〉 type, respectively. And we employ |ϕ〉 to
represent both types of input state for simplicity.

At the end of this section, we show another theorem below,
describing the condition where the error probability Perror can
reach zero, for both single-photon and entangled photon input.
In other words, we can decide whether there is an object
without any error.

Theorem 3. For any pure entangled state, Perror = 0 iff
〈ϕ′′|ϕ′〉 = 0.

Before we prove Theorem 3, let us show a lemma first,
which is useful to our proof.

Lemma 1. Given two pure quantum states, |ψ1〉 and |ψ2〉,
and a positive real number p, the following equality holds:

‖p|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖ =
√

(p + 1)2 − 4p|〈ψ1|ψ2〉|2.
(40)

We leave the proof of Lemma 1 to Appendix C.
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Proof. With the definition in Eq. (37), Perror is

Perror = 1

2
{1 − Ploss − ‖q|ϕ′〉〈ϕ′| − (1 − q)|ϕ′′〉〈ϕ′′|‖}

= 1

2
{q〈ϕ′|ϕ′〉 + 1 − q − ‖q|ϕ′〉〈ϕ′|

− (1 − q)|ϕ′′〉〈ϕ′′|‖}

= 1

2

{
q〈ϕ′|ϕ′〉 + 1 − q

− (1 − q)

∥∥∥∥q〈ϕ′|ϕ′〉
1 − q

|ϕ′〉〈ϕ′|
〈ϕ′|ϕ′〉 − |ϕ′′〉〈ϕ′′|

∥∥∥∥
}

= 1

2
{q〈ϕ′|ϕ′〉 + 1 − q

−
√

(q〈ϕ′|ϕ′〉 + 1 − q)2 − 4q(1 − q)|〈ϕ′′|ϕ′〉|2},
(41)

where in the second line we apply the definition of Ploss

in Eq. (36) and in the last line we employ Lemma 1, by
substituting |ϕ′〉√〈ϕ′|ϕ′〉 , |ϕ′′〉 for |ψ1〉, |ψ2〉 and q〈ϕ′ |ϕ′〉

1−q
for p. Then,

let us observe the last line in Eq. (41): the second part in
the square root, i.e., 4q(1 − q)|〈ϕ′′|ϕ′〉|2, is non-negative, so
Perror = 0 iff 〈ϕ′′|ϕ′〉 = 0. �

IV. OPAQUE OBJECT SCENARIO

We study IFM of an opaque object with finite interrogation
cycle N in this section. Our task is to use the model simplified
in Sec. III to find the minimal values of the two important
probabilities Ploss and Perror, and the corresponding states to
reach them. When the object is opaque, i.e., a = 0, Eq. (32)
becomes (

cosN θ − sin θ cosN−1 θ

0 0

)
|ϕ〉 = |ϕ′〉. (42)

A. With single-photon input

First, let us focus on the loss probability Ploss. Setting the
input state as |ϕ〉 = α|1〉 + β|2〉 and using Eqs. (36) and (42),
we get

|ϕ′〉 = cosN−1 θ (α cos θ − β sin θ )|1〉, (43)

and, hence,

Ploss = q(1 − | cosN−1 θ (α cos θ − β sin θ )|2)

� q(1 − cos2(N−1)θ ),
(44)

where the inequality in the second line of Eq. (44) is due to
the fact that the absolute value of the inner product for the
two vectors (cos θ, − sin θ )T and (α,β)T is not larger than
1. Furthermore, the minimum can be reached by the state
|ϕa〉 = cos θ |1〉 − sin θ |2〉 (up to a global phase).

Then we study the error probability Perror. By calculating
the value of 〈ϕ′′|ϕ′〉, we can check whether there are input
states satisfying the condition stated in Theorem 3 and letting
Perror reach zero. With the help of Eqs. (34) and (43), we have

|ϕ′′〉 = −β|1〉 + α|2〉, (45)

which means that

〈ϕ′′|ϕ′〉 = −β∗ cosN−1 θ (α cos θ − β sin θ ). (46)

We found two states satisfying the condition 〈ϕ′′|ϕ′〉 = 0.
The first one is |ϕb〉 = |1〉, and the second one is |ϕc〉 =
sin θ |1〉 + cos θ |2〉. That is, one can realize zero error in IFM
with these two states. However, from Eq. (36), we found that

Ploss(|ϕb〉) = q(1 − cos2Nθ ), (47)

but

Ploss(|ϕc〉) = q, (48)

which is independent of N .
Thus, it is necessary to compare the loss probability Ploss

of |ϕb〉, |ϕc〉. And the Ploss values of the two states are q(1 −
cos2N θ ) and q, respectively, by the definition of Eq. (36).
This indicates that the first state is better than the second one
considering Ploss, since, when N is large enough,

q(1 − cos2N θ ) � q
π2

4N
� q. (49)

And note that the Ploss of |ϕb〉 approaches zero as N → ∞
[4,6]. For the second state |ϕc〉, the photon is always lost if
the object is there; this is the reason why |ϕc〉 can detect the
object without any error. But it is useless since it violates the
principle of IFM, i.e., detecting the object with as small as
possible photon loss probability.

B. With entangled photon input

Here we study the effect of quantum correlation to IFM in
the opaque object scenario. So we set the initial input state as
the general form

|ϕ〉 = α|1〉|φ1〉 + β|2〉|φ2〉, (50)

where |φ1〉 and |φ2〉 are any pure states of the photon B

part and α and β are non-negative real numbers (one can
always remove the phase information in α and β to the states
|φ1〉 and |φ2〉 of the photon B part to obtain this form).

As mentioned earlier, the equations utilized in the single-
photon input case can also be used in this entangled photon
input case. And we should do the transforming matrix opera-
tions on the photon A part and evaluate the two probabilities
Ploss and Perror in the same way as in Sec. IV A. For Ploss, using
Eq. (42), we have

|ϕ′〉 = cosN−1 θ |1〉(α cos θ |φ1〉 − β sin θ |φ2〉), (51)

and with the help of Eq. (36) the loss probability is

Ploss = q[1 − | cosN−1 θ |1〉(α cos θ |φ1〉 − β sin θ |φ2〉)|2]

= q{1 − cos2(N−1) θ [α2 cos2 θ + β2 sin2 θ

− 2αβ cos θ sin θ Re(〈φ1||φ2〉)]}
� q[1 − cos2(N−1) θ (α cos θ + β sin θ )2]

� q[1 − cos2(N−1) θ ].
(52)

Here the first inequality is saturated when 〈φ1||φ2〉 = −1,
and the second inequality is saturated when α = cos θ and
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β = sin θ . Thus, the minimum of Ploss can be reached by the
following product state (i.e., no entanglement):

|ϕ∗
a 〉 = (cos θ |1〉 − sin θ |2〉)|φ1〉, (53)

where we use the superscript ∗ to label the bipartite state.
For Perror, with Eq. (43), we can obtain the output state in

the absence of the object as

|ϕ′′〉 = α|2〉|φ1〉 − β|1〉|φ2〉, (54)

and, applying Eq. (51), the value of 〈ϕ′′|ϕ′〉 shows the
following form:

〈ϕ′′|ϕ′〉 = (−αβ cos θ〈φ2|φ1〉 + β2 sin θ ) cosN−1 θ. (55)

From Eq. (55), we can get a family of the solutions for
〈ϕ′′|ϕ′〉 = 0 which satisfies

β sin θ

α cos θ
= 〈φ2|φ1〉. (56)

The two solutions in the single-photon input case are both
included in Eq. (56). They are the states |ϕ∗

b 〉 = |1〉|φ1〉 and
|ϕ∗

c 〉 = (sin θ |1〉 + cos θ |2〉)|φ1〉. Now we shall check which
one is the best state in this family via considering Ploss. With
Eqs. (36) and (56),

Ploss = q[1 − cos θ2(N−1)(α2 cos2 θ − β2 sin2 θ )]. (57)

It is clear that |ϕ∗
b 〉 = |1〉|φ1〉 reaches the minimum q(1 −

cos2N θ ) in this family, which is equivalent to |ϕb〉 in the single-
photon input case.

From Secs. IV A and IV B, we conclude that the entangled
photon input state makes no enhancement to the optimization
for the two important probabilities Ploss and Perror, respectively,
compared with the single-photon input state. The states which
reach the minima are the same in some sense in these two
cases. In addition, the state |1〉 is the optimal state that makes
Ploss and Perror both reach zero when N → ∞.

V. SEMITRANSPARENT OBJECT SCENARIO

In this section, we go further for the general scenario. In
practical application of IFM, the object is always semitranspar-
ent, i.e., partially absorbing the photon. Thus, here we study the
minimal Ploss and Perror, and the states to reach them also in this
semitransparent object scenario, just like in the opaque object
scenario. In addition, the effect of quantum entanglement is
also investigated.

A. Simplification of the transforming matrix

The major difficulty to study the general scenario is to
simplify the matrix M ′ ≡ (C0)N , where

C0 =
(

1 0
0 a

)(
cos θ − sin θ

sin θ cos θ

)
, (58)

in Eq. (32). First, we can represent the matrix in one
interrogation cycle with Pauli matrices as

C0 = (1 − a) cos θ

2
σz − i(1 + a) sin θ

2
σy − (1 − a) sin θ

2
σx

+ (1 + a) cos θ

2
I. (59)

Then, we change the basis by applying a unitary transformation
U = e−i

σy

2 θ and obtain

C1 = UC0U
†,

= (1 − a)

2
σz − i(1 + a) sin θ

2
σy + (1 + a) cos θ

2
I

= (1 − a)

2
(σz − ik1σy + k2I ), (60)

where we defined

k1 ≡ (1 + a) sin θ

1 − a
,

k2 ≡ (1 + a) cos θ

1 − a
,

(61)

which are both positive numbers.
The power N of the matrix C1, labeled by

C ≡ (C1)N, (62)

can be calculated by expanding the binomial with the help of
the equality

(σz − ik1σy)2 = (
1 − k2

1

)
I, (63)

which is the result of the anticommutation relation
{σz,σy} = 0:

C = CN
1 =

(
1 − a

2

)N

[(σz − ik1σy) + k2I )]N

=
(

1 − a

2

)N[ ∑
k∈odd

(
N

k

)(
1 − k2

1

) k−1
2 kN−k

2 (σz − ik1σy)

+
∑

k∈even

(
N

k

)(
1 − k2

1

) k
2 kN−k

2 I

]

=
(

1 − a

2

)N

[f1(σz − ik1σy) + f2I ], (64)

where we substitute f1 and f2 for the summations before the
operators (σz − ik1σy) and I , respectively. In fact, f1 and f2

are related to the summations of the even and odd terms in the
corresponding binomial.

Thus, we define �1 and �2 as below, which are sums of
the odd and even terms of the corresponding binomial. When
k1 � 1,

�1 =
(√

1 − k2
1 + k2

)N − ( −
√

1 − k2
1 + k2

)N

2

�2 =
(√

1 − k2
1 + k2

)N + ( −
√

1 − k2
1 + k2

)N

2
; (65)

when k1 > 1,

�1 =
(
i

√
k2

1 − 1 + k2
)N − ( − i

√
k2

1 − 1 + k2
)N

2

�2 =
(
i

√
k2

1 − 1 + k2
)N + ( − i

√
k2

1 − 1 + k2
)N

2
. (66)
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Then we can obtain the expressions for f1 and f2 in Eq. (64)
with �1 and �2, when k1 � 1:

f1 = �1√
1 − k2

1

f2 = �2; (67)

when k1 > 1,

f1 = �1

i

√
k2

1 − 1

f2 = �2. (68)

The insight of the above result is that the eigenstates of
C1 and C should be the same and the eigenvalues from C

are just power N of the ones from C1. So the structures of
Eqs. (60) and (64) are also the same, the linear combination
of (σz − ik1σy) and I . Especially, (σz − ik1σy) determines the

eigenstates, and the eigenvalues of it are ±
√

1 − k2
1. That is

why we have the formulas like Eqs. (65)–(68). Clearly, f1 and
f2 are functions of a and θ and we show that they are both real
positive numbers in the following theorem.

Theorem 4. f1 and f2 are both real positive numbers no
matter what value k1 is.

Proof. When k1 � 1, �1 and �2 are the sum of odd and
even terms of (

√
1 − k2

1 + k2)N , respectively. It is obvious that
f1 and f2 are both real positive numbers. When k1 > 1, �1 and
�2 are the imaginary and real part of (i

√
k2

1 − 1 + k2)N . We
just need to check which quadrant this complex number locates

in. Because
√

k2
1−1

k2
� k1

k2 = tan θ and Nθ = π
2 , we know it

locates in the first quadrant. Then f1 and f2 are also real
positive numbers in this case by the definition Eq. (68). �

B. Ploss study with single-photon and entangled
photon input states

With the knowledge of Sec. V A, now we can get the
loss probability Ploss in the new basis by the definition in
Eq. (36) as

Ploss = q(1 − 〈ϕ′|ϕ′〉)
= q(1 − 〈ϕ|C†C|ϕ〉)
= q[1 − TrAB(C†C|ϕ〉〈ϕ|)]
= q[1 − TrA(C†CρA)], (69)

where in the final line we trace out the photon B part since the
transforming matrix C just operates on photon A. Equation
(69) reminds us that entangled photon input state |ϕAB〉
behaves the same as TrB(ϕAB) = ρA for Ploss, as shown in The-
orem 2. Especially, if one reaches the minimum of Ploss with
single-photon input state |ϕA〉, one can surely find any pure
state like |ϕA〉|φB〉 to reach the same minimal value. Hence we
just need to study Ploss in the single-photon input case.

Thus 〈ϕ|C†C|ϕ〉 in Eq. (69) should be maximized only for
the single-photon input state, and C†C can be expanded as

C†C =
(

1 − a

2

)2N [
f 2

1

(
1 + k2

1

) + f 2
2

]
I

+ 2f1(f2σz − f1k1σx). (70)

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5 a 0
a 0.1
a 0.3
a 0.5
a 0.6
a 0.7
a 0.8
a 0.9

/lossP q

N

FIG. 4. (Ploss/q)min vs the interrogation cycle N for different
transparency a2.

It is the same as to find the larger eigenvalue for a single spin
Hamiltonian. Thus, no matter what value k1 is, it is not hard to
obtain the minimal Ploss:

(Ploss)min = q

[
1 −

(
1 − a

2

)2N (
f1 +

√
f 2

2 + f 2
1 k2

1

)2
]
.

(71)

Utilizing Eq. (71), the relation between the normalized
photon loss rate (Ploss/q)min and the interrogation cycle N

for different transparency a2 is exhibited in Fig. 4. This figure
shows that when N is large enough (Ploss/q)min decreases
with the increasing of N no matter what value a is. Generally
speaking, (Ploss/q)min of small a is always less than that of
large a for a fixed large enough N . However, (Ploss/q)min

can increase and then decrease for large enough a with the
increasing of N . Via numerical analysis, we find that the
maximum of the curve for a given large a can be obtained
at N ′, which is slightly larger than the one determined by the
equation

k1 = 1 + a

1 − a
sin

(
π

2N

)
= 1, (72)

as shown in Fig. 5.

50 100 150 200

0.2

0.4

0.6

0.8

1.0

1 1k

1 1k
a

N

FIG. 5. Red envelope (gray) curve: Transparency a vs interroga-
tion cycle N determined by k1 = 1+a

1−a
sin( π

2N
) = 1. The shadow (light

gray) region indicates the parameter domain where we can reach
Perror = 0.
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Z

X

1

2

O

FIG. 6. The positions of the states on the Bloch sphere that reach
the minimal Ploss and Perror in the new basis. The red (solid) arrow
represents the state |ϕ0〉〈ϕ0| which reaches the minimal Ploss. The
two blue (dashed) arrows represent |ϕ±〉〈ϕ±|. Any mixed state on
the green (vertical) line, the connection between the end of the two
blue (dashed) arrows, satisfies TrA(D†CρA) = 0. The yellow (light
gray) arrow represents one of these mixed states, and its purification
is an entangled photon input state α|ϕ+〉|φ1〉 + β|ϕ−〉|φ⊥

1 〉 making
Perror = 0.

The state reaching the minimum of Ploss, named |ϕ0〉, is
just the eigenstate of C†C with larger eigenvalue. |ϕ0〉〈ϕ0| is
on the XZ plane of the Bloch sphere. And the angle between
|ϕ0〉〈ϕ0| and the Z axis is θ1 = arctan( f1k1

f2
) (see Fig. 6). The

corresponding vector U †|ϕ0〉 is the one which reaches the
minimal Ploss in the old basis. And it is not hard to find
U †|ϕ0〉 = |ϕa〉 when the transparency a2 = 0, i.e., the opaque
object scenario.

C. Perror study with single-photon and entangled photon input
states

Here, we derive the error probability Perror of IFM in both
single-photon and entangled photon input cases.

For convenience, we label the unitary transformation in
Eq. (34) by D, as the object is absent:

D =
(

0 −1
1 0

)
= −iσy. (73)

In Theorem 3, we have showed that Perror can reach zero
iff 〈ϕ′′|ϕ′〉 = 0, no matter which type the input state is. By
definition, we get 〈ϕ′′|ϕ′〉 in the new basis as

〈ϕ′′|ϕ′〉 = 〈ϕ|UD†U †C|ϕ〉
= 〈ϕ|D†C|ϕ〉
= TrAB(D†C|ϕ〉〈ϕ|)
= TrA(D†CρA) (74)

where D → UDU † in the new basis. In the second line, we
use the fact that U commutes with D†. The third line is due
to the fact that D† and C only operate on the photon A part.

From the definition of D and C, we have D†C:

D†C =
(

1 − a

2

)N

[f1k1I + (if2σy − f1σx)]. (75)

In the meantime, ρA has the following Bloch sphere represen-
tation:

ρA = 1
2 (I + �r · �σ ). (76)

Then Eq. (74) becomes 〈ϕ′′|ϕ′〉 = ( 1−a
2 )N (f1k1 − f1rx +

if2ry) with the fact that the trace of the Pauli matrix is zero. In
order to make Perror = 0, we should let rx = k1 and ry = 0.

When k1 � 1, there are two pure state solutions ρA =
|ϕ±〉〈ϕ±| = 1

2 (I + k1σx ±
√

1 − k2
1σz) of photon A. The angle

between each pure solution |ϕ±〉〈ϕ±| and the Z axis is
θ2 = arctan( k1√

1−k2
1

) on the Bloch sphere (see Fig. 5). And

it is straightforward to see that any convex mixing of the two
pure solutions can also lead to TrA(D†CρA) = 0. Therefore,
in the bipartite case, the solution to Perror = 0 is α|ϕ+〉|φ1〉 +
β|ϕ−〉|φ⊥

1 〉, where 〈φ⊥
1 |φ1〉 = 0 and α and β are two arbitrary

state coefficients. Like in the a = 0 scenario, we have a family
of best states which reach Perror = 0 in the entangled photon
input case.

Furthermore, we aim to find the solution that minimizes the
photon loss rate Ploss given in Eq. (69) in this family. Com-
bining the solution to Perror = 0, we can show that the optimal

state in this family is |ϕ+〉〈ϕ+| = 1
2 (I + k1σx +

√
1 − k2

1σz)
with the minimal Ploss value

(Ploss)|ϕ+〉 = q

[
1 −

(
1 − a

2

)2N(
f1

√
1 − k2

1 + f2
)2

]
, (77)

which means the entangled photon input state does no good to
Perror in this k1 regime.

When k1 > 1, there is no solution to 〈ϕ′′|ϕ′〉 = 0 or
equivalently Perror = 0. Nevertheless, we can still analyze the
nonzero minimum of Perror. Using Eqs. (41), (69), and (74),
we have the general expression of Perror:

Perror

= 1

2
{qTr[C†CρA] + (1 − q)

−
√

(qTr[C†CρA]+1−q)2−4q(1−q)|Tr[D†CρA]|2},
(78)

which is suitable no matter what value k1 is. This indicates
that |ϕAB〉 appears in the form T rB(ϕAB) = ρA for Perror in all
k1 regimes. It is crucial to emphasize that the expression for
Perror of Eq. (78) is suitable for any pure states, single-photon
or entangled photon input, but not for mixed state ρA, because
of our pure state prerequisite. Moreover, we find the entangled
photon input state cannot enhance the performance on Perror

for any values of k1, compared with the single-photon input
state, i.e., the minimum of Eq. (78) should be reached by pure
state ρA = |ϕA〉〈ϕA|. The detailed discussion about the effect
of quantum correlation to Perror is given in Appendix D.
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D. N → ∞ behavior

In the above subsections, we have systematically analysed
the general IFM model of the semitransparent object with finite
interrogation cycle. Now, in this part, we study the asymptotic
behavior of the relevant quantities when the interrogation cycle
N → ∞. The behavior of the minimal values of Ploss and Perror

and the initial input states reaching them are investigated in
the N → ∞ condition.

When the interrogation cycle N → ∞, k1 =
1+a
1−a

sin( π
2N

) → 0 < 1 for any fixed a. Therefore we
always have the state |ϕ+〉 to reach Perror = 0. First we
consider the asymptotic behavior of (Ploss)|ϕ+〉, described
by Eq. (77). With the help of Eqs. (65) and (67) and the
definitions of k1 and k2 [Eq. (61)], we have(

1 − a

2

)2N (
f1

√
1 − k2

1 + f2
)2

=
(

1 − a

2

)2N

(�1 + �2)2

=
[

1 − a

2

(
k2 +

√
1 − k2

1

)]2N

=
[

(1 + a) cos θ +
√

(1 − a)2 − (1 + a)2 sin2 θ

2

]2N

�
[

1 − 1 + a

1 − a

π2

8N2
+ O

(
1

N4

)]2N

� 1 − 1 + a

1 − a

π2

4N
+ O

(
1

N3

)
, (79)

where we use the fact that cos θ = 1 − θ2

2 + O(θ4), sin θ =
θ − O(θ3), and θ = π

2N
. Then the asymptotic expression of

Eq. (77) is

(Ploss)
N→∞
|ϕ+〉 � q

[
1 + a

1 − a

π2

4N
− O

(
1

N3

)]
. (80)

Clearly, whatever the value of a is, (Ploss)|ϕ+〉 goes to zero for
sufficiently large N .

Furthermore, we aim to consider the asymptotic behavior
of the minimum of Ploss, in Eq. (71). Utilizing a similar
approximation technique as for (Ploss)|ϕ+〉, we have

(Ploss)
N→∞
min � q

[
1 + a

1 − a

π2

4N
− O

(
1

N2

)]
. (81)

The detailed derivation is given in Appendix E. In addition,
the asymptotic behaviors of (Ploss)|ϕ+〉/q and (Ploss)min/q have
been plotted in Fig. 7.

When N → ∞, θ1 and θ2, relating to the initial input
states |ϕ0〉 and |ϕ+〉, both go to zero (see Fig. 7). And the
unitary U = e−i

σy

2 θ of changing basis goes to identity. Hence,
the corresponding vector U †|ϕ0〉 which reaches (Ploss)min

and U †|ϕ+〉 which reaches the minimum of Ploss but keeps
Perror = 0 in the old basis go to the same vector (1,0)T ,
i.e., |1〉 in our system. That is to say, as N → ∞, we can
use |1〉 to realize Ploss = Perror = 0 asymptotically, perfectly
detecting the object without photon loss even if the object is a
semitransparent one.

FIG. 7. All the graphs are plotted at a = 0.5. (a) The asymptotic
behaviors of (Ploss)|ϕ+〉/q,(Ploss)min/q as N → ∞. (Ploss)|ϕ+〉/q is
always above (Ploss)min/q. The main term of the asymptotic expres-
sions in Eqs. (80) and (81), i.e., 1+a

1−a

π2

4N
, is also shown in the plot.

Inset: N ranges from 100 to 200. All three expressions go to zero
asymptotically when N → ∞. (b) The asymptotic behavior of θ1

(solid) and θ2 (dashed). We use the negative sign for θ1 because it is
located at the negative x-axis side, as shown in Fig. 6.

VI. CONCLUSION AND OUTLOOK

In conclusion, with the help of quantum channel theory,
we build the general model of quantum-Zeno-like IFM, where
the object to be detected is semitransparent and the number
of interrogation cycles is finite. Two important probabilities
named Ploss and Perror are proposed to describe the photon loss
rate and the error of discrimination in the IFM process. In order
to find the minima of the Ploss and Perror and the corresponding
initial photon input states to reach them, we simplify the
iteration of the quantum channels to transforming matrices
operating on the pure state. With this compact simplification,
the minimum properties of Ploss and Perror can be systemically
studied. In addition, we show that the entangled photon input
state cannot enhance the performance of IFM, considering
Ploss and Perror, respectively.

Furthermore, we should point out that Pf = Ploss + Perror

is a more significant criterion to evaluate the IFM process,
because it describes all the possibilities where the IFM process
is a failure. It includes both the photon loss (object damage)
and the error making in the discrimination process. However,
even for this criterion Pf , we can also come to the conclusion
that the quantum correlation (i.e., entanglement here) cannot
benefit the IFM process (see Appendix D). In addition, the
asymptotic behaviors are also studied and we find that the
state |1〉 can perfectly detect the generic semitransparent object
without any object damage when N → ∞.

Finally, our paper provides theoretical support for the
experimental research and practical realization of IFM, like
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electron microscopy of biological substances or detection of
fragile nanomaterials. Moreover, our theoretic approaches,
borrowing from quantum information theory, such as quantum
channel theory, quantum state discrimination, etc., can be
applied to other quantum facilitating scenarios and the analysis
of whether quantum correlation can benefit these specific
processes or not is intriguing.
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APPENDIX A: DERIVATION OF THE QUANTUM
CHANNEL EI OF THE GENERIC SEMITRANSPARENT

OBJECT

In the main text, the generic semitransparent object is
composed of a beamsplitter and a photon detector. The
quantum channel EI will be built by combing the operation
of the beamsplitter and the photon detector in the following.

Let us give the channel description of the photon detector
first. The photon detector is modeled by a two-level atom with
ground state |g〉 and exited state |e〉. At first, the atom stays at
|g〉, and it can interact with the incident photon mode, denoted
by |p〉. Specifically, the atom absorbs the photon, transforms
it to the vacuum state |v〉, and becomes the exited state |e〉
under the unitary Udet; the state |v,g〉 keeps unchanged under
the operation of Udet, since there is no photon to excite the
atom:

Udet|p,g〉 = |v,e〉,
Udet|v,g〉 = |v,g〉. (A1)

Explicitly, we write

Udet = |v,e〉〈p,g| + |p,g〉〈v,e| + |v,g〉v,g| + |p,e〉〈p,e|.
(A2)

Then after the interaction, the atom is measured in the
|g〉,|e〉 basis and reset to |g〉. In fact, we do not need to concern
ourselves with the operation of Udet on the other two states,
say, |p,e〉 and |v,e〉, since the atom always stays at the ground
state |g〉 before the interaction.

Consequently, the overall operation on the photon state is

ρout =
∑
i=g,e

〈i|Udet(ρin ⊗ |g〉〈g|)U †
det|i〉

=
∑
i=g,e

〈i|Udet|g〉ρin〈g|U †
det|i〉, (A3)

where ρin and ρout are the input and output photon states.

The above quantum operations in the summation of
Eq. (A3) can be written down with Kraus operators as

K0 = 〈g|Udet|g〉 = |v〉〈v|,
K1 = 〈e|Udet|g〉 = |v〉〈p|, (A4)

and the quantum channel shows

ρout =
∑
i=0,1

KiρinK
†
i . (A5)

For the scenario in the main text, there are three photon
modes, i.e., |1〉,|2〉,|3〉, in addition to the vacuum mode |v〉.
And only |3〉 can interact with the detector. So the quantum
channel should be slightly modified to

Edet(·) =
∑
i=0,1

Di(·)D†
i ,

D0 = |1〉〈1| + |2〉〈2| + |v〉〈v|,
D1 = |v〉〈3| (A6)

where D0 and D1 are the corresponding Kraus operators.
On the other hand, the matrix representation of the unitary

for the beamsplitter Ub in the |1〉,|2〉,|3〉,|v〉 basis shows

Ub =

⎛
⎜⎜⎝

1 0 0 0
0 a −√

1 − a2 0
0

√
1 − a2 a 0

0 0 0 1

⎞
⎟⎟⎠. (A7)

Combing the two operations of the photon detector Edet and
the beamsplitter Ub, we have the combined channel:

Ecom(·) =
∑
i=0,1

DiUb(·)U †
bD

†
i , (A8)

and the corresponding Kraus operators Ci = DiUb show

C0 = |1〉〈1| + a|2〉〈2| −
√

1 − a2|2〉〈3| + |v〉〈v|,
C1 =

√
1 − a2|v〉〈2| + a|v〉〈3|. (A9)

In fact, the component |3〉 is redundant as it is introduced to
illustrate the intermediate process between the beamsplitter
and the photon detector. Recall that the beamsplitter and
the photon detector as a whole represent the semitransparent
object, thus we can treat them together as a black box and the
photon state in IFM equivalently lives in the three-dimensional
space H12v = spanned{|1〉,|2〉,|v〉}.

As a result, without altering the function of the channel
representing the semitransparent object, we can eliminate the
terms in the above Kraus operator [Eq. (A9)] that relate to the
component |3〉 and get

A0 = |1〉〈1| + a|2〉〈2| + |v〉〈v|,
A1 =

√
1 − a2|v〉〈2|, (A10)

where we use A0 and A1 to denote the new Kraus operators.
Since all choices of which label to use to count the photon

loss probability are equivalent, actually we can substitute the
loss state |3〉 for the vacuum state |v〉 in the above Kraus
operators to obtain the effective channel in the main text
[Eq. (17)]. The physical insight behind this substitution is
that the component |3〉 of the photon state reflected by the
beamsplitter should be absorbed totally by the photon detector.
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APPENDIX B: NONINCREASE OF THE GENERALIZED
TRACE DISTANCE UNDER QUANTUM OPERATION

Here, we first give the definition of the generalized trace
distance as follows.

Definition 1. The generalized trace distance of the two
quantum states ρ1 and ρ2 shows

Dq(ρ1,ρ2) = ‖qρ1 − (1 − q)ρ2‖, (B1)

where ‖ · · · ‖ is the trace norm and 0 � q � 1 is the corre-
sponding probability factor.

Note that D1/2(ρ1,ρ2) is the original trace distance [28].
Then we show the property of the generalized trace distance
in the following theorem.

Theorem 5. Suppose that (·) is a trace preserving quantum
operation, then it is contradictive for the generalized trace
distance, i.e.,

Dq(ρ1,ρ2) � Dq((ρ1),(ρ2)). (B2)

To prove Theorem 5 conveniently, we show the following
lemma.

Lemma 2. The trace norm of any Hermitian operator M

shows

‖M‖ = Trmax[(P1 − P0)M], (B3)

where the maximization is over all projector pairs P0, P1 that
satisfy P0 + P1 = I.

Proof. Since M is a Hermitian operator, we can choose
a unitary U to diagonalize it to UMU †. And by separating
the eigenvalues to non-negative and negative parts, we have
UMU † = Q′ − S ′. As a result, M can be written as the
subtraction of the two non-negative matrices M = U †(Q′ −
S ′)U = Q − S and ‖M‖ = ‖Q − S‖ = Tr(Q) + Tr(S), since
Q and S live on orthogonal subspaces. Then, for any projector
pair P0, P1,

Tr[(P1 − P0)M] = Tr[(P1 − P0)(Q − S)]

� Tr[P1Q + P0S]

� Tr(Q) + Tr(S)

� ‖M‖. (B4)

We can choose P0 and P1 as the projectors on the two
orthogonal subspaces where Q and S live, respectively. Then
Tr[(	1 − 	0)M] can reach ‖M‖ in this way and we finish the
proof. �

Now we prove Theorem 5 with the help of Lemma 2.
Proof.

‖M‖ = Tr(Q) + Tr(S)

= Tr[(Q) + (S)]

� Tr{(P ′
1 − P ′

0)[(Q) − (S)]}
= Tr[(P ′

1 − P ′
0)(M)]

= ‖(M)‖, (B5)

where P ′
0 and P ′

1 form the projector pair used to reach the
maximal value ‖(M)‖ for the Hermitian operator (M),
referring to Lemma 2. Then, by substituting M = qρ1 − (1 −
q)ρ2, we finish the proof. �

APPENDIX C: PROOF OF LEMMA 1

Here, we give the proof of Lemma 1 in the main text:

‖p|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖ =
√

(p + 1)2 − 4p|〈ψ1|ψ2〉|2.
Proof. In general |ψ1〉 and |ψ2〉 span a two-dimensional

Hilbert space. Since |ψ2〉〈ψ2| stays invariant if we change the
global phase of it, without loss of generality,

|ψ2〉 = cos
γ

2
|ψ1〉 + sin

γ

2
|ψ3〉 (0 � γ � π/2). (C1)

Here |ψ3〉 is orthogonal to |ψ1〉, and they constitute the basis
of the space.

Then, we have the Bloch sphere representation of |ψ1〉 and
|ψ2〉 in the basis {|ψ1〉,|ψ3〉}:

|ψ1〉〈ψ1| = 1
2 (I + σz),

|ψ2〉〈ψ2| = 1
2 (I + cos γ σz + sin γ σx). (C2)

Thus the trace norm shows

‖p|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖
= 1

2‖(p − 1)I + (p − cos γ )σz − sin γ σx‖. (C3)

The two eigenvalues of (p − 1)I + (p − cos γ )σz − sin γ σx

are (p − 1) ±
√

(p − cos γ )2 + sin2 γ . Hence,

‖p|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖ =
√

(p − cos γ )2 + sin2 γ

=
√

(p + 1)2 − 4p cos2
γ

2

=
√

(p + 1)2 − 4p|〈ψ1|ψ2〉|2.
(C4)

�

APPENDIX D: EFFECT OF QUANTUM CORRELATION
FOR THE IFM PROCESS CONSIDERING Perror and Pf

In this appendix, we give the detailed illustration of the
argument in the main text that quantum correlation cannot
benefit the IFM process considering Perror and Pf , respectively.

For simplicity, we substitute for the terms in Eq. (78)

λ1 = qTr[C†CρA] + (1 − q),

λ2 = 2
√

q(1 − q)|Tr[D†CρA]| (D1)

As a result, Eq. (78) becomes to a more concise form

Perror = 1

2

(
λ1 −

√
λ2

1 − λ2
2

)
. (D2)

Due to the first-order partial derivative on λ1 of Perror being

∂Perror

∂λ1
= 1

2

⎛
⎝1 − λ1√

λ2
1 − λ2

2

⎞
⎠ � 0, (D3)

Perror monotonically decreases with the increasing of λ1. In the
meantime, it is obvious that Perror decreases with the decreasing
of λ2. Consequently, increasing λ1 and decreasing λ2 at the
same time can minimize Perror.
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Here, with the help of Eqs. (70), (75), and (76), we
present the expressions for Tr[C†CρA] and Tr[D†CρA] in the
definitions of λ1 and λ2 explicitly as

Tr[C†CρA] =
(

1 − a

2

)2N [
f 2

1

(
1 + k2

1

) + f 2
2

+ 2f1(f2rz − f1k1rx)
]
,

Tr[D†CρA] =
(

1 − a

2

)N

[f1k1 − f1rx + if2ry]. (D4)

The above equations show that for a fixed rx we can always
increase λ1 and decrease λ2 (i.e., decrease Perror) by changing
ry = 0 and rz = √

1 − r2
x . In other words, the minimum of

Perror should be reached by pure state ρA = |ϕA〉〈ϕA| of the
photon A part. Thus, the entangled photon input state cannot
enhance the performance for Perror in all k1 regimes, compared
with the single-photon input state.

Moreover, we consider the effect of quantum correlation to
the IFM process, with a more effective criterion Pf = Ploss +
Perror. This describes all the failure probability in the IFM
process. Owing to Theorem 1, Pf also shows the following
concave property like Perror:

Pf �
∑

i

piP
i
f . (D5)

That is to say, the minimum of Pf should also be reached
by the pure state and the quantum correlation here means
entanglement. With the help of Eqs. (69), (78), and (D1), we
have Pf :

Pf = 1 − 1

2

(
λ1 +

√
λ2

1 − λ2
2

)
. (D6)

Pf also decreases with the increasing of λ1 and decreasing
of λ2. Consequently, just like the aforementioned reason for
Perror, we can also argue that entanglement cannot enhance the
performance of IFM considering Pf .

APPENDIX E: DERIVATION OF EQ. (81)

Here, we give the derivation of (Ploss)N→∞
min in Eq. (81),

which is the asymptotic behavior of Eq. (71) as N → 0.

First, utilizing the same approximation technique used in
Eq. (79) in the main text, we get(

1 − a

2

)N

(�2 − �1) = O(aN ) → 0,

(
1 − a

2

)N

�1 �
(

1 − a

2

)N

�2

= 1

2
− 1 + a

1 − a

π2

16N
+ O

(
1

N3

)
.

(E1)

Then, let us consider the asymptotic behavior of the
minimum of Ploss in Eq. (71). By applying Eq. (65) and (67)
and the definitions of k1 and k2 [Eq. (61)], we have(

1 − a

2

)2N(
f1 +

√
f 2

2 + f 2
1 k2

1

)2

�
(

1 − a

2

)2N(
f1 + f2 + f 2

1

2f2
k2

1

)2

=
(

1 − a

2

)2N(
�1√

1 − k2
1

+ �2 + �2
1

2�2

k2
1

1 − k2
1

)2

�
(

1 − a

2

)2N[
�1

(
1 + k2

1

2

)
+ �2 + �2

1

2�2
k2

1

(
1 + k2

1

)]2

�
(

1 − a

2

)2N[
(�1 + �2) + k2

1

2
�1

(
1 + �1

�2

)]2

�
[

1 − 1 + a

1 − a

π2

8N
+

(
1 + a

1 − a

)2
π2

8N2
+ O

(
1

N3

)]2

� 1 − 1 + a

1 − a

π2

4N
+ O

(
1

N2

)
, (E2)

where in the next-to-last row we employ the equalities in
Eq. (E1). So the asymptotic expression of Eq. (71) is

(Ploss)
N→∞
min � q

[
1 + a

1 − a

π2

4N
− O

(
1

N2

)]
.
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