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We consider a cantilever mechanical oscillator (MO) made of diamond. A nitrogen-vacancy (NV) center lies at the end of the
cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gradient. Under coherent driving
of the MO, we find that the coupling between the MO and the NV center is greatly enhanced. We studied how to generate
entanglement between the MO and the NV center and realize quantum state transfer between them. We also propose a scheme
to generate two-mode squeezing between different MO modes by coupling them to the same NV center. The decoherence and
dissipation effects for both the MO and the NV center are numerically calculated using the present parameter values of the
experimental configuration. We have achieved high fidelity for entanglement generation, quantum state transfer, and large two-
mode squeezing.
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Because of its applications in ultra-high precise sensing and
testing quantum phenomenon at macroscopic scale [1,2], the
nano(micro)-mechanical oscillator has attracted much atten-
tion in recent years. Combined with cavity opto- and electro-
mechanics, the mechanical oscillator (MO) has been explored
extensively as a quantum interface [3-11]. Moreover, strong
coupling in hybrid MO systems have been realized that may
be used to achieve for example ground-state cooling and
quantum information processing [12-15]. Recently, the focus
has been on interfacing the mechanical degrees of freedom
with a single quantum object such as a 2-level system with a
quantum state that can be precisely controlled. One such sys-
tem investigated both theoretically and experimentally cou-
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ples a nanomechanical oscillator with solid state qubits, such
as nitrogen-vacancy (NV) centers in diamond [16-27].

Resonating nanostructures made of a single-crystal dia-
mond are expected to possess excellent mechanical proper-
ties, including high quality factors and low dissipation. Di-
amond has been expected to have great applications as a
uniquely versatile material, albeit one that is intricate to grow
and process. Fortunately, values for the quality factors ex-
ceeding one million are found at room temperature that sur-
pass those of single-crystal silicon cantilevers of similar di-
mensions by roughly an order of magnitude [28]. In addition,
diamond hosts interesting intrinsic dopants [29]—The most
prominent are the NV centers. Each NV center is formed by
a nitrogen atom and a nearby vacancy in diamond, negatively
charged and usually possessing six electrons in a ground state
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with spin S = 1. The centers are regarded as artificial atoms
in the solid system [30]. Because of the long coherence
time and sensitive to magnetic field, they are viewed as units
for quantum information processing and also widely used as
solid-state ultra-sensitive magnetic field sensors.

There are usually two methods to couple the NV centers
with a MO. The first requires a strain-induced effective elec-
tric field to mix phonon modes with the electron spin of the
NV centers [31-34]. Strain-induced coupling is very sensi-
tive to the size of the MO. The strong coupling regime is
very difficult to approach from such a direction. The second
method is based on the strong first-order magnetic field gradi-
ent [17, 35]. For this method, one of the main problems with
the hybrid systems of a NV center and a MO is the strong
coupling condition requiring an ultra-high magnetic gradient
[17]. One solution is to reduce the effective mass of the oscil-
lator or trapping frequency [36, 37]. Here we study the third
coupling mechanism between a NV center and MO based on
second-order magnetic coupling, which was studied in heat-
ing one mode of a MO to cool another mode to the quantum
ground regime [38]. The advantage of this mechanism is that
the effective coupling strength between mechanical mode and
electrons spins can be easily tuned.

In this article, we propose a scheme to realize strong cou-
pling between a MO and a NV center under the second-order
magnetic field gradient. In sect. 1, we introduce a new model
used to describe this coupling and demonstrate the increased
coupling between them. In sect. 2, we propose a scheme to
generate entanglement and to realize state transfer between
the NV center and the MO. Then we generalize our model to
the interaction between the MO and the ensemble of NV cen-
ters. In sect. 3, we present another application of two-mode
squeezing for the MO. In sect. 4, we give a brief discussion
and summary.

1 Model

A nano-diamond MO (Figure 1) was fabricated with a NV
center situated at the end of the oscillator that oscillates ver-
tically (x axis) in a magnetic field generated by two magnetic
tips point situated symmetrically on the two sides of oscillator
[38]. The MO has two modes with frequencies denoted by ωa

and ωb. The symmetrical arrangement of tips provides a van-
ishing first-order magnetic field gradient near the NV center;
that is, there is only a second-order magnetic field gradient.
An external static magnetic field Bext is present along the ax-
ial direction of the MO (z axis). The frequency difference
between the electron spin states of the NV center | − 1⟩ and
|0⟩ is denoted as ωz, where we assume that the axes of the NV
center is the same as external coordinate. We establish |0⟩ as
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Figure 1 (Color online) Model for second-order magnetic field gradient
coupling between a NV center and a diamond MO. NV centers are located at
the end of the MO. Two magnetic tips are symmetrically placed either side
of the MO to produce a second-order magnetic field gradient near the NV
centers. Under external driving, the MO oscillates along the x direction. The
homogeneous external magnetic field is along the z direction.

the ground state |g⟩ and | − 1⟩ as the excited |e⟩. The driv-
ing force is exerted on the oscillator with frequency ωa. The
energy split of the NV center electron spin is tuned to sat-
isfy the relation ωz = ωb − ωa = ∆. In the rotating frame
H10 = ωaa†a + ωab†b, the two-mode Hamiltonian simplifies
to [38, 39]

H0 =
ωz

2
σz + △b†b +

Ω1

2

(
a + a†

)
+
Ω2

2

(
b + b†

)
,

H1 =
[
gaa†a + gbb†b + gab

(
a†b + b†a

)]
σx,

(1)

where a
(
a†
)

and b
(
b†
)

represent the annihilation (creation)
operators of the two oscillator phonon modes, and Ω1 (Ω2) is
the driving strength for the mode a (b); ga, gb, and gab are the
coupling strengths for the second-order magnetic field gradi-
ent. The Pauli operators are defined as σz = |e⟩⟨e| − |g⟩⟨g|,
σx = |e⟩⟨g| + |g⟩⟨e|. With the symmetrical magnetic tip ar-
rangement, the first-order coupling interaction between the
NV center and the MO vanishes and the second-order inter-
action governs the system, which is described by term H1.

Initially, the magnetic field is absent and only the uncou-
pled Hamiltonian term H0 matters. In the presence of a driv-
ing force, the MO tends to behave coherently. The dynamics
of the MO can be derived from the quantum Langevin equa-
tion [40]

ȧ = −i [a,H0] − γ1

2
a +
√
γ1ain,

ḃ = −i [b,H0] − γ2

2
b +
√
γ2bin,

(2)

where γ1 and γ2 are the dissipation rates of modes a and b,
and ain and bin are the input noise operators for modes a and
b, with ⟨ain⟩ = ⟨bin⟩ = 0. The steady state amplitude of each
mode satisfies

i
Ω1

2
+
γ1

2
α = 0,

i△β + i
Ω2

2
+
γ2

2
β = 0,

(3)

where α = −iΩ1/γ1 and β = −Ω2/2∆. In practice, we assume
Ω2 ≪ ∆. Therefore, β approaches zero and can be neglected.
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We see that by increasing the amplitude of the phonon mode,
the effective coupling strength between the NV center and
the MO increases. Once the steady state is established, we
turn the magnetic field on and the second-order interaction
between the NV center and the MO comes into effect. Near
the steady state, we make the transformation a → a + α and
b→ b + β under which the Hamiltonian takes the form

H0 =
ωz

2
σz + △b†b,

H1 =
[
ga

(
a† + α∗

)
(a + α) + gb

(
b† + β∗

)
(b + β)

+gab

(
a† + α∗

)
(b + β) + gab

(
b† + β∗

)
(a + α)

]
σx.

(4)

In the rotating frame, H0 = (ωz/2)σz + △b†b, the effective
Hamiltonian has approximation

HE = g
(
α∗bσ+ + αb†σ

)
, (5)

setting gab = g, σ+ = |e⟩⟨g|, and σ− = |g⟩⟨e|. Note that as
long as the first-order magnetic field gradient is small, we can
safely neglect its effects thereby validating HE (see Appendix
A1).

The mass of the resonator is approximately 5 × 10−18 kg
and the zero-point fluctuation a0 is of order 10−13 m [17]. The
second-order magnetic field gradient is then of order 1014-
1015 T/m, corresponding to coupling g/2π ∼ 1-10 Hz [38].
Here we choose a coupling strength of g/2π = 5 Hz. From
the Zeemann effect, the energy associated with the magnetic
splitting of the NV center under an external magnetic field
Bext is ωz = 2 × 106g. The mode frequencies of the MO
are set at ωa = 4 × 106g and ωb = 6 × 106g. The driving
strength is Ω1 = 2.5 × 105g with frequency ωL = ωa, and
the dissipation of the oscillator mode a is γ1 = 5g [28]. We
obtain |α| = Ω1/γ1 = 50000. Thus, the effective coupling
strength |αg|/2π is 250 kHz, which is much larger than both
the mechanical decay and the NV center dephasing rate. As
the external driving force has a large detuning for mode b,
the driving strength for mode b is very weak and the effect of
heating caused by coherent driving is negligible. Therefore,
this heating can be safely neglected [32, 33]. Moreover, we
can adjust the Duffing constant to suppress the nonlinearity
(see Appendix A2) [41].

Furthermore, if there are many NV centers at the end of
the MO, the effective interaction between the MO and NV
centers increases by

√
N, where N is the number of NV cen-

ters [42]. Following the above steps, we derive an effective
Hamiltonian

HNE = g
(
α∗dJ+ + αd†J

)
, (6)

where J+ =
∑N

i=1 σ
+
i and the interaction among the NV cen-

ters has been neglected. From an analysis of this system, the
interaction time decreases to t/

√
N and the fidelity of the state

rises.

2 Entanglement and state transfer

The basic requirement in quantum information processing is
entanglement and state transfer between the NV center and
the MO. In this section, we discuss both aspects for the hy-
brid system of NV center and diamond MO.

We assume that the MO is cooled to near the ground state
and the NV center is in the state |e⟩. We neglect initially the
effects of decoherence. From eq. (5), the system evolves as:

|ψ (t)⟩ = − sin (g |α| t) |1, g⟩ + cos (g |α| t) |0, e⟩, (7)

where |n, g⟩ (|n, e⟩) represents the system state with the MO
in the Fock state |n⟩ and NV center in the ground (excited)
state, respectively.

From the wave function eq. (7), we see that at time t =
π/4g |α|, entanglement between the NV center and MO is
maximal. The entanglement of this system can be measured
through negativity, which is defined as N (ρ) =

(∣∣∣∣∣∣ρTA
∣∣∣∣∣∣ − 1

)
/2

[43,44], where the partial transformed density matrix ρTA has
elements ρTA

mµ,nν = ρnµ,mν and the norm of the trace
∣∣∣∣∣∣ρTA
∣∣∣∣∣∣ =

tr
√
ρTA†ρTA , which corresponds to the sum of the absolute

value of eigenvalues of ρTA . In this circumstance, negativ-
ity becomes N (ρ) = |sin (2g |α| t)| /2. The maximal value of
N (ρ) is 1/2, corresponding to maximal entanglement.

The Jaynes-Cummings Hamiltonian eq. (5) can also be
used to describe quantum-state transfer between the NV cen-
ter and the MO. When the magnetic field is turned on, the
interaction between the MO and NV center is established re-
sulting in an energy exchange between MO and NV center.
We see that at t = π/2g |α|, its product state is excited from
|0, e⟩ to |1, g⟩, specifically, the energy of excitation passes
from the NV center to the MO. Meanwhile, the state entan-
glement decreases to zero corresponding to the minimal value
of N (ρ).

In the experiment, the effect of the environment must be
considered. The state of the system is usually in a mixed
state, expressed by density matrix ρ (t). We use the follow-
ing master equation to describe the evolution of the density
matrix

ρ̇ (t) = − i
[
HE , ρ (t)

]
+
γ2

2
(nT + 1) L [b] ρ (t)

+
γ2

2
nT L
[
b†
]
ρ (t) +

d
2

L
[
σz] ρ (t) , (8)

where γ2 and d denote the dissipation rate of the MO and
dephasing rate of the NV center, respectively, and L [o] ρ =
2oρo† − o†oρ − ρo†o. The initial MO state is a ther-
mal state and has the form ρ0 =

∑∞
n=0 pn|n⟩⟨n| with pn =

⟨n⟩n/ (1 + ⟨n⟩)n+1 with ⟨n⟩ = ⟨b†b⟩, the mean thermal phonon
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number of MO. Here, we suppose MO has been cooled near
the ground state. The initial state of the system is ρ (0) =
|e⟩⟨e| ⊗ρ0 and the space we choose is {|g⟩, |e⟩} ⊗ {|n⟩}nmax

n=0 , with
upper cutoff of nmax = 20. The dissipation rate of the MO
is set to γ2 = 5g and the dephasing rate of the NV center to
d = 50g. Neglecting the spontaneous decay rate of the NV
center, we put this system in a low temperature environment
with nT = 20, which corresponds to a temperature of around
T ≃ 10 mK.

Once the interaction begins, entanglement occurs. Here,
we explore entanglement of the system using negativity,
which can be read from Figure 2. The red line in Figure 2(a)
depicts the negativity of a pure state and the values of negativ-
ity are a monotonic function of entanglement. The maximal
and minimal values are 1/2 and 0 corresponding to a state
of maximal entanglement and the product state, respectively.
However, with the influence of thermal noise of the MO, en-
tanglement can disappear. From the plot of negativity against
thermal noise (black dashed line in Figure 2(a)), we see that
its maximal value falls below 1/2 and decreases with increas-
ing thermal phonon number (see Figure 2(b)). This is be-
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Figure 2 (Color online) Entanglement between the NV center and the MO.
(a) Evolution of entanglement for pure state (red line) and actual experiment
(black line) with thermal phonon number ⟨n⟩ = 0.1; (b) negativity for maxi-
mal entanglement against the mean phonon number of the MO. The coupling
strength is g/2π = 5 Hz, the driving strength is Ω/g = 2.5 × 106, and the
dissipation rate of MO and dephasing rate of the NV center are γ2/g = 5 and
d/g = 50, respectively.

cause the state evolves into a mixed state due to the thermal
phonon, and the components of the target state in density ma-
trix decrease with increasing thermal phonon number.

The fidelity is of course the essential parameter in quantum
information processing, and here we investigate the fidelity
of maximal entanglement state and product state. We define
the fidelity between a pure target state |ψ (t)⟩ and mixed state
ρ (t) as F =

√
⟨ψ (t) |ρ (t) |ψ (t)⟩. That is, the fidelity is equal

to the square root of the overlap between |ψ (t)⟩ and ρ (t). Fi-
delity decays with time because of dissipation, the rate of
dephasing, and thermal noise. Figure 3 presents plots of the
fidelity for the maximal entanglement (a) and state transfer
(b) comparing the results under different thermal noise and
driving strengths. As thermal phonons can couple to other
non-relevant states in the density matrix, fidelity decays with
increasing thermal mean photon number. If we increase the
driving strength, the effective coupling between the NV cen-
ters and the MO are enhanced, resulting in a decrease in oper-
ation time for both entanglement generation and state trans-
fer, which may cause damage from thermal noise. From Fig-
ure 3, the influence of thermal noise decreases with increas-
ing driving strength.

As for the interaction between the MO and the ensemble
of NV centers, at t = 0, we assume that there are N − 1 NV

0 0.1 0.2 0.3 0.4
0.80

0.85

0.90

0.95

1.00

Mean thermal phonon number  n  

Mean thermal phonon number  n  

F
id

e
li
ty

 

 

Ω/g=2.5×106

Ω/g=1.25×106

Ω/g=2.5×105

Ω/g=2.5×106

Ω/g=1.25×106

Ω/g=2.5×105

0 0.1 0.2 0.3 0.4
0.75

0.80

0.85

0.90

0.95

1.00

F
id

e
li
ty

 

 

(a)

(b)

Figure 3 (Color online) Fidelity of maximal entanglement (a) and quantum
state transfer (b). We give the relationship between fidelity for two operat-
ing settings and thermal noise and compare these results for different driving
strengths. The dissipation rate for the MO and the rate of dephasing for the
NV center are γ2/g = 5 and d/g = 50, respectively.
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centers in the ground state. Under the effective Hamiltonian,
the evolution of the state is

|ψ (t)⟩ = − sin
(
g |α|
√

Nt
)
|0,N⟩

+ cos
(
g |α|
√

Nt
)
|1,N − 1⟩, (9)

where |0,N⟩ (|1,N − 1⟩) denotes N (N − 1) NV centers in
the ground state and a 0 (1) photon excitation of the MO,
respectively. From this wave function, we see that at t =
π/
(
4g |α|

√
N
)
, maximal entanglement can be achieved and

at t = π/
(
2g |α|

√
N
)
, the state transfer can be realized. In a

low-temperature experiment, individual relaxation processes
can be ignored and only dephasing of the intrinsic spin and
phonon dissipation is considered. The dynamics of the sys-
tem can be given by the master equation [31]

ρ̇N = − i
[
HE , ρN

]
+
γ2

2
(nT + 1) L [b] ρN

+
γ2

2
nT L
[
b†
]
ρN +

d
2

∑
i

L
[
σz

i

]
ρN , (10)

where nT = 20, d = 50g and γ = 5g. Because the proba-
bility of interaction between the ensemble of NV centers and
the MO is high, the effective coupling strength has been en-
hanced, and therefore the rate of achieving the operation is
fast, leading directly to an increase in fidelity. Nevertheless,
more noise has been introduced into the ensemble of NV cen-
ters compared with the single NV center and decreases fi-
delity. The competition between the two factors leads to a
compromise in fidelity for the two operations. Considering
that the operation time to generate maximal entanglement is
shorter, the acceleration by the NV-center ensemble is not ob-
vious with a small number of NV centers. At the beginning,
this results in a decrease in fidelity for maximal entanglement
when the effect of noise plays a more important role. Later,
as the effect of acceleration by the ensemble of NV centers
is more obvious, that is, more NV centers are introduced, the
enhanced effective coupling strength plays the leading role,
producing higher fidelity (see Figure 4(a)). However, for
state transfer (Figure 4(b)), the acceleration resulting from
the ensemble NV centers is more obvious than the deceler-
ation caused by noise at all times and thus, the fidelity is a
monotonic function of the number of NV centers.

3 Two-mode squeezing of mechanical oscilla-

tor

In addition, the second-order interaction can be applied to re-
alize two-mode squeezing. Keeping the design and taking
an extra mode c into consideration, we assume ωa − ωc =

ωb − ωa. Mode a resonates with the external driver, and with
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Figure 4 (Color online) Fidelity of quantum-state transfer between the
ensemble of NV centers and the MO. Dependence of fidelity for maximal
entanglement (a) and quantum state transfer (b) is on the number of NV cen-
ters . The thermal phonon number is ⟨n⟩ = 0.1, the coupling strength is
Ω/g = 2.5 × 106, and the dissipation rate of MO and dephasing rate of NV
center are γ2/g = 5 and d/g = 50, respectively.

this system, two-mode squeezing is produced. In the rotating
frame, H′10 = ωaa†a+ωab†b+ωac†c, the Hamiltonian for the
three-mode system is the form

HS 0 =
ωz

2
σz + △b†b − △c†c +

Ω1

2

(
a + a†

)
+
Ω2

2

(
b + b†

)
+
Ω3

2

(
c + c†

)
,

HS 1 =
[
gaa†a + gbb†b + gcc†c + gab

(
a†b + b†a

)
+gac

(
a†c + c†a

)
+ gbc

(
b†c + c†b

)]
σx,

(11)

where △ = ωb −ωa = ωa −ωc , ωz, a
(
a†
)
, and b

(
b†
)
, c
(
c†
)

represent the annihilation (creation) operators for the three-
phonon modes, respectively, of the oscillator, Ω1 (Ω2,Ω3) is
the driving strength applied to mode a (b, c) with frequency
ωL = ωa, and ga, gb, gc, gab, gac, gbc are the coupling strengths
associated with the second-order magnetic field gradient. Ini-
tially, with the magnetic field absent, we drive the MO into
the steady state. At steady state, the MO moves coherently
undergoing transformations a → a + α, b → b + β, and
c→ c+ζ, where α, β, and ζ are the amplitude coherent states.
Similarly as in eq. (3), we obtain α = −iΩ1/γ1, β ≃ −Ω2/2△,
and ζ ≃ Ω3/2△, where α ≫ β, ζ. We then turn the mag-
netic field on and the NV centers and the MO begin to in-
teract with each other immediately. In the rotating frame,
H′20 = (ωz/2)σz + △b†b − △c†c. Neglecting high frequency
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and small terms, we have

HS I =g
(
α∗bσ+eiωt + αb†σ−e−iωt

+α∗c†σ+eiωt + αcσ−e−iωt
)
, (12)

where ω = ωz − △ and gab = gac = g. In the limit αg ≪ ω,
we eliminate adiabatically the NV center [45], and obtain the
effective squeezing Hamiltonian

HS = η
(
b†b + c†c + bc + c†b†

)
, (13)

where η = |α|2 g2/ω, and we initially set the NV center in the
excited state. As mentioned before, 2π |α| /g = 10000 and
ω/g = 106; therefore, we get η/g = 2500. Assuming that the
initial mechanical state |ψ (0)⟩S is the vacuum, we apply this
interaction to the initial state and find

|ψ (t)⟩S = exp
[
−iη
(
b†b + c†c + bc + c†b†

)
t
]
|ψ (0)⟩S . (14)

We define the collective creation and annihilation opera-
tors as d† =

(
b† + eiδc†

)
/
√

2 and d =
(
b + e−iδc

)
/
√

2, with
δ the phase difference of two modes. Based on the collec-
tive operator, the in-phase and in-quadrature components are
given by d1 =

(
d + d†

)
/2 and d2 =

(
d − d†

)
/2i, respectively

[40]. We analyze here the collective mode d1 but the collec-
tive mode d2 can be analyzed in the same way. The variance
of d1 in the two-mode squeezed vacuum is

⟨d2
1⟩ =

1 + 2 (1 − cos (δ)) ξ2 − 2 sin (δ) ξ
4

, (15)

where we denote ξ = ηt. At space (0, 2π), we see at
ξ = sin (δ) / [2 − 2 cos (δ)], the squeezing is

⟨d2
1⟩min =

1 − cos (δ)
8

. (16)

From this result, we see that the minimal value of ⟨d2
1⟩ de-

pends on δ. If we choose δ = π/2, ⟨d2
1⟩ = 1/8, squeezing is

accomplished.
In experiment, the dissipation of the modes needs to be

taken into account. Assuming the mechanical modes have
been cooled to nearly the ground state, the evolution of the
state is given by the master equation

ρ̇S (t) = − i
[
HS , ρS (t)

]
+
γ2

2
(nT + 1) L [b] ρS (t)

+
γ2

2
nT L [b] ρS (t) +

γ3

2
(nT + 1) L [c] ρS (t)

+
γ3

2
nT L [c] ρS (t) , (17)

where L [o] ρ = 2oρo† − o†oρ − ρo†o, γ2 and γ3 are the dissi-
pation rate for modes b and c, respectively, and the phonon is
initially in the thermal state. We see that because of the col-
lective correlation, two-mode squeezing is realized and the

variance of d1 decreases from 1/4 to the minimal value 1/8
when we choose δ = π/2, as in Figure 5(a). However, the
correlation disappears with thermal noise and hence squeez-
ing decreases if more thermal noise is introduced. Squeezing
finally disappears when the thermal phonon number reaches
0.5 in our model as seen in Figure 5(a). The minimal value
for the variance of d1 increases linearly with the number of
thermal phonons. The corresponding rate is independent of
the decay rate of the MO and the driving strength, and there-
fore, we find that ∂⟨d2

1⟩min/∂⟨n⟩ = k, with k ≃ 0.25 for this
system (Figure 5(b)).

4 Discussion and conclusion

In conclusion, we have proposed a scheme to realize strong
coupling between the MO and the NV centers of diamond via
the second-order magnetic field gradient. We have shown that
the effective coupling can be greatly enhanced by coherently

0 20 40 60
0.1

0.2

0.3

0.4

0.5

 

 

Evolution time 2π/g (µs)

0.35

0.30

0.25

0.20

0.15

0.10
0 0.1 0.2 0.3 0.4

Mean thermal phonon number

d
2 1

d
2

m
in

1

(a)

(b)

Figure 5 (Color online) Squeezing of the collective mode d1. (a) Dy-
namics of ⟨d2

1⟩ with ⟨n⟩ = 0, 0.2, 0.5. The green dash line marks the critical
value 1/4. The coupling strength is g/2π = 5 Hz, the driving strength is
Ω/g = 2.5× 106, and the dissipation rate for the MO is γ2/g = γ3/g = 5; (b)
relationship between the minimal value of ⟨d2

1⟩ and thermal phonon number
of MO under three different conditions: for the black solid line, the driving
strength is Ω/g = 2.5 × 106, the dissipation rate of MO is γ2/g = γ3/g = 5;
for the red dashed line, the driving strength is Ω/g = 2.5 × 106, the dissipa-
tion rate of MO is γ2/g = γ3/g = 50; for the blue dot-dash line, the driving
strength is Ω/g = 1.25× 106, the dissipation rate of MO is γ2/g = γ3/g = 5.
The dephasing rate of the NV center is d/g = 50 for both graphs.
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driving the MO. We also discussed the coupling between the
NV-center ensemble and the MO. Thermal noise and dissi-
pation for both the MO and the NV centers were discussed.
Based on the effective coupling, we discussed applications
on quantum state transfer and entanglement generation. We
found that the quantum state transfer and entanglement gen-
eration could be realized with high quality for the present
experimental conditions. We also discussed how to gener-
ate two-mode squeezing for the MO via couplings to the NV
centers and the external driving force. The effect of thermal
noise on squeezing has been simulated. Squeezing may ap-
pear even with a non-zero thermal phonon number. We hope
that our study stimulates further experimental research on the
applications of the second-order magnetic field gradient in
hybrid quantum systems.
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sic Research Program of China (Grant No. 2015CB921002).
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Appendix A1 First-order magnetic field gradi-

ent effects

We briefly discuss the first-order magnetic field gradient ef-
fects. If both the first- and second-order magnetic field gra-
dient are considered, we should add the following first-order
magnetic field gradient induced coupling terms in eq. (1)

H2 = g1a(a + a†)σx + g1b(b + b†)σx, (a1)

where g1a (g1b) is the first-order magnetic field gradient-
induced coupling strength between NV centers and mechan-
ical oscillator a (b). In the rotating frame H10 =

ωz
2 σz +

ωa(a†a + b†b), these first-order coupling terms become

H′2 = g1a(ae−iωat + a†eiωat)(σ+eiωzt + σ−e−iωzt)

+ g1b(be−iωat + b†eiωat)(σ+eiωzt + σ−e−iωzt). (a2)
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In the absence of any driving on mode a, we can neglect
eq. (a2) in using the rotating wave approximation because
|ωa ± ωz| is much larger than the coupling terms g1a and g1b.
Even if the a is coherently driven (with the steady state am-
plitude α), as long as αg1a ≪ ωL, the rotating wave approx-
imation is still valid. In our scheme, α is chosen around
50000. To neglect H′2, the g1a should be much less than
|ωa − ωz|/α = 200 × 2π Hz. Therefore, as long as the first-
order magnetic field gradient is small enough, we can neglect
its effects.

Appendix A2 Nonlinearity in our model

When the amplitude of the MO is enhanced, a cubic nonlin-
earity (Duffing nonlinearity) may be important. Fortunately,
effects caused by cubic nonlinearity can be neglected in our
model. The dynamics of the MO in our model can be mod-
eled by a simplified driven Duffing oscillator equation

mẍ + k1x + k3x3 = Fdrivecos(ωt), (a3)

where m, x, k1, and k3 are the mass, amplitude, liner spring
constant, and Duffing constant, respectively. In our system,
the mass is around 5×10−18 kg, the amplitude of MO is about
1 nm. According to ref. [41], the Duffing constant is about
1014 Nm−3. Hence, k3x2 ≪ k1 and the nonlinearity can be
neglected.

As for the interaction between the NV center and the MO
in our model, the third-order coupling can also be neglected.
We know that the bridge between the NV center and MO is
the magnetic field B(x), which can be expanded as:

B(x) =B0 +
dB(x)

dx
∆x +

d2B(x)
dx2 (∆x)2

+
d3B(x)

dx3 (∆x)3 + · · · . (a4)

Because the magnetic tips are arranged symmetrically, the
magnetic field B(x) is an even function and hence the third-
order coupling vanishes.
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