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Abstract

Suffix array is a fundamental data structure for many apftina that involve string searching and
data compression. Designing time/space-efficient suffexyaronstruction algorithms has attracted sig-
nificant attentions and considerable advances have beeaim#ue last 20 years. We obtain the suffix
array construction algorithms that are optimal both in tiamel space for both integer alphabets and
general alphabets. Concretely, we make the following doutions:

1. For integer alphabets, we obtain the first algorithm whidtes linear time and uses orf}(1)
workspace (the workspace is the space needed beyond thefripg and the output suffix array).
The input string may be modified during the execution of tlgoathm, but should be restored
upon termination of the algorithm. Our algorithm is easynpiement. Our C implementation of
the algorithm requires only 8 Bytes of workspace.

2. We strengthen the first result by providing the first lingare in-place algorithm for read-only
integer alphabets (i.e., we cannot modify the input stfigThis settles the open problem posed
by Franceschini and Muthukrishnan in ICALP 206-MO07].

3. For read-only general alphabets (i.e., only comparismesallowed), we present an in-place
O(nlog n) time algorithm, recovering the result obtained by Frankggand MuthukrishnarfMO7].

1 Introduction

Suffix arrays were introduced by Manber and Myavd[90, MM93] as a space-saving alternative to suffix
trees McC76,Far97. Since then, it has been used as a fundamental data sedotunany applications in
string processing, data compression, text indexing, mé&tion retrieval and computational biologyN00,
AKOO02, GVO05]. Particularly, the suffix arrays are often used to comphteBurrows-Wheeler transform
[BW94] and Lempel-Ziv factorization4L78]. Comparing with suffix trees, suffix arrays use much less
space in practice. Abouelhoda et #K0O04] showed that any problem which can be computed using suffix
trees can also be solved using suffix arrays with the samepsyimtime complexity, which makes suffix
arrays very attractive both in theory and in practice.

Given stringl’ = T'[0 ... n— 1], the suffixes o areT[i...n — 1] forall i € [0,n— 1], whereT[i ... j]
denotes the substrif[:]T'[i + 1] ... T'[j] in T. The suffix array5A for stringT  is the sorted array of all the
suffixes of the string”, according to their lexicographical order, i.84 stores a permutation 6f... n—1,
such thafl'[SA[i] ...n—1] < T[SA[j]...n—1] fori < j. Suffix arrays have been studied extensively over
the last 20 years (see e.gVIf193,KS03 KSB06 KA05,NZC09aNZC11,Nonl13). We refer the readers to
the surveysPSTO7DPT14 for many suffix sorting algorithms.

In 1990, Manber and MyerdM|M90, MM93] obtained the firsiO(nlogn) time suffix sorting algo-
rithm over general alphabets. In 2003, Ko and AlukAD3], Karkkainen and Sander&K§03 and Kim
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et al. KSPPO03 independently obtained the first linear time algorithm $affix sorting over integer alpha-
bets. Clearly, these algorithms are optimal in terms of gdgtic time complexity. However, in many
applications, the computational bottleneck is the space segnificant efforts have been made in develop-
ing lightweight(in terms of space usage) suffix sorting algorithms for tisé d@cadeN1F02, BKO3, KAO3,
HSSO03HSS09MPO6NZ07,NZC11,Non13. In particular, the ultimate goal in this line of work is tb@in
in-place algorithmgi.e., O(1) workspace), which are also asymptotically optimal in time.

1.1 Related Work and Our Contribution

Before we discuss in details of the previous and our algmsthwe need some terminologies. We measure
the space usage in the unitwbrds Each word can stor®(log W) bits, wheren < . One standard
arithmetic or bitwise boolean operation on word-sized apds cost€)(1) time. The workspace used by
an algorithm is the total space needed by the algorithmpedialj the space required by the input strifig
and the output suffix arrayA. As usual, we can use the spac&afwhen construcsA.

We consider the following three popular settings.

1. Integer alphabets: EadHi| € [1, 3] where the cardinality of the alphabetsi3 < n and eactl[i]
is stored in a word. The input stririlg may be modified by the algorithm.

2. Read-only integer alphabets: E&Eh] € [1, X] where|X| < n andT'[:] is stored in a word olog |X|
bits. In addition, the input strind@’ is read-only.

3. Read-only general alphabets: We can only read the ingngst’ and compare characters. Each
comparison take®)(1) time. Wecannotwrite the input space, make bit operations, even copy an
input charactefl'[¢] to the work space. Clearlf)(n log n) time is a lower bound for suffix sorting, as
it is a generalization of ordinary sorting (if all[i|s are distinct).

There are many suffix sorting algorithms over these alplsal@ste Table% and2 for an overview.

1.1.1 Integer Alphabets

We first consider integer alphabets. We allow the algoritbrteinporarily modifyl". However, the original
string T must be restored upon the termination of our algorithm. Ghad. [CMR14] denote this situation
asrestore modein their paper.

We list many previous results and our new result in Tdbte Earlier algorithms that require more than
O(n) workspace (See Tablefor many of them) do not need to modify the input as they caatera new
array withn words.

Nong et al. NZC09hNZC11] obtained the first nearly linear time algorithm that usdsisear workspace.
They modified the inpuf” in their algorithm. Recently, NondNon13 obtained a linear time in-place algo-
rithm if |X| = O(1). In fact, the algorithm need&| words workspace and it does not need to modify the
input7’. Note that in the worst cag&| can be as large &3(n). We improve their results as follows.

Theorem 1 There is an in-place linear time algorithm for suffix sortioger integer alphabets.

Our algorithm is based on the induced sorting framework ldgeel in [KA03] (which are also used in
several previous algorithm&pA05, FM07, PSTO7NZC09a NZC09h NZC11,Non13). We develop a few

1 Some previous works state their space usages in terms ofMgtsonvert into words.



Table 1: Time and workspace of suffix array construction @tlgyms for integer alphabets

Time Workspace (words) Algorithms
O(n?logn) en+0(1) e<1 [MF04, MP0O6 MP0§
O(n?logn) |X] +0(1) [1IT99]

O(n?) O(n) [SS017
O(nlog?n) O(n) [Sad9og
O(nlogn) O(n) [MM90,MM93, LS99, LS07]

O(vn) O(n/\/v) v € [1,4/n] [KSBO§

O(n/ISTlog(n/15) O(n) [BBOS
O(nloglogn) O(n) [KIPO4
O(nloglog|X|) O(nlog |3|/logn) [HSSO3HSS09
O(nlog|X)) |X] +0(1) [NZ07]
O(n) O(n) [KSPPO3KS03 KA03,KA05,KSBOg
O(n) n+n/logn+ O(1) [NzC09aNZC1]]
O(in) n¢+n/logn + O(1) 2 [NZC09hNZC11]
O(n) |X] +0(1) [Non13
O(n) O(1) this paper

T is read-only in all algorithms except in the third to last rowarked with*).

elementary, yet effective tricks to further reduce the spagage to constant. This algorithm and the new
tricks are also useful for read-only integer and generdiaipts.

Our algorithm is practical and easy to implement. Our C imq@atation of the algorithm requires only 8
Bytes workspace for any integer string and the running tevego competitive. We report our experimental
results in Sectiot®.

1.1.2 Read-only Integer Alphabets

In this section, we consider the harder case where the inpaog &’ is read-only. There are many algo-
rithms for this case. See Tablefor an overview. Again, the alphabets[is X] where|X| < n. In 2007,
Franceschini and MuthukrishnaRN07] posed an open problem for designing an in-place algoritab t
takeso(n logn) time or ultimatelyO(n) time for integer alphabets (they did not specify whetheritipeit
string T" is read-only or not). The current best result along this isnprovided by NongNon13, which
uses|>| words workspace, as we just mentioned. In this paper, wie sktivn this open problem.

Theorem 2 There is an in-place linear time algorithm for suffix sortioger integer alphabets, even if the
input stringT is read-only.

1.1.3 Read-only General Alphabets

Now, we consider the general case where the stfirig over an arbitrary alphabet. The only operations
allowed on the characters of stririg (read-only) are comparisons. See taBléor an overview of re-
sults. In 2002, Manzini and FerraginslF02] posed an open problem, which asked whether there exists an

2 Nong et al. NZC09h NZC11] assume the word size is 32 bits and any integer can fit intoaand. The result listed here is
under the standard assumption that a word cont@ifisg n) bits. It is easy to verify the bucket arrdyin their algorithm requires
n® words. They also need anbits array (or equivalently/ log n words).
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Table 2: Read-only general alphabets

Time Workspace(words) Algorithms
O(nlogn) O(n) [MM90, MM93, LS99 LS07]
O(vn+nlogn) O(v+n/y/v) v e [2,n] [BKO3]
O(vn +nlogn)  O(n/\/v) v e [1,4/n] [KSBO€
O(nlogn) O(1) [FMO7]
O(nlogn) O(1) this paper

O(nlogn) time algorithm using(n) workspace. In ICALP 2007, Franceschini and Muthukrishrii&v(7]
obtained the first in-place algorithm that runs in optirokl log n) time. Their conference paper is com-
plicated and densely-argued. We also give an algorithmwahéhieves the same result. In addition, we do
not make any bit operations while they use bit operationsanyrplaces in their algorithm.

Theorem 3 There is an in-place)(n log n) time algorithm for suffix sorting over general alphabetsrev
if the input stringT’ is read-only and only comparisons between characters dosvald.

1.2 Our techniques

Almost all of the previous algorithm&R03,KA05,KSB06PSTO7NZC09gNZC11]] require extra arrays to
sort the suffixes of’, e.g.,bucket array(which needsX| words),type array(needs:/ log n words) and/or
other arrays which nee@(n) words. Currently the best result is provided by Nohgh13. However, he
still requiresbucket arrayin the first level, which needs:| words. Note that the workspace needed in the
first level is the most difficult part to be removed becauseenss no extra space we can use sbkaeeds
to store the final order of all suffixes now. The deeper recargvel is, the more extra space we can reuse
in SA, because the size of the recursive sub-problems in the digéare less than half of the problems
in current level for many algorithms. Therefore the higHgitt in SA can be reused as extra space in the
recursive level. So the main difficulty is to remove the wpikse which are needed by bucket array and
type array in the first level. In addition, we note that ouplace algorithms do not need the highest bits in
SA to store the type information.

Now, we describe our algorithms that overcome these diffesibs follows:

1. (Sectiond) integer alphabets:
In a high level, the framework of our algorithm is based oruted sorting IKA03] which will be
introduced in Sectio. However, the actual implementation is different, as wetroasefully avoid
to store the information explicitly (e.g. types and poiejdp obtain an in-place algorithm.

We give some properties and observations between sitiagd suffix arraySA which are useful to
obtain the type information. Furthermore, we providerdgarior counter trickwhich can represent the
dynamic pointer information iSA, and we temporarily occupy the spac€lotnote that in this case
T is not read-only) to represent the bucket information. Cioimg these methods, we can overcome
these difficulties (i.e., remove the space needebumket arrayandtype array to obtain an in-place
linear time algorithm for integer alphabets.

2. (Sectio) read-only general alphabets:
We provide simple sorting steps and extend our interior tautnick to obtain the optimal in-place
algorithm for this case.



3. (Sectiorb) read-only integer alphabets:
Our in-place algorithm for this case is a bit complex thanaheve algorithms since this is the hardest
case. In general, we providepainter data structuravhich can implicitly represent the bucket infor-
mation and combine these methods that we used in the gemghnabets case to obtain the optimal
in-place algorithm.

Organization : The remaining of the paper is organized as follows. Seidsm a preliminary section
where we introduce some useful notions and tools. In Se@&iehand5, we describe the framework of
our in-place suffix sorting algorithms and detail the stefphe algorithms for integer alphabets, read-only
general alphabets and read-only integer alphabets resggciNext, we report the experimental results of
our algorithm for integer alphabets in Secti@nFinally, we give a conclusion in Sectigh

2 Preliminaries

We consider a strin@” = T'[0...n — 1] with n characters over the alphabéts where|>| < n. We use
TIi...j] denote the substring[i|T[i + 1] ... T[j] in T'. To simplify the argument, we assume that the final
characterl'[n — 1] is a sentinel which is lexicographically smaller than aryeotcharacters ix. Without
loss of generality, we assume tH&k: — 1] = 0 3. Letsuf(i) denote the suffid’[i...n — 1] of T. Any
two suffixes inT" must be different since their length are different, andrthedicographical order can be
determined by comparing their characters one by one untéeeeca difference due to the existence of the
sentinel.

The suffix array of a string’, which we write asSA, is the array which contains the indices of the
suffixes ofT', sorted in lexicographical order. FormalyA is an arraySA[0...n — 1] that contains the
permutation of the integer ¢ ... n — 1], such thasuf(SA[i]) < suf(SA[j]) for all i < j.

A suffix suf (7) is said to beS-suffix(S-type suffix) ifsuf (i) < suf(i+1). Otherwise, it id-suffix(L-type
suffix) [KAO3]. The last suffixsuf (n — 1) containing only the single charactefthe sentinel) is defined to
be S-suffix. Equivalently, we can see thaf(:) is S-suffix if and only if (1) = n—1; or (2) T'[¢] < T[i+1];
or (3)T'[¢] = T[i + 1] andsuf(i + 1) is S-suffix. Obviously, the types can be computed by a linean ®f
T (from T'[n — 1] to T'[0]). Given the type of a suffix, we further define the type of a abterT'[i] is S-type
(or L-typeresp.) ifsuf(i) is S-suffix (or L-suffix resp.). A substring[: ... j] is called arS-substringf (1)
i=j=mn-—1;0r(2)i < j, bothT[i] andT[j] are S-type, and there is no other S-type characters between
them. We can defink-substringsymmetrically.

Example: We use the following running example throughoutthe pa@ensider string’[0 . .. 12] = “2113311331210”
(the integer alphabet).

indec 0 1 2 3 4 5 6 7 8 9 10 11 12
T 211 3 3 11 3 3 1 2 1 O
type L S S L L S S L L S L L S
T[2] is S-type sincd'[2] = 1 < T'[3] = 3. The S-substrings afd 1, 1331, 11, 1331, 1210, 0}. O

Obviously, the indices of all suffixes, which start with ttere character, must appear consecutively in
SA. We denote a subarray §A for these suffixes with the same first character backet where thenead
and thetail of a bucket refer to the first and the last index of the buck&Arrespectively. Moreover, we
define the first common character ashtscket character We often use the bucket character to index the

% Some previous papers u$¢o denote the sentinel. We ugéere since we consider the integer alphabets.



bucket. For example, if the bucket charactef’[g], we refer to it as buckef'[;]. Sometimes we say that we
place suffixsuf (i) of T into SA, it always means that we place its corresponding indaeto SA.

The induced sortingtechnique, developed by Ko and AlurdAO03], is responsible for many recent
advances of suffix sorting algorithmiKA05,PSTO7FM07,NZC09aNZC09h NZC11,Nonl13, and is also
crucial to us. It can be used to induce the lexicographicdéopf L-suffixes from the sorted S-suffixes.
Before introducing the induce sorting technique, we needftiowing useful property with respect to
L-suffixes and S-suffixes (the proof simply follows from thefidition of L- and S-suffix).

Property 1 [KAOJ In any bucket, S-suffixes always appear after the L-suffixés, i.e., if an S-suffix
and an L-suffix begin with the same character, the L-suffixwsygs smaller than the S-suffix.

Now, we briefly introduce the standard induced sorting tegie

Inducing the order of L-suffixes from S-suffixes : Assume that all S-suffixes are already sorted and in
their correct positions iBA. We scarSA from left to right (i.e., fromSA[0] to SA[n — 1]). We maintain an
LF-pointer (leftmost free pointer) for each bucket which points to liieentry (leftmost free entry) of the
bucket. The LF-pointers initially point to the head of theirresponding buckets. When we s&:], let

j = SA[i] — 1. If T'[j] is L-type (i.e.,suf(j) is L-suffix), we placesuf(j) into the LF-entry in buckef[7],

and then let the LF-pointer of this bucket (i.e., buckgf]) point to the next entry. IT'[;] is S-type, we do
nothing. Sort all S-suffixes from sorted L-suffixes is contglesymmetrical: we sca®A from right to left,
maintain arkRF-pointer(rightmost free pointer) for each bucket which points toRtteentry(rightmost free
entry) of the bucket.

Lemma 1l [KAO3 Suppose all S-suffixes (or L-suffixes resp.Y'a@re already sorted. Then using induced
sorting, all L-suffixes (or S-suffixes resp.) can be sortececty.

Example: Now, we show the induce sorting step in our running example.
Suppose all S-suffixes (i.€., 2,5, 6,9, 12) are already sorted iBA: (£ denotes an Empty entry.)

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1r 3 3 1 1 3 3 1 2 1 0
type L s s L L S S L L S L L S
SA (12) (F 159 26 (EF (FE E B
bucket (0) (1 1 1 1 1 1) (2 20 (3 3 3 3)

(Note SA[0] = 12 sincesuf(12) = “0” is the smallest suffix. The entries between a pair of parsethdenote a
bucket inSA which are these suffixes that start with the same character.h€ads of bucket, 1,2, 3 are0, 1, 7,9,
respectively.)

The scanning process is as follows. An arrow on top of a nurimukcates that it is the current entry we are
scanning.

index 0 1 2 3 4 5 6 7 8 9 10 11 12
type L s S L L S S L L S L L S
SA (13) 11 1 5 9 2 6) (E E) (E E E E)
SA (12) 11 1 5 9 2 6 (10 E) (E E E E)
SA (12) (11 T 5 9 2 6 (10 0) (E E E E)
SA (12) (11 1 5 9 2 6) (10 0) (4 E E E)
SA (12) (11 1 5 9 2 6) (10 0) (4 8 E E)
SA (12) (11 1 5 9 2 6) (10 0) (4 8 3 E)
SA (12) (11 1 5 9 2 6) (10 0) 4 & 3 7



We first scarSA[0] = 12. Now, j = 11 andT'[11] is L-type. We placel 1 to the LF-entry of bucket (i.e., SA[1]),
note that the LF-pointer of bucketinitially points to SA[1] (head of bucket). Next, we scarA[l] = 11, and we
placel0 (T'[10] is also L-type) to the LF-entry of its bucket (i.e., buckgtand so on. O

The idea of induced sorting is that the lexicographical otmEweensuf (i) andsuf(j) are decided by
the order obuf (i + 1) andsuf(j + 1) if suf(¢) andsuf(j) are in the same bucket (i.4[i| = T'[j]). We only
need to specify the correct order of these L-suffixes in theedauckets since we always place the L-suffixes
in their corresponding buckets. Considering two L-suffiseg:) andsuf(j) in the same bucket, we have
suf(i + 1) < suf(z) andsuf(j + 1) < suf(j) by the definition of L-suffix. Since we sc&A from left to
right, suf (¢ 4+ 1) andsuf(j + 1) must appear earlier thanf (i) andsuf(j). Hence the correctness of induced
sorting is not hard to prove by induction.

Inducing the order of L-suffixes from LMS-suffixes : A suffix suf(¢) is called anLMS-suffix(Leftmost
S-type) ifT'[i] is S-type andl'[i — 1] is L-type, fori > 1. Nong et al. NZC094 observed that we can sort
all L-suffixes from the sorted LMS-suffixes (instead of alb&@fixes) if they are stored in the tail of their
corresponding buckets BA. Roughly speaking the idea is that in the induced sortingy; biMS-suffixes
are useful for sorting L-suffixes. One difference from thenslard induced sorting is that we may scan
some empty entries iBA. However, the empty entries can be ignored and all L-suficessstill be sorted
correctly. We provide a running example in Appengdix

Lemma 2 [NZCO094 Suppose all LMS-suffixes @f are already sorted and stored in the tail of their
buckets. Then using induced sorting, all L-suffixes can kledaorrectly.

After we sort all L-suffixes from the sorted LMS-suffixes, wandnduce the order of all S-suffixes from
the sorted L-suffixes by Lemnig and sort all suffixes. Now, we introduce how to sort the LM&izges.

Sort the LMS-suffixes : First, we define some notations. A characigi] of T is calledLMS-character

if suf(i) is LMS-suffix. A substringT’[i... j] is called anLMS-substringif (1) i = j = n — 1; or (2)

i < j, bothT[i] andT'[j] are LMS-characters, and there is no other LMS-characteveclea them (similar

to above S-substring). Similarly, we can defideL-suffix (Leftmost L-type) and_ML-substring If we
know the lexicographical order of all LMS-substrings, thve@ can use their ranks to construct the reduced
problemT}. Sorting the suffixes df’ is equivalent to sorting the LMS-suffixes 6t

Example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0
type L S S L L S S L L S L L S
LMS * * * *

Note that the LMS-substrings afé1331, 11331, 1210, 0}. Their ranks in lexicographical order af&, 1,2, 0}. Thus,
the reduced problem i5; = 1120. The order of the suffixes df; is the same as the order of corresponding LMS-
suffixes ofT".

Nong et al. NZC094 showed that we can use the same induced sorting step tadldov $-substrings
from sorted LMS-characters . We briefly sketch their idea. We refer the readers dZC094 for
the details. We define theMS-prefixof an suffixsuf(i) to beT[i... ], wherej > i is the smallest
position insuf(i) such thatl'[;] is an LMS character (e.g., the LMS-prefix @if(4) is “31”). Suppose all
LMS-characters are stored in the tail of their correspogdincket inSA. First we sort all LMS-prefix of
L-suffixes from the sorted LMS-characters, using one scandafced sorting from left to right (the same
as induce the order of L-suffixes from LMS-suffixes). Then we all LMS-prefix of S-suffixes from the
sorted LMS-prefix of L-suffixes (the same as induce the oréi&-suffixes from L-suffixes). After this, we
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have sorted all LMS-substrings since all LMS-substringslaviS-prefix of S-suffixes by the definition of
LMS-prefix. The correctness proof follows the same argurasrih the standard setting.

3 Suffix Sorting for Integer Alphabets

3.1 Framework

Our suffix sorting algorithm for integer alphabets conswdtshe following steps. To avoid the confusion,
we recall that an LMS-character is a single character, an{sM&string is a substring which begins with an
LMS-character and end with an LMS-character, and an LM8xsisf a suffix of 7" which begins with an
LMS-character.

(Section3.2) Renamél.
(Section3.3) Sort all LMS-characters df'.

(Section3.4) Sort all LMS-substrings from the sorted LMS-characters.

Eal A

(Section3.5) Construct the reduced problef (in which we need to sort all LMS-suffixes) from the
sorted LMS-substrings.

5. (Section3.6) Sort LMS-suffixes by solving recursively.

6. (Section3.7) Sort all suffixes from the sorted LMS-suffixeg, |.

In a high level, the framework is similar to several othervimas algorithms based on induced sort-
ing [KAO3, KAO5, FM0O7,PSTO7NZC09aNZC09h NZC11,Non13, and in particular tolNZC094. Our
algorithm differs in the detailed implementation of the @b®teps to obtain an in-place algorithm. We
describe the details of the above steps in the followingiGest Finally, see AppendiB for restoringT'.

3.2 Renamé€el’

In this section, we rename each L-type charactef’ @b be the index of its bucket head and each S-type
character ofl" to be the index of its bucket tail. (Nong et aNZC11] has a similar renaming step).

The correctness of the step is shown in LenBrzelow. Now, we describe how to implement this step
using linear time and (1) workspace. We divide this into two part, one part is for reimgnall L-type
characters to be the index of its bucket head and the otheisgar renaming all S-type characters to be the
index of its bucket tail. This step is similar to countingts@ee e.g.,CLRS01 Ch. 8]).

1. Firstwe scafi’ once to compute the number of times each character occlirand store them iSA
(i.e., first initialize SA[i] = 0 for all i € [0,n — 1], then for eacli’[i] we increas&A[T'[i]] by one).
Then we perform grefix sum computatioto determine the starting position of each character (i.e.
bucket head) ir5A (i.e., scarSA once, for eaclbA[i], let SA[i] = sum, andsum = sum + SA[i],
wheresum denote how many characters so far). Finally we sEamce again, for each’[:] we let
T'[i] = SA[T[i]] (the index of its bucket head). Now, all charactergdias renamed as the index of
its bucket head.



2. Then we need to let the S-type characterg b be the index of its bucket tail. First we scaronce
to compute the number of times each character occufsand store them iS8A. Then, we scaf’
once again from right to left, for each S-typ#i], we letT'[i] = T'[i] + SA[T[i]] — 1 (the index of its
bucket tail). (Note that if we scaf from right to left, for eachl'[i], we can know its type is L-type
or S-type inO(1) time. There are two case : 1)1fi] # T'[: + 1] , we can know its type immediately
by definition; 2) if T'[i] = T'[i + 1] then its type is the same as the typeltf + 1]. We only need to
maintain a Boolean variable which represent the type ofipusvcharacte?’[i + 1])

Lemma 3 The renaming step does not change the lexicographical atlell suffixes ofl".

Proof: For two suffixes, beginning with the same character, theffixsig smaller than the S-suffix. Hence,
the renaming step does not change the relative orders affales. O
Example: We illustrate the renaming process in our running example.

index 0 1 2 3 4 5 6 7T 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0
type L s s L L S S L L S L L S
SA (12) (11 1 5 9 2 6) (10 0) (4 8 3 7
bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)
After renaming, we get” as following:
index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 76 6 9 9 6 6 9 9 6 7 1 0

T’[0] = 7 sinceT’[0] is L-type and the head of bucke{i.e., bucketl'[0]) is 7. T'[1] = 6 sinceT[1] is S-type and the
tail of bucketl (i.e., bucket'[1]) is 6.

3.3 Sort all LMS-characters

Now, we sort all LMS-characters df, i.e., place the indices of the LMS-characters in the taithafir
corresponding buckets ®A. Note that we do not have extra space to store the pointerg@s for each
bucket to indicate how many entries we have used in the psodesr this purpose, we develop a simple
trick, calledinterior counter trick which allows us to carefully use the space&ih to store the information

of both the indices and the pointers. The implementationildeare described below. In the steps, we use
three special symbols which aique, Empty andMulti. 4

Step 1. Initializing SA : First we clearSA (i.e., SA[i] = Empty, for all i € [0,n — 1]). Then we scafl’
once from right to left. For ever{’[i| which is an LMS-character (this can be easily decided in teoris
time), do the following:

(1) If SA[T[i]] = Empty, let SA[T'[i]] = Unique (meaning it is the unique LMS-character in this bucket).
Note that after the renamin@;[¢] is the index of its bucket tail.

(2) If SA[T[i]] = Unique, letSA[T'[i]] = Multi (meaning the number of LMS-characters in this bucket is at
least2).

(3) Otherwise, do nothing.

4 We assume that a word contains enough bits to represent angatér in: and all such special symbols (there are at most
five special symbols).



Step 2. Placing all indices of LMS-characters intc5A : We scaril” once from right to left. For every[i]
which is an LMS-character, we distinguish the followingests

(1)

(2)

®3)

(4)

SA[T[i]] = Unique: In this case, we leSA[T[i]] = i (i.e., T[] is the unique LMS-character in its
bucket, and we just put its index into its bucket).

SA[T[i]] = Multi andSA[T[i] — 1] = Empty: In this case]'[i] is the first LMS-character in its bucket.
So if SA[T'[i] — 2] = Empty, we [etSA[T[i] — 2] = ¢ andSA[T'[i] — 1] = 1 (i.e., we Us&A[T[i] — 1] as
the counter for the number of LMS-characters which has bddeadto this bucket so far). Otherwise,
SA[T[i] — 2] # Empty (i.e., SA[T[i] — 2] is in a different bucket, which implies that this bucket has
only two LMS-characters). Then we I8A[T[i]] = ¢ andSA[T'[i] — 1] keepsEmpty (We do not need

a counter in this case and the last LMS-character belongiripis bucket will be dealt in the later
process).

SA[T[i]] = Multi andSA[T[i] — 1] # Empty: In this caseSA[T[i] — 1] is maintained as the counter.
Let ¢ = SA[T[i] — 1]. We check whether the+ 2 positions before its tail (i.eSA[T[i] — ¢ — 2]) is
Empty or not. If SA[T'[i]] — ¢ — 2] = Empty, letSA[T[i] — ¢ — 2] =i and increas8A[T'[i] — 1] by one
(i.e., update the counter number). Otherv89e7'[i| — ¢ — 2] # Empty (i.e., reaching another bucket),
we need to shift theseindices to the right by two positions (i.e., moSA[T[i] —c—1...T[i] — 2] to
SA[Ti] —c+1...T7i]]), and [etSA[T[i] — ¢] = i andSA[T[i] — ¢ — 1] = Empty. After this, only one
LMS-character needs to be added into this bucket in the faitaress.

SA[T[i]] is an index: From case (2) and (3), we know the curfi@t must be the last LMS-character in
its bucket. So we sca®A from right to left, starting wittSA[T"[i]], to find the first positiory such that
SA[j] = Empty. Then we leSA[j] = i. Now, we have filled the entire bucket. However, we note that
not every bucket is fully filled as we have only processed Léh&racters so far.

After the above scan step, all indices of LMS-character® lmaen placed iSA. Note that there may be

still some special symbolglulti and the counters (due to the bucket is not fully filled, so wesheot shifted
these indices to right in this bucket). We need to free thes&ipn. We scarbA once more from right to
left. If SA[;] = Multi, we shift the indices of LMS-characters in this bucket tdtigy two positions (i.e.,
SAli—c—1...i—2]toSA[i —c+1...4]) and letSA[i — c— 1] = SA[i — ¢| = Empty, wherec = SA[i — 1]
denote the counter.

Example: Continue our examplef, £ and M denoteUnique, Empty andMulti, respectively): Step 1. Initializing
SA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7T 6 6 9 9 6 6 9 9 6 7 1 0
LMS * * * *
SA F F F K F F FE F F EFE FEF E FE
After initialization:
index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (U) (B) (E E E E M) (E E) (E E E E)
Step 2. Placing all indices of LMS-characters i6#:
index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) () (E E E E M) (E E) (E E E E)
SA (12) (E) (E FE 9 1 M) (E E) (E E E E)
SA (12) (E) (E 5 9 2 M) (F E) (E E FE E)
SA (12) (F) @ 5 9 3 M) (F E) (E E FE E)
SA (12) (F) (E E 1 5 9) (F E) (E E FE E)
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In the last step, we remove allulti symbols and counters.

Lemma 4 The indices of the LMS-characters can be placed in the tai@f corresponding buckets BA
using linear time and)(1) workspace.

Proof: We only need to explain the Step 2 which Placing all indicesM&-characters int6A takesO(n)
time. For each scannédi], it takesO(1) time except when th&'[i] is the last two LMS-characters of its
bucket. In this case, we need to shift the indices in this btfthe last but one) and scan the bucket once
(the last one). It take®(n) time since every bucket only need to be shifted and scannesl on O

3.4 Sort all LMS-substrings

In this section, we sort all LMS-substrings from the sortéd3-characters using induced sorting. Since
all LMS-substrings are LMS-prefix of S-suffixes (Recall th&tS-prefix of an suffixsuf (i) is T'[i. .. j],
wherej > i is the smallest position isuf(z) such thatl’[;] is an LMS character) and sort the LMS-prefix
of all suffixes of 7" from the sorted LMS-characters is the same as sort all saffixd” from the sorted
LMS-suffixes (see the Preliminary Sectigh Now, we divide this step into two parts.

(1) First, we sort the LMS-prefix of all suffixes from the saleMS-characters. Since this part is the same
as sorting all suffixes from the sorted LMS-suffixes, we wdkdribe this in Sectio8.7.

(2) Then, we place the indices of all sorted LMS-substring§A[n — ny...n — 1], wheren; denote
the number of LMS-characters. Note that the number of LM&atters, LMS-suffixes and LMS-
substrings are the same. Moreowver,< 2 since any two LMS-characters are not adjacent.

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
LMS * * * *
SA (12) () (K E 1 5 9 (E E) (FE E E E)

(1) Sort the LMS-prefix of all suffixes (see Sectidn):

index 0 1 2

4 5 6 7 8 9 10 11 12
SA (12) (11) (1 5 9

2 6) (10 0) 4 8 3 7
(2) Place the indices of all sorted LMS-substringS&{n — nq...n — 1]:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA F F F F F EF E FEF FE 12 1 5 9
We only need to explain the second part which place the isdi€all sorted LMS-substrings A [n —

ny ...n — 1]. First, we need the following observation. Then we give affento show that this step can be
done in linear time using (1) workspace.

Observation 1 For every bucket irbA, let ¢ to be its bucket tail. Theff’[SA[t]] is S-type if and only if

T[SA[t]] < T[SA[t] 4 1]. Similarly, T[SA[R]] is L-type if and only if'[SA[R]] > T'[SA[h] + 1], whereh is
the bucket head.
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Lemma 5 The indices of all sorted LMS-substrings can be placesifn — n; ...n — 1] using linear time
andO(1) workspace.

Proof: After Step (1), we can sca®A once from right to left to place the indices of all LMS-subsjs
into the end oSA. We only need to explain that when we scannti®g:] how to identify T'[SA[i]] is LMS-
character or not. Note that if we can identil§{SA[i]] is S-type or not, we can also identify[SA[i]] is
LMS-character or not sinc€[SA[:]] is LMS-character if and only if [SA[:]] is S-type and'[SA[i] — 1] >
T[SA[i]]. In the scanning process, when we reach a new bucket, we eatifycthis bucket contains S-type
characters or not from Observatidn Furthermore, if we can compute the number of S-type charact
in this bucket, we will have done this step. To compute the lmemof S-type characters in this bucket, we
continue to scan this bucket from its tail. For the curreansing entrySA[:], 1).1f T[SA[]] > T[SA[i] +1],

do nothing; 2).Otherwise, letto be the smallest index such thHBfk] = T'[SA[i]] for any k& € [j, SA[d]],
then we increaseum by j — SA[i] + 1, where we maintain a variableum to count the number of S-
type characters in this bucket and initially to @eThis step cosO(n) time overall since each character is
scanned at most twice. O

3.5 Getreduced problemT;

In this section, we construct the smaller problémwhich we need to solve recursively. We rename the
sorted LMS-substrings (obtained from the previous stejpiguheir ranks.
Now, we spell out the details. Initially, all LMS-substrigre sorted i5A[n — ny...n — 1]. First
let the rank of the smallest LMS-substriisg\[n — n1] to be O (it must be the sentinel). Then we scan
SA[n —ny + 1...n — 1] once from left to right to compute the rank for each LMS-stibgt When we
scanningSA[i], we compare the LMS-substring correspondin§Adi| and that corresponding fA[i — 1].
If they are the sameSA[i] gets the same rank &h\[i — 1]. Otherwise, the rank o§A[:] is the rank of
SA[i — 1] plus 1. Since we have no extra space, we need to store theire®Rksas well. In particular, the
rank of SA[i] is stored irﬁA[L%mj]. There is no conflict since any two LMS-characters are natcajt.
Finally, we shifting nonempty entries BA[0. .. n—n; — 1] to the left, so that the ranks occupy a contin-
uous segment of space. Now, we have obtained the reducelémrdbwhich are stored iISA[0 ... ny — 1].
In other wordsSA[i] (z € [0,n1 —1]) stores the new name of tii¢h LMS-substring (w.r.t. their appearance
in the input stringl’).
Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

LMS * * * *
SA F F F FE F F EFE E E 12 1 5 9

After scanSA[n — ny ... n — 1] (which stored the sorted LMS-substrings):

7 8 9 10 11 12

index 5 6
F 0 F FEF 12 1 5 9

0 1 2 3
SA 1 F 1 FE

N W~

Finally, we letT; in theSA[0...n; — 1] by shifting nonempty items iBA[0...n — ny — 1] to the head ofA.

01 2 3 4 5 6 7 8 9 10 11 12
SA 112 0 F E FE FEF E 12 1 5 9

NoteT; = “1120” corresponding to the LMS-substring$66996”, “66996”, “6710”, “0” }.
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First, we give an observation which help us to identify thg/ge and L-type character @f. Then we
can obtain the following lemma showed tigtcan be obtained in linear time using this observation.

Observation 2 For any index; of ', let j € [i + 1,n — 1] be the smallest index such thafj] < T'[j + 1]
(SoT1j] is S-type). Furthermore let € [: + 1, ] be the smallest index such th&fl]] = T'[j] for any
k <1 < j. ThenT[k] is the first S-type character after indéxMoreover, all characters betweé:] and
T'[k] are L-type, and betwe€h[k| andT'[j] are S-type.

Lemma 6 T} can be obtained usin@(n) time andO(1) workspace.

Proof: For the workspace term is obvious since we do not use exti@edpeyondSA in above step. For
the time, we only need to explain the time of the comparisatess used. When we comp&#|:] and
SA[i — 1], we can know the length of these two LMS-substrings (inéiddtySA[:] andSA[: — 1]) from the
Observatior2. Note that each character of T is scanned at most twice dinodyibe scanned when identify
the length of its adjacent predecessor LMS-substring aedf.it Thus the comparison process tak¥s:)
time because the total length of all LMS-substrings is laasi2n. O

3.6 Sort all LMS-suffixes

In this section, we sort all LMS-suffixes and place their aadi in the tail of their corresponding buckets in
SA, which is carried out as follows:

1. We first solveT; recursively. From SectioB.5 we havel; stored inSA[0...n; — 1]. DefineSA; to
beSA[n — ny...n — 1]. We useSA, to store the output of the subproblef.

2. Now, we put all indices of LMS-suffixes iBA. First we moveSA; to SA[0...n; — 1] (i.e., move
SA[n —nj...n —1]t0 SA[0...ny; — 1]). Then we scafd” once from right to left. For every LMS-
charactef'[i], placei (i.e., index ofsuf (7)) in the tail of SA.

3. For notational convenience, we deflidS[0. .. n;] = SA[n—n; ...n—1]. Now, we obtain the sorted
order of all LMS-suffixes of the original striri§j by letting SA[i] = LMS[SA[:]] for all i € [0,n; —1].

4. Finally, we scarsA[0...n; — 1] once more from right to left, and move the indices of LMS-su&fi
in same bucket to the tail of its bucket and clear other entrighis is easy to do since each S-type
Ti] (after the renaming step in SectiBrB) has pointed to the tail of its bucket.

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA 112 0 F F F E FE E E E FE
Step 1. Solvd’ recursively:

index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA 1120 F E FEF E E 3 0 1 2

indec 0 1 2 3 4 5 6 7 8 9
SA° 3 01 2 F E FEFE E E 1 5

)_.
o
—_
o =
—
[N}



Step 3. Get all sorted LMS-suffixes:

23 4 5 6 7 8 9 10 11 12
SA 12 1 5 9 F F EF E FE 1 5 9 12

Step 4. Move the indices of LMS-suffixes in same bucket todiief its bucket and clear other entries:

index 0 1

2 3 6 7 8 9 10 11 12
SA (12) (B) (E B

)
59 (F E) (E F FE E)

Lemma 7 All LMS-suffixes can be sorted by solving the reduced profilerecursively and placed in the
tail of their corresponding buckets BA usingO(n) time andO(1) workspace.

Proof: Each LMS-substring correspond to a charactefl'pfand this character is the rank of the LMS-
substring from SectioB.5. Hence, the lexicographical order of LMS-suffixesloére the same as the order
of suffixes inTj. O

3.7 Sort all suffixes

Now, we sort all suffixes of” from the sorted LMS-suffixes using induced sorting (Note this step is the
same as we do in Sectid4, we give the details here). First, we induce the order of adulfixes from
LMS-suffixes. Then we induce the order of S-suffixes from thsuffixes. Now, we show how to carry out
these steps with the desired time and space.

Step 1. Sort all L-suffixes using induced sorting :We divide this step into two parts, and describe the
details as follows:

(1) FirstinitializeSA: We scanl” once from right to left. For every'[i] which is L-type, do the following:

(i) If SA[T[i]] = Empty, letSA[T[i]] = Unique (unique L-type character in this bucket).

(i) If SA[T[i]] = Unique, let SA[T'[i]] = Multi (number of L-type characters in this bucket is at least
2).

(iif) Otherwise do nothing.
(2) Then we scaBA once from left to right to sort all the L-suffixes.

(i) If SA[i{] = Empty, do nothing.
(i) If SA[:] is an index: letj = SA[i| — 1. If suf(j) is L-suffix (This can be identified in constant
time from the following lemma), we placesuf(j) into the LF-entry of its bucket and increase the

counter by one. This is similar to previous Step 2 which pigdhe indices of LMS-characters
into SA in Section3.3.

(i) If SA[:] = Multi, which mean$A[i] is the head of its bucket, and this bucket has at least two L-
suffixes which are not sorted. In this caS&,i] andSA[i + 1] are used as bucket head (the symbol
Multi) and counter of this bucket, respectively. Then we skipahas entries and continue to
scanSA[i + 2].
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Now, all L-suffixes have be sorted. Note that we still needdan$A once more to free these positions
occupied byMulti and counters. After this, the indices of all L-suffixes aréhigir final position inSA.

Step 2. Remove LMS-Suffixes fronSA : We can use a trick similar to previous Step 2 which placing
the indices of LMS-characters infA in Section3.3. The difference is that instead of placing actual LMS-
characters, we pladempty symbol instead. Also note that we do not delete the sentineé st must be in
the final position. NowSA contains only all L-suffixes and the sentinel, and all of them in their final
position inSA.

Step 3. Sort all S-suffixes using induced sorting Now, this step is completely symmetrical to above Step
1. Sort all L-suffixes using induced sorting. We use S-typa& RR-entry instead of L-type and LF-entry,
and we do not repeat it here.

In order to show the time used in this step, we need the thewiolg useful lemma in the induced sort
step which scaSA from left to right to sort L-suffixes.

Lemma 8 When we are scanningA[i], we want to identity the type efif(SA[:] — 1). If T[SA[i] — 1] #

T'[SA[i]], the type obuf(SA[i] — 1) can be obtained immediately. OtherwiB&A[i] — 1] = T[SA[i]] (this

casesuf(SA[i] — 1) belongs to the current scanning bucke&SA[i]]), if all L-suffixes ofI’ that belong to
bucketI'[SA[:]] are not already sorted, then teef(SA[i| — 1) is L-suffix.

Proof: From the Property, in any bucket, S-suffixes always appear after the L-sufiix&\. Moreover, it
is obvious that every suffix ¢f is considered exactly once. Combine these observationy timp lemma.
Furthermore, whether all L-suffixes @f that belong to current buck&t[SA[i]] are already sorted or not is
not hard to identify by scanning current bucket once whenmeeeaching a new bucket. O

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0
type L s S L L S S L L S L L S

SA (12) (E) (K E 1 5 9 (¥ E) (E E FE E)

Step 1. Sort all L-suffixes using induced sorting:
(1) After initialization:

indet 0 1 2 3 45 6 7 8 9 10 11 12
SA (12) U) (P E 15 9 (M E) M E E E)

(2) ScanSA from left to right to sort all the L-suffixes:

indec 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (13) 1) (E E 1 5 9 (M E) (M E E E)
SA (12) (1) (B E 1 5 9) (10 E) (M E E E)
SA (12) (11) (E E 1 5 9) (10 00 (M E E E)
SA (12) (11) (E E 1 5 9) (10 00 (M 1 4 E)
SA (12) (11) (E E 1 5 9) (10 0) (M 2 4 8)
SA (12) (11) (E E 1 5 9) (10 0) (M 2 4 8
SA (12) (11) (E E 1 5 9 (10 0) (4 8 3 E)
SA (12) (11) (E E 1 5 9) (10 0) (4 8 3 1)

The third last line is the case (iii), so we skip these twoiest(i.e., M’ and ‘2’).
Step 2. Remove LMS-Suffixes frofA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (¢ F E E E) (10 0) (4 8 3 7
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Step 3. Sort all S-suffixes using induced sorting:
(1) After initialization:

index 0 1 2 3 4 6
SA (12) (11) (¢ F E E M) (10 0) (4 8 3 1)

ot

(2) ScanSA from right to left to sort all the S-suffixes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (E E 6 1 M) (10 0) (4 8 3 7)
SA (12) (11) (E 2 6 2 M) (10 0) (4 8 3 7
SA (12) (11) (@ 2 6 3 M) (o 0) 4 8 3 7
SA (12) (11) (9 2 6 3 M) (10 0) (4 8 3 7)
SA (12) (11) (E 5 9 2 6) (10 0) 4 8 3 7
SA (12) (11) 1 5 9 2 6 (10 0) 4 8 3 7)
SA (12) (11) (1 5 9 2 6 (10 0) (4 8 3 7

Lemma 9 Given all sorted LMS-suffixes &, all the suffixes use these induced sorting steps can bealsorte
correctly usingO(n) time andO(1) workspace.

Proof: For the correctness: we can sort all L-suffixes correctlynftbe sorted LMS-suffixes using induced

sorting step from Lemmaand we can sort all S-suffixes correctly from the sorted [fises using induced

sorting step from Lemma. O
Now, we have the following theorem.

Theorem 4 Our algorithm takesO(n) time andO(1) workspace to compute the suffix array of strifig
over an integer alphabet.

4 Suffix sorting for read-only general alphabets

4.1 Framework

In this section, we give the framework of our suffix sortingaithm for read-only general alphabets. Let
ny, andng denote the number of L-suffixes and S-suffixes, respectindpw, the framework is described
as follows:

1. If ng < ny (i.e., the number of S-suffixes is less), then

(1) (Sectiord.2) Sort all S-substrings df’ using mergesort directly.
We use mergesort to sort all S-substringaf SA[0. .. ng—1]. In the merging step of mergesort,
we useSA[ng ...2ng — 1] as the temporary space. After this step, all S-substringsldibe in
the lexicographical order stored $A[0...ng — 1].

(2) (Sectiord.3) Construct the reduced problefh from the sorted S-substrings.
We construct the reduced probléfin using the ranks of all sorted S-substrings which are stored
in SA[0...ng — 1]. The ranks of S-substrings are corresponding to the lexagbgcal order of
the sorted S-substrings. After this step, we get the redpogldlemT in SA[ng ...2ng — 1].
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(3) (Sectiord.4) Sort S-suffixes by solvind? recursively.
We sortl; = SA[ns ... 2ng— 1] recursively, in the recursive step, we &% = SA[0...ng—1]
as the output space f@f. Then we use the suffix array @f which stored inSA; to place all
indices of S-suffixes df” in lexicographical order intSA[0...ng — 1].

(4) (Sectiord.5) Sort all suffixes from the sorted S-suffixes.
First we place all indices of S-suffixes in the their final piosis inSA by using mergesort together
with a stable, in-place, linear time merging algorith85B7. Then we use induced sorting step
to sort all L-suffixes from the sorted S-suffixes. After thafl, suffixes of 7" have been sorted in
SA[0...n—1].

2. Otherwise, execute the above steps switching the rolésofdS.

The purpose of comparing;, andng is to guarantee the size of the reduced probl&ris no more than
half of |T| (i.e.,|T1| < |T'|/2). Without lost of generality, we assume that < n;.

4.2 Sort all S-substrings ofl’

In this section, we sort all S-substrings’bfas follows:

1. First, we scaif’ from right to left and place all indices of S-type charactets SA[0...ng — 1].
Note thatng < n/2 since we assume thak < ny.

2. Then, we sorBA[0...ng — 1] using mergesort (the sorting key f6A[i] is the S-substring of’
which begins afl'[SA[i]]). We useSA[ng...2ng — 1] as the temporary space for mergesort. To
compare two keys (i.e., two S-substrings) in mergesort, im@lg do the straightforward character-
wise comparisons.

After the above two steps, all the S-substring have beerd@nSA[0...ngs — 1]. We have the following
lemma.

Lemma 10 We can sort all S-substrings usiig(n log n) time andO(1) workspace.

Proof: Step 1 does not need any extra space and costs linear timejdeewe can compute the type of
each character i®)(1) time during the right-to-left scan af. Moreover, we know mergesort needs linear
workspace. Hence, it is sufficient to uSA[ngs...2ng — 1] as the workspace for mergesort. We need to
show that Step 2 take9(n logn) time. It suffices to show that the time spent for comparisatess in
one recursive level of mergesort (there &@og n) recursive levels) can be bounded @yn). Since each
S-substring is compared to exactly one other S-substrifge I@ngth of the S-substrings can be obtained
according to Observatio2 Note that each character dfis scanned at most twice since it only be scanned
when identify the length of its adjacent predecessor Stdngsand itself. Thus the comparison process
takesO(n) time because the total length of all S-substrings is less2ha O

4.3 Construct the reduced problemT; from the sorted S-substrings

In this section, we construct the reduced problEniby renaming the sorted S-substrings. After Sectid)
all S-substrings have been sortedSifv[0 ... ng — 1]. The construction of; consists of the following two
steps:
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1. We rename the S-substrings by their ranks (this step idasito the step of renaming the LMS-
substrings by their ranks in Secti@®b). First let the rank o6A[0] be 0. We scaiSA[l...ng — 1]
from left to right. When scannin§A[i], we compare S-substring beginning witiSA[i]] and S-
substring beginning witll’[SA[i — 1]]. If they are different, let the rank dA[:] be the rank of
SA[i — 1] plus one. Otherwise the rank 8A[i] is the same as that 8A[i — 1]. We store the rank of
SA[i] in SA[ng + i].

2. Next, we use heapsort to s®A[0...ng — 1] (the sorting key folSA[i] is SA[7] itself). When we
exchange two entries (s&§A[:] andSA[j], 4,7 € [0...ng — 1]) in SA[0...ng — 1] during heapsort,
we also exchange the corresponding two entries §A§n s+i] andSA[ns+j]) in SA[ns ... 2ng—1].
Note that we use heapsort here since it is in-place and wetdueed any extra space.

After the above two steps, we get the reduced proliignm SA[ng ...2ng — 1].
Lemma 11 T} can be constructed i@ (n log n) time andO(1) workspace.

Proof: In Step 1, each S-substring beginning WifSA[i]] is compared with S-substring beginning with
T[SA[i + 1]]. So each S-substring can only participate in two compasisbiow the argument is similar to
a comparison process in one recursive level of mergesoreinrhalQ, thus it costs linear time. Obviously,
Step 2 take®)(nlog n) time andO(1) workspace. O

4.4 Sort all S-suffixes by solvind; recursively

In this section, we solvd = SA[ng...2ng — 1] recursively to obtain the order of all S-suffixes in
SA[0...ng — 1]. For the recursive step, we uSé; = SA[0...ng — 1] as the output space fdf;.
After the recursive callSA; stores the suffix array df;. We need to restore their names back to the indices
of S-suffixes inl" they represent. This can be done as follows.

1. First we scarf’ from right to left. We maintain a counteum for the number of S-type characters
we have scanned so far. Initiallyumn is 0. If T'[4] is S-type, we increaseum by 1 and placeuf (7)
into SA[2ng — sum] (i.e., [etSA[2ng — sum] < 7). NowSA[ng ... 2ng — 1] stores the indices of all
S-suffixes off".

2. Then fori € [0, ns — 1], letSA[i] «— SAlns + SA[i]].

Now, we have obtained all S-suffixes in the lexicographiecdeoinSA[0...ng — 1].

4.5 Sort all suffixes ofT’

From Sectiord.4, we have obtained the sorted S-suffixeSAJ0 ... ng — 1]. Now, we sort all suffixes from
these sorted S-suffixes.

Preprocessing :First, we move these S-suffixes fréA[0. .. ng—1]toSA[n—ng...n—1]. Thenwe scan

T from right to left to place all indices of L-suffixes in®A[0...n —ng — 1]. Now, we sorSA[0...n — 1]
(the sorting key ofSA[i] is T'[SA[i]] i.e., the first character afuf(SA[:])) using the mergesort, with the
merging step implemented by the stable, in-place, lin@ae tnerging algorithm developed by Salowe and
Steiger BS81. After this sorting step, we make some useful observations

Observation 3 All suffixes ofl" have been sorted by their first charactersSiA.
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Observation 4 All the indices of L-suffixes beginning with the same charaatSA are in increasing order,
due to the stableness of the above sorting algorithm.

Lemma 12 All S-suffixes are already in their final position 3.

Proof: Before the sorting step, all sorted S-suffixes aréAin — ng...n — 1] and all L-suffixes are in
SAJ0...n—ng—1]. Because the merging step is stable, the S-suffixes aredttarn.-suffixes in the same
bucket and hence are already in their final positionSArfrom Observatior8 and Propertyl. g

Induced Sorting : Now, we induce the order of all L-suffixes from the sorted 8kses (which are already

in their final position inSA by Lemmal2) using induced sorting. Now, we extend the interior counter
trick in Section3.3to handle the read-only general alphabets. We use five $ggomdbols H (Head), 1T,
(Tail of L-suffixes), E (Empty), R (one remaining L-suffix) and, (two remaining L-suffixes). We do the
following two steps to sort all L-suffixes :

Step 1. Initializing SA : Firstly, we initialize all buckets if5A by placing some special symbols in each
bucket in order to inform us the number of L-suffixes in thekaic Concretely, we scafi once from right
to left. For each scanning charactéfi] which is L-type, if bucketl'[i] has not been initialized, we need
to initialize bucketT'[i] (we will show that how to identify the bucket is initialized oot in the end of
this step). Before to initialize buckét[i], we first need to obtain the valug;, which is the number of
L-suffixes in this bucket. Letdenote the head of buck&ti] in SA (i.e. [ is the smallest index iBA such
that T'[SA[l]] = T'[:]) andr denote the tail of buckef’[7] in SA (i.e. r is the largest index i8A such that
T[SA[r]] = T[i]). Furthermore, we let;, denote the tail of L-suffixes in this bucket (i.e.js the largest
index inSA such thatl'[SA[r.]] = T[i] andT[SA[r]] is L-type). Note thatN;, = r;, — [ + 1. Hence, it
suffices to computéandry,. The following steps computeandry,, respectively.

(i) We can findl by binary searci'[i] in SA (the search key foBA[i] is T'[SA[i]]) usingO(logn) time
from Observatior8.

(i) For rr, since the buckeT'[i:] has not been initializedsuf(4) is the first L-suffix in its bucket being
scanned. From Observatidnsuf (i) must be stored iSA[rz] (i.e.,SA[r.] = i) since we scafi’ from
right to left. Hence, we can scan this bucket once fidow to find rz, which satisfieSA[rz| = i.

After this, we have obtained the value 8f,. Now, we initialize the bucket'[:] as follows :

(1) If N, = 1, we do nothing (there is only one L-suffix in this bucket andiobsly it is in the final
position).

(2) If N, = 2, letSA[l + 1] = T7, (recall thatl is the head of buckef’[i] andr is the bucket tall, i.e.,
SA[l...r]is the buckefl'[i]. Moreover,ry, is the tail of L-suffixes in this bucket)

index I+ 1(rp) 1+2 ... r
type L L S e S
SA  SA[l] Ty SA[l+2] ... SA[r]

(3) If N, =3, letSA[l + 1] = H andSA[l + 2] = T},

index I l+1 1+4+2(ry) 14+3 ... r
type L L L S S
SA  SAl] H Ty SA[l+3] ... SA[r]
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(4) If N > 3, letSA[l + 1] = H, SA[l + 2] = E andSA[l + N, — 1] = Ty.

index I l+1 14+2 1+3 ... I+N,—1(rr) [I+Np, ... r
type L L L L L S S
SA  SAl] H E SAl+3] ... TL SA[l+ Nr] ... SAlr]

Note that we can find out whether the bucl&t] is already initialized or not ifO(logn) time. We do a
binary search find, then checlSA[l + 1] is H, T}, or others. If the buckel'[i] has been initializedSA[l + 1]

is H or T;,. Otherwise, it has not been initialized yétlt is not hard to see that this initialization step uses
O(nlogn) time andO(1) workspace.

Step 2. Sort all L-suffixes using induced sorting We scarSA from left to right to sort all L-suffixes. The
step is similar to sorting all suffixes in our first algorithm$ection3.7. The main difference is that we use
binary search to find the head of bucket (while in the first algm, the renamed’[7] is used to point to the
head of bucket). Specifically, we sc8A once from left to right. For ever§A[i], let j = SA[i] — 1. If T'[J]

is L-type, then placeuf(j) into the LF-entry of its bucket, and increase the head colnytene. To specify
how to place the L-suffix into the LF-entry of its bucket3A, We only specify the case wheré, > 3
for the bucket. The other cases wilfy, < 3 are similar and simpler. Let; denote the-th L-suffix which
needs to be placed into the LF-entry of this bucket. We djsigh the following four cases:

(1) SA[l + 1] = H andSA[l + 2] = E: The first L-suffix (i.e.,L1) need to be placed into this bucket.
We letSA[l] = j andSA[l + 2] = 1 (useSA[l + 2] as the counter to denote the number of L-suffixes
have been placed so far). Recall thaft(;) is the current L-suffix we want to place.

(2) SA[l + 1] = H andSA[l + 2] # E: These L-suffixes except the first L-suffiX{) and the last two
L-suffixes Ly, —1 and Ly, ) need to be placed.
Let c = SA[l + 2] (counter). IfSA[l + ¢+ 2] # T1, we letSA[l + ¢ + 2] = j andSA[l + 2] = ¢+ 1.
Otherwise (this is the last but two L-suffix, i.By, —2), we shift these: — 1 L-suffixes to the left by
one position (i.e., mov8A[l + 3...r, — 1] to SA[l + 2...r; — 2] ) and letSA[r;, — 1] = j and
SA[l + 1] = Rs.

(3) SA[l + 1] = Ry: The last but one L-suffix (i.eL, 1) need to be placed.
We scan this bucket to find, such thaSA[ry] = T7. Then, we mové&SA[l 4+ 2...r; — 1] to SA[l +
1...ry — 2]. After, we letSA[r;, — 1] = j andSA[r.] = R;.

(4) Otherwise, the last L-suffix (i.eL;x, ) need to be placed.
We scan this bucket to fine;, such thaSA[r.] = R;. Then letSA[r.] = j.

® Note that we can also do binary searchSif, though there are special symbols (i, 77, E) in SA. Since the longest
continuous special symbol entriesSA is 2, i.e., any three of continuous entriesSA must have at least one suffix entry (i.e., this
entry represent an index of suffix @1).
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index l I+1 1+2 [+3 coo I+ Np—1(rp) [+ Np, r

type L L L L e L S e S
case (1) :

SA SAll] H E SA[l+3] ... Tr SA[l+ Nz| ... SA[r]

SA Ly H 1 SA[l+3] ... Ty SA[l+ Nz] ... SA[r]
case (2) :

SA Ly H 1 SA[l+3] ... Tr SA[l+ Nz] ... SA[r]

SA Ly H 2 Ly e Tr SA[l+ Nz] ... SA[r]

SA Ly H Ny, -3 Lo e 17, SA[Z + NL] ces SA[T]

SA Ly Ro Lo L3 e Tr SA[l+ Nz] ... SA[r]
case (3) :

SA 14 Ry Lo Ls e Ty, SA[Z + NL] e SA[T‘]

SA Ly Lo L3 Ly ce Ry SA[l+ Nz] ... SA[r]
case (4) :

SA L4 Lo Ls Ly . Ry SA[Z + NL] . SA[T‘]

SA Ly Lo Ls Ly ce LNL SA[Z + NL] ce SA[T]

We have the following lemmas and theorem.

Lemma 13 When we scaSA[:] in the induced sorting step, wheth&{SA[i] — 1] is L-type or S-type can
be identified inD(1) time. The only exception is wheuf (SA[i] — 1) is the last L-suffixes which needs to be
inserted into the buckél'[SA[i] — 1]. This special case need¥ Nys) time, whereN s denote the size of
the buckel'[SA[i] — 1] (i.e., Nps =7 — [+ 1).

Proof: Letj = SA[i] — 1. Firstif T'[j] # T'[j + 1], by definition it is trivial. Otherwise]'[j] = T'[j + 1].
From LemmaB, we only need to know whether all L-suffixes in the buckgf] (i.e., bucketl'[SA[i]]) have
already been sorted or not. In our algorithm, we use theiarteounter trick which maintain the counters

of the buckets. So we can identify whether all L-suffixes ia bucket?’[j] have already been sorted or
not immediately except whesuf(j) is the last L-suffixes which needs to be placed into the buZkgt
(corresponding to case (4)). However, we can scan this bdaka left to right to identify whether the
special symbolR; exists or not. If exists, which means there is one L-suffixagmed, this must be the
suf(y). Otherwise all L-suffixes in the buck#t]j] have already been sorted. This scanning operation takes
O(Nps) time. O

Lemma 14 All the suffixes can be sorted correctly from the sorted 8xesfinO(nlogn) time andO(1)
workspace.

Proof: We can sort all the S-suffixes correctly using induced sgrbyg Lemmal. For workspace, it is
obvious. For time, we us@(log n) time binary search to find the head of its bucket for each ffissurhen

we use the above step to locate the position of the L-suffiX(ih) time except for the last two L-suffixes of
the bucket. For the last two L-suffixes, we need to scan allffixes in this bucket in order to find the final
position (corresponding to case (4) in Step 2) and shiftehesuffixes by one position (corresponding to
case (3) in Step 2). But this only takégn) time overall since each bucket is scanned at most twice. Thus
the time is mainly spent in the binary search step. To sumhigsbrting step take®(nlogn) time. O
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Theorem 5 Our algorithm takes)(n log n) time andO(1) workspace to compute the suffix array for string
T over a general alphabet.

Proof: All steps in our algorithm take®(n logn) time. Besides, the size of recursive problé&mis not
larger than half of 7'|. We haveTl'(n) = T'(n/2) + O(nlogn), thusT'(n) = O(nlogn + glog § +---) =
O(nlogn). For workspace, every step ugeél) workspace, and in the recursive subproblem we can also
reuse the)(1) workspace. Moreover, in the same recursive level, theréiffiesteps can reuse thi(1)
workspace too. O

5 Suffix sorting for read-only integer alphabets

5.1 Framework

Our suffix sorting algorithm for read-only integer alphabetquires to use some steps of the above two
algorithms. First, we provide a framework of our algorithefallows:

1. If the number of S-suffixes d@f is more than that of the L-suffixes (i.e.g > np), then:

1) (Sections.2) Sort all LMS-characters df'.

2) (Sections.3) Sort all LMS-substrings from the sorted LMS-characters.

3) Construct and solve the reduced problépfrom the sorted LMS-substrings.
4) (Section5.3) Sort all suffix from sorted LMS-suffixed{).

2. Otherwise, execute above steps switching the role of LM bML.

Note that the number of LMS-characters are less g2, because any two LMS-characters are not
adjacent by the definition of LMS-characters. The same himidEML-characters. Hence the size of the
reduced problen}; constructed by our algorithm is less th&r| /2. Without loss of generality, we assume
thatng > nr.

Recall that the purpose for renamifigis to access the heads or tails of the buckets in constant time
during the scanning process in the induced sorting steputrately, we can accomplish these steps without
modifying 7T'. In Section5.2, we show how to sort all LMS-characters (i.e. Step 1)). SiBi&p 2) and Step
4) are almost the same (see our first algorithm for integdraddpts in Sectio.4and Sectior8.7), we only
need to show how to sort all suffixes from the sorted LMS-seffi.e. Step 4)) in Sectiob.3. Step 3)
is exactly the same as our first algorithm which was in Se@i&rand Sectior8.6. Because the operation
(which did withT") in this step is only to compare characters (i22is renamed or not does not influence
this step), we omit the Step 3) in this algorithm.

5.2 Sort all LMS-characters

In this section, we sort all LMS-charactersiof Since we can not modify the input strifig we do not place

the indices of LMS-characters in the tail of their corregfiog bucket irSA as we did in our first algorithm.
Note that this placing step in our first algorithm is equivéleo sorting all LMS-characters since bucket
characters are in the lexicographical orde6/ Moreover, the next immediate step is to use these sorted
LMS-characters to sort all LMS-substrings using inducedisg. So the observation here is that we can
place the sorted LMS-characters in arbitrary positionSAnas long as we can sort all LMS-substrings. In
Section5.3 we will show how to sort all suffixes from sorted LMS-suffiXesame as sort all LMS-substrings
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from sorted LMS-characters), when the sorted LMS-suffixespdaced irSA[n — n; ...n — 1], wheren,
denote the number of LMS-suffixes and= |T'|. In this section, we first show how to place the sorted
LMS-characters irsA[n — n; ...n — 1]. Recall that when we say that placing characters or suffikds o
into SA, it always means that placing its corresponding indice€s ofto SA.

Now, we show how to place the sorted LMS-characters $#t¢» — n; ...n — 1]. We usem to denote
the number of LMS-characters which belong[to|X|/2] (i.e., these LMS-charactefB[i| satisfyT[i] €
[1,]3]/2]), where the size of alphabets|I5| < n. We do the following:

1. Sort thesen LMS-characters iril, |X|/2].
We use counting sort (see e.gSURS01 Ch. 8]) to sort thesen LMS-characters. Concretely, we
useSA[l...|X|/2] as thecount array and us&SA[|X]/2+1...|X|/2+ m] as the output array. After
this counting sort step, the indices of theseorted LMS-characters have been placeSAfX|/2 +
1...1%]/2 +m].

2. Sort the remaining,; — m LMS-characters iff|X|/2 + 1, |%]].
Similar to the above step, we also use counting sort to sertémaining LMS-characters. In the
counting sort step, we usA[1 ... |X|/2] as thecount array(note that we us8A[T[i] — |X]|/2] to
count the number of times LMS-charctgf:] € [|X]/2+1, |X]]), and usSA[|X]/2+m~+1...X|/2+
n1] as the output array. After this counting sort step, the isliof these:; — m remaining LMS-
characters have been placed®li[|X|/2 + m + 1...|X[/2 + n4].

After the above two steps, we have sorted all LMS-charaae$4\[|X|/2 + 1, |2|/2 + n4] (i.e., placed
their corresponding indices BA[|X|/2 + 1, |X|/2 + n4]). Then we move them t6A[n —ny...n — 1],
which can be easily done ifi(n) time andO(1) workspace.

5.3 Sort all suffixes from sorted LMS-suffixes

In this section, we need to sort all suffixes from the sortedS-8ffixes. The sorted LMS-suffixes have
been placed i8A[n — ny ... n — 1]) from the previous steps.

Let SA;, = SA[0...ny — 1] andSAg = SA[ny, ...n — 1] (note thatn;, + ng = n). Now, we do the
following three steps to sort all suffixes:

1. (Section5.3.]) Sort all n;, L-suffixes from the sorted LMS-suffixes which are storedSiyn —
ny ...n — 1] and store the sorted L-suffixes$A ;..

2. (Sectionb.3.2 Sort allng S-suffixes from the sorted L-suffixes which are store8An, and store the
sorted S-suffixes iBAg.

3. (Sectionb.3.3 Merge the L-suffixes (stored A1) and S-suffixes (stored ®Ag) to sort all suffixes
inSA[0...n — 1]
5.3.1 Sort all L-suffixes from the sorted LMS-suffixes

In this section, we sort all;, L-suffixes from the sorted LMS-suffixes which are store@8Min—n; ... n—1]
and store the sorted L-suffixes$\ ;. Before we sort L-suffixes, we need the following lemma.

Lemma 15 For any m distinct integers) < ag < a1... < am—1 < n, wherem < n andn > 1024,
one can construct a data structure using linear time (i&n) time) and at mostn/log n space, where
1 < ¢ < 2, such that each query to thieth smallest intege; can be answered i®(1) time.
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Proof: We first construct a bitmap[0 . . . n|. we initialize B by B[a;] = 1 for all i € [0, m — 1]. We need a
data structure to support quesslect(i), which asks for the index afth 1 in B. There is an auxiliary data
structure using)(n/ log log n) bits (more preciselyn/ log log n+ni (% log n log log n+1loglogn)) which
can be constructed i@(n) time to support constant tinselect query in B [Jac89Cla9§. Converting bits
to words, we can see that the data structure uses atampgig n words (forl < ¢ < 2if n > 1024). O

Letc, = [5cn/logn]. Without loss of generality, we assume> 2¢, (otherwise it is easy to solve
sincen is constant). Now, we describe how to sort.all L-suffixes from the sorted LMS-suffixes which
are stored irbA[n — ny...n — 1]. We divide this sorting step into three steps as follows:

Step 1. Construct thepointer data structures for all L-suffixes : Since we cannot modif§’, we need to
find another method to get the bucket heads for the L-suffifesemtly. Especially, it should be space-
efficient. For this purpose, we construct a space-effigiamter data structureso represent the bucket
heads of all L-suffixes and support to find the bucket head pfLasuffix in constant time. We store the
pointer data structures BA[n/2 — ¢,...n/2 — 1]. Note that the buckets of the L-suffixes we talked in
this section is irSA, (recall thatSA; = SA[0...nz — 1]). Moreover, the space storing the pointer data
structures (i.e$SA[n/2 — ¢, ...n/2 — 1]) has no conflict to the space storing the sorted LMS-suffixes (
SA[n —ny...n — 1]) sincen; < 5. Now, we show the details how to construct the pointer datecttres.
This contains four parts as follows:

(1) Construct theoointer data structurdor these L-suffixesuf (i) satisfying7'[i] € [1, %]. We useD; to
denote this pointer data structure. Because these fows &i¢§4) are almost the same, we only show
the details how we construct the pointer data strucidyeWe do the following:

(i) First, weletSA[i] = 1foralli € [1, %']. Then we scafi’ once from right to left. For every L-type
T[] € [1, %], we increas&A[T[i]] by one.

(i) Then we scarSA[L... %'] once from left to right. We use a variable/m to count the sum,
first initialize sum = 1. Then for eactbA[i] which is being scanned, I&A[i] = sum, and
sum = sum + SAli](similar to the prefix sum computation in the counting soMpw, for any
L-suffix suf(i) satisfyingT'[i] € [1, %], SA[T[i]] — T[i] must indicate the head of buckéf:]

in SAL. Since we want every entry BA[L . .. %] to be distinct, we initializ&A[i] = 1 for all

iell, %] in above Step (i). Hence the head of buckét] is SA[T[i]] — T'[i].
(i) Finally, we construct the pointer data structuty for SA[1... %‘]. D, usesc(n + %)/logn
words space, and it can support to find the bucket head of aswffl¢ suf (i) satisfyingT[i] €
1, %] in O(1) time according to Lemma5. We storeD; in the tail of SA[0...n/2 — 1] (i.e.,
SA[n/2 —c(n + %)/logn...n/Z —1]).
(2) Construct the pointer data structure for these L-susfixé(i) satisfyingT[i] € [%‘ + 1, '22‘]. We use

D5, to denote this pointer data structure.
(3) Construct the pointer data structure for these L-suffixé(i) satisfyingT'[i] € [@ +1, %}. We use
D3 to denote this pointer data structure.

(4) Construct the pointer data structure for these L-susfixé(i) satisfyingT'[i] € [@ +1,|3]]. We use
D, to denote this pointer data structure.
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Step (2),(3) and (4) do the same as Step (1). After this fapsstthe pointer data structures;( D, D3
andD,) are stored irbA[n/2 — ¢, ...n/2 —1].
Now, we can have the following lemma:

Lemma 16 We can construct the pointer data structures in linear timd this pointer data structures uses
at mostc,, words and can support to find the bucket head of any L-suffinmstant time.

Proof: Dy, Dy, D3 and D, takes at mostc(n + %)/logn < ¢, words. We need four values, my, ms
andmy, which denote the number of L-suffixes in above step (1), @)and (4), respectively (They can
be obtained from the variable:m which is computed in the final stage of the step (ii)). Now, & want to
find the bucket head of an L-suffsuf (i), we first compard’[i] with 21, 1 and 3l to see which pointer

data structurd’[i] belongs to. Assume it belongs 19;. Then we do &elect(T[i] — (j — 1)%') query on
D; and combine theelect result with the corresponding, (k < j) to identify the head of buckét[i]. All
the above operations can be don&ifl) time. O

Step 2. Sort the firstn;, — ¢, smallest L-suffixes :Now, we show how to sort the first; — ¢, smallest
L-suffixes inSAL[0...ny — ¢, — 1]. From Stepl, we have obtained the pointer data structures stored in
SA[n/2 — ¢,...n/2 — 1] which can support finding the bucket head of any L-suffix instant time by
Lemmal6. The sorted LMS-suffixes are storedSA[n — n;...n — 1]. Thus, the firsty;, — ¢, smallest
L-suffixes can be sorted in®A,[0. .. n;, — ¢, — 1] using the same induced sorting step in our first algorithm
(which sorts all L-suffixes in SectioB.7) except in the scanning process, we usestiect query in the
pointer data structures to find the bucket head. Note thabwething when the L-suffix is in the remaining
cp largest L-suffixes. It is not hard to see that the firgt— ¢, smallest L-suffixes can be sorted correctly
since the remaining, largest L-suffixes can not influence the order of the first— ¢, smallest L-suffixes

in the induced sorting step.

Now, we specify that how to identify an L-suffix belongs to fivet n;, — ¢, smallest L-suffixes or not.
First, we can scaff’ once to find the character of, — ¢, smallest L-suffix using this pointer data structures
(let ch to denote this character). If the head of the buekeis exactlyny, — ¢, in SAy, then we identify the
L-suffix by comparing it withch. Otherwise, ther;, — ¢, smallest L-suffix belongs to bucket, and it will
be stored irbA[n;, — ¢,]. We only need two variables to indicate whether the L-sufélohgs to the first
nr, — ¢, Smallest L-suffixes or not. One is the number to denote the béaucketch, and the other is a
number to denote the gap between the head of buékandSA[n;, — ;).

We have the following lemma:

Lemma 17 The firstn;, — ¢, smallest L-suffixes can be sorted it#4[0...n;, — ¢, — 1] in linear time
andO(1) workspace.

Step 3. Sort the remainingc, L-suffixes : Now we sort the remaining, L-suffixes intoSAy[n;, —

¢ ...np — 1]. Since the pointer data structures has occupjedords inSA[n/2 —¢,...n/2 — 1], we
need to free these entries in order to store the remaigjrigsuffixes. We cannot do the same as in our
first algorithm since we do not have the pointer data strestuFortunately, we can sort the remainid.-
suffixes using the similar step in our second algorithm (sestiffixes from the sorted S-suffixes in Section
4.5). Sincec, = [ben/log n], this step take®)(n) time. Now we describe how we do this. First we s@an
to place the remaining, L-suffixes intoSAy [n;, — ¢, ...nz — 1] (not sorted yet). Since, = [5cn/logn|,

we can sort these remainitg L-suffixes using their first characters@(n) time. After this, the remaining
¢, L-suffixes are in their buckets (recall that the buckets afndd inSAz). Now we can do the same
induced sorting step as we do in our second algorithm (sariffixes from the sorted S-suffixes in Section

4.5).
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Lemma 18 The remaining:, L-suffixes can be sorted infA . [n;, — ¢, ...ny, — 1] in linear time and O(1)
workspace.

From the above steps and lemmas, we have the following lemma:

Lemma 19 All L-suffixes can be sorted correctly from the sorted LMfas in linear time and)(1)
workspace.

5.3.2 Sort all S-suffixes from the sorted L-suffixes

In this section, we sort all s S-suffixes from the sorted L-suffixes which are store®lAn, (i.e.,SA[0...n.—

1]) and store the sorted S-suffixesSAg (i.e.,SA[ny ...n — 1]). Note that this step is almost the same as
the step in Sectiob.3.1where we sort all L-suffixes from the sorted LMS-suffixes. Blooncretely, we do
the following three similar steps:

Step 1. Construct thepointer data structures for all S-suffixes : Sincen; < n/2 (note that we have
assumechgs > ny, at the beginning of our algorithm), we can Us&[n/2...n/2 + ¢, — 1] to store the
pointer data structures which represent the bucket taddl &-suffixes inrSAg. The step is the same as Step
1in Section5.3.1where we construct the pointer data structures for all fhees.

Step 2. Sort the lastns — ¢, largest S-suffixes : We sort the lastrs — ¢, largest S-suffixes into
SAs[c, ... ng — 1]. This step is the same as above Step 2 in Seé&i8riwhere we sort the first;, — ¢,
smallest L-suffixes.

Step 3. Sort the remainingc, S-suffixes :We sort the remaining, S-suffixes intdbAg[0...c, — 1]. This
step is the same as above Step 3 in SediGnlwhere we sort the remaining L-suffixes.
Therefore, we have the similar lemma as follows :

Lemma 20 All S-suffixes can be sorted correctly from the sorted Lssfin linear time and (1) workspace.

5.3.3 Sort all suffixes

Now we have all sorted L-suffixes iBA;, (i.e., SA[0...ny — 1]) and all sorted S-suffixes iBAg (i.e.,
SAlny, ...n — 1]). We use the stable, in-place, linear time merging algorif§S87 to merge the ordered
SAr, andSAg (the merging key foiSA[i] is T'[SA[i]], i.e., the first character afuf (SA[:])). After this
merging step, all suffixes @f have be sorted iBA[0...n — 1].

Lemma 21 All suffixes can be sorted correctly from all sorted L-suffigad S-suffixes in linear time and
O(1) workspace.

Proof: Since the merging step is stable, after merging, all L-seffiand S-suffixes are still sorted. We only

need to show the order between L-suffixes and S-suffixes giné rNote that before the merging step all

L-suffixes are in front of all S-suffixes. Since the mergingpsis stable, it guarantees that an L-suffix is still

in front of the S-sulffix if they are in the same buckeSiA. So the order between L-suffixes and S-suffixes

are correct according to Propetty O
From above lemmas, we can obtain the following theorem.

Theorem 6 Our algorithm takesO(n) time andO(1) workspace to compute the suffix array of strifig
over a read-only integer alphabet.
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6 Experiments

In this section, we report our experimental results for orst falgorithm (the linear time in-place algo-
rithm for integer alphabets). The experiments were comlicin a Intel(R) Core(TM) i5-3470 Proces-
sor(3.2GHz,4 cores) and 4GB RAM. The operating system wamtulil4.04.3LTS x864. The compiler
was gcc(version 4.8.4) executed with the “-W -Wall -fomrahe-pointer -DNDEBUG -O3" options.

The datasets were generated by choosing a random numbkeinahependently for each position. We
test our algorithm fofX| = 100, |X| = 1000 and|X| = n (n is the length of the input). Each integer
occupies 4 Bytes. The maximum input size we can handle isMBG#s the main memory is only 4GB and
we also need 1600MB for the output.

See Table3 for the results. For the running times, we took the mean dveetruns (measured using
clock() function). Note that we only record the time intdria sorting SA, excluding the time for reading
the input strindgl” into the main memory, writing the outpSA to disk and restoring the input striig The
total space is the heap peak measured by memusage commandoikspace is the total space subtracting
the space ofi" andSA. The workspace of our algorithm is invariably 8 Bytes. We e#so see that the
running time grows approximately linearly with the size bétinput. The overall running time is quite
competitive: the algorithm can sort 20MB input data in abbi second and 1.6GB data in less than 4
minute. The size of the alphabets does not significantlycaffes running time.

Input Time  Speed Workspace Total space Spack andSA
(Seconds) (MBI/s) (Bytes) (Bytes) (Bytes)
20MB-100 1.120 17.857 8 41,943,048 41,943,040
20MB-1k 1.137 17.590 8 41,943,048 41,943,040
20MB 1.557 12.845 8 41,943,048 41,943,040
100MB-100 8.456 11.826 8 209,715,208 209,715,200
100MB-1k 8.745 11.435 8 209,715,208 209,715,200
100MB 8.476 11.798 8 209,715,208 209,715,200
1000MB-100 116.156  8.609 8 2,097,152,008 2,097,152,000
1000MB-1k 127.473  7.845 8 2,097,152,008 2,097,152,000
1000MB 142.648  7.010 8 2,097,152,008 2,097,152,000
1600MB-100 192.387  8.317 8 3,355,443,208 3,355,443,200
1600MB-1k 210.308  7.607 8 3,355,443,208 3,355,443,200
1600MB 234.348  6.827 8 3,355,443,208 3,355,443,200

Table 3: Experimental Results: Note thak 4 is the space usage (in Bytes) of the input string. Input name
20MB-100 indicates that the input size is 20MB, gt = 100 and name 20MB indicates that the input
size is 20MB andX| = n = 5, 242, 880.

7 Conclusions

In this paper we present three in-place algorithms for ssffisting over (read-only) integer alphabets and
read-only general alphabets. For (read-only) integeraddpts, our in-place algorithm takes linear time.
The algorithm is also easy to implement and competitive aciice. For read-only general alphabets, our
in-place algorithm take®(n logn) time. All of them are optimal both in time and space. Our athans
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for integer alphabets solve the open problems posed by &sahmi and Muthukrishnar-M07], and our
algorithm for general alphabets recovers the result obthly Franceschini and MuthukrishnaMO07]
which was an open problem posed by Manzini and Ferradtz0p)].

There is a surge of interests in developing external memlggrithms for suffix sorting in recent
years FGM12 NCHW15. Many such algorithms are extensions of existing lightyéiinternal mem-
ory algorithms. It would be interesting to investigate theéeenal memory setting and see whether our
tricks and data structures are applicable in this setting &80 plan to consider other string processing
problems that are tightly connected with SA, such as comsprbsuffix arrays, longest common prefixes,
Burrows-Wheeler transform and Lempel-Ziv factorization.
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A Example

In this section, we show the induce sorting step which sprtire L-suffixes from LMS-suffixes in our
example.

Example: Suppose all LMS-suffixes (i.el, 5,9, 12) are already sorted in the tail of their corresponding btiagke
SA: (E denotes an Empty entry.)

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 11 3 3 1 1 3 3 1 2 1 0
type L s S L L S S L L S L L S
SA (12) (F E E 1 59 (EE (EE E E
bucket (0) (1 1 1 1 1 1) (2 2 (3 3 3 3)

The scanning process is as follows. An arrow on top of a nunmoiézates that it is the current entry we are scanning.
When we are scanning an empty entnbiy, we ignore this entry (i.e., do nothing).

index 0 1 2 3 4 5 6 7 8 9 10 11 12
type L s S L L S S L L S L L S
SA (13) 11 E E 1 5 9 (E E) (E E E E)
SA (12 A1 E E 1 5 9 (10 E) (E E E E)
SA (12) 11 E E 1T 5 9 (10 0) (E E E E)
SA (12) 11 E E 1 5 9 (10 0) (4 E E E)
SA (12) 11 E E 1 5 9) (10 0) (4 8 E E)
SA (12) 11 E E 1 5 9 (10 0) (4 8 3 E)
SA (12) 11 E E 1 5 9 (10 00 4 8§ 3 1
B RestoreT

In this Appendix, we show that we can restore the stfihimp our first algorithm which is designed for the
stringT" over the integer alphabefs, 2, ..., X}. First, we can see that in the termination of our algorithm.
Suffix arraySA contains the indices of all suffixes @fwhich are in lexicographical order. Note that if we
do not modifyT’, we will have the following observation.

Observation 5 For each suffixuf(SA[i]) in SA, let b; denote its bucket character (i.e., the first common
character), therl[SA[i]] = b;.

The key point to recovel” is that we need to maintain the equal relationship of theadtars of7’. So

if we modify 7" to 7" under this condition such that'[i]| = T"[j] (or T"[i] # T’[j], resp.) if and only if
T[i] = T[j] (or T'[:] # T[j], resp.). Then, we can recovérfrom SA and7” using linear time (scaSA
once) and) (1) workspace from above ObservatidbnNow, we need to modify the first renaming step in our
algorithm to rename each characi€li] to be its bucket tail (note that this modification maintaia ggual
relationship). This change only lead the details in therlatduced sorting step changed. In the induced
sorting step, since we let &ll[i] points to its bucker tail, so the induced sort LMS-suffixeSesuffixes will

be the same as before. The only thing we need to explain imtheéed sorting step is that we induced sort
L-suffixes from the sorted LMS-suffixes since there are nattepointers which point to the bucket head
(see Step 1 of SectioB.7 which sort all L-suffixes from the sorted LMS-suffixes usimgliiced sorting).
However, we can fix this step using our interior counter tigkch we widely used in this paper. Now, we
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describe the details. We consider the bucket$Arinto two types, one type dose not contain LMS-suffixes,
the other contains LMS-suffixes. These two types are easletttify since the LMS-suffixes have already
been sorted in the tail of their corresponding bucketSAn

Type 1. The buckets do not contain LMS-suffixes in this type, we initialize the bucket in the following
steps. Scannin@’ once from right to left. For every'[i] which is L-type and its bucket is this type, do the
following:

(1) If SA[T[i]] = Empty, let SA[T'[i]] = Uniquel (unique L-type character in this bucket).

(2) If SA[T'[7]] = Uniquel, let SA[T'[7]] = Multil andSA[T'[i] — 1] = 2 (number of L-type characters in
this bucket i2).

(3) If SA[T'[7]] = Multil, increas&A[T'[i]—1] by one. SA[T[i]—1] denote the number of L-type characters
in this bucket)

After this initialization, the head of this type bucket camibdicated bySA[t] andSA[t — 1], wheret is its
bucket tail.

Type 2. The buckets contain LMS-suffixes :In this type, we initialize the bucket in the following steps
ScanningT’ once from right to left. For ever{’[i] which is L-type and its bucket is this type, do the
following:

(1) If SA[T[i]] is an index, shift these LMS-suffixes (which are sorted is tiicket tail) to left by one
position and leSA[T[i]] = Unique2 (unique L-type character in this bucket).

(2) If SA[T'[i]] = Unique2, shift these LMS-suffixes (which have been shifted by onetipo$ to left by
one position again and I8A[T[i] — 1] = 2 (number of L-type characters in this bucke®)s

(3) If SA[T'[i]] = Multi2, increas&SA[T'[i|—1] by one. SA[T'[i]—1] denote the number of L-type characters
in this bucket)

After this initialization, the head of this type bucket camibdicated bysA[t] andSA[t — 1] too, wheret is
its bucket tail.

Now, all L-suffixes can be sorted using induced sort like bfbut their indices are not in their final
position inSA. We need scafi’ once more from right to left to compute the number of suffixegach
bucket, then shift these sorted L-suffixes to their buckeidh@ is not hard to see that this shift step can
be done in linear time). Now, all L-suffixes are placed in ttHigial position inSA, then using induced sort
as before we can sort all S-suffixes, so all suffixes have baeds In conclusion, we have the following
lemma.

Lemma 22 The stringT" can be restored using linear time ai#{1) workspace.
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