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Abstract

Suffix array is a fundamental data structure for many applications that involve string searching and
data compression. Designing time/space-efficient suffix array construction algorithms has attracted sig-
nificant attentions and considerable advances have been made in the last 20 years. We obtain the suffix
array construction algorithms that are optimal both in timeand space for both integer alphabets and
general alphabets. Concretely, we make the following contributions:

1. For integer alphabets, we obtain the first algorithm whichtakes linear time and uses onlyO(1)
workspace (the workspace is the space needed beyond the input string and the output suffix array).
The input string may be modified during the execution of the algorithm, but should be restored
upon termination of the algorithm. Our algorithm is easy to implement. Our C implementation of
the algorithm requires only 8 Bytes of workspace.

2. We strengthen the first result by providing the first lineartime in-place algorithm for read-only
integer alphabets (i.e., we cannot modify the input stringT ). This settles the open problem posed
by Franceschini and Muthukrishnan in ICALP 2007 [FM07].

3. For read-only general alphabets (i.e., only comparisonsare allowed), we present an in-place
O(n log n) time algorithm, recovering the result obtained by Franceschini and Muthukrishnan [FM07].

1 Introduction

Suffix arrays were introduced by Manber and Myers [MM90,MM93] as a space-saving alternative to suffix
trees [McC76,Far97]. Since then, it has been used as a fundamental data structure for many applications in
string processing, data compression, text indexing, information retrieval and computational biology [FM00,
AKO02, GV05]. Particularly, the suffix arrays are often used to compute the Burrows-Wheeler transform
[BW94] and Lempel-Ziv factorization [ZL78]. Comparing with suffix trees, suffix arrays use much less
space in practice. Abouelhoda et al. [AKO04] showed that any problem which can be computed using suffix
trees can also be solved using suffix arrays with the same asymptotic time complexity, which makes suffix
arrays very attractive both in theory and in practice.

Given stringT = T [0 . . . n−1], the suffixes ofT areT [i . . . n−1] for all i ∈ [0, n−1], whereT [i . . . j]
denotes the substringT [i]T [i+1] . . . T [j] in T . The suffix arraySA for stringT is the sorted array of all the
suffixes of the stringT , according to their lexicographical order, i.e.,SA stores a permutation of0, . . . , n−1,
such thatT [SA[i] . . . n− 1] < T [SA[j] . . . n− 1] for i < j. Suffix arrays have been studied extensively over
the last 20 years (see e.g., [MM93,KS03,KSB06,KA05,NZC09a,NZC11,Non13]). We refer the readers to
the surveys [PST07,DPT12] for many suffix sorting algorithms.

In 1990, Manber and Myers [MM90, MM93] obtained the firstO(n log n) time suffix sorting algo-
rithm over general alphabets. In 2003, Ko and Aluru [KA03], Kärkkäinen and Sanders [KS03] and Kim
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et al. [KSPP03] independently obtained the first linear time algorithm forsuffix sorting over integer alpha-
bets. Clearly, these algorithms are optimal in terms of asymptotic time complexity. However, in many
applications, the computational bottleneck is the space, and significant efforts have been made in develop-
ing lightweight(in terms of space usage) suffix sorting algorithms for the last decade [MF02,BK03,KA03,
HSS03,HSS09,MP06,NZ07,NZC11,Non13]. In particular, the ultimate goal in this line of work is to obtain
in-place algorithms(i.e.,O(1) workspace), which are also asymptotically optimal in time.

1.1 Related Work and Our Contribution

Before we discuss in details of the previous and our algorithms, we need some terminologies. We measure
the space usage in the unit ofwords. Each word can storeO(logW ) bits, wheren < W . One standard
arithmetic or bitwise boolean operation on word-sized operands costsO(1) time. The workspace used by
an algorithm is the total space needed by the algorithm, excluding the space required by the input stringT
and the output suffix arraySA. As usual, we can use the space ofSA when constructSA.

We consider the following three popular settings.

1. Integer alphabets: EachT [i] ∈ [1,Σ] where the cardinality of the alphabets is|Σ| ≤ n and eachT [i]
is stored in a word. The input stringT may be modified by the algorithm.

2. Read-only integer alphabets: EachT [i] ∈ [1,Σ] where|Σ| ≤ n andT [i] is stored in a word orlog |Σ|
bits. In addition, the input stringT is read-only.

3. Read-only general alphabets: We can only read the input string T and compare characters. Each
comparison takesO(1) time. Wecannotwrite the input space, make bit operations, even copy an
input characterT [i] to the work space. Clearly,Ω(n log n) time is a lower bound for suffix sorting, as
it is a generalization of ordinary sorting (if allT [i]s are distinct).

There are many suffix sorting algorithms over these alphabets. See Tables1 and2 for an overview.

1.1.1 Integer Alphabets

We first consider integer alphabets. We allow the algorithm to temporarily modifyT . However, the original
stringT must be restored upon the termination of our algorithm. Chanet al. [CMR14] denote this situation
asrestore modelin their paper.

We list many previous results and our new result in Table1 1. Earlier algorithms that require more than
O(n) workspace (See Table1 for many of them) do not need to modify the input as they can create a new
array withn words.

Nong et al. [NZC09b,NZC11] obtained the first nearly linear time algorithm that uses sublinear workspace.
They modified the inputT in their algorithm. Recently, Nong [Non13] obtained a linear time in-place algo-
rithm if |Σ| = O(1). In fact, the algorithm needs|Σ| words workspace and it does not need to modify the
inputT . Note that in the worst case|Σ| can be as large asO(n). We improve their results as follows.

Theorem 1 There is an in-place linear time algorithm for suffix sortingover integer alphabets.

Our algorithm is based on the induced sorting framework developed in [KA03] (which are also used in
several previous algorithms [KA05,FM07,PST07,NZC09a,NZC09b,NZC11,Non13]). We develop a few

1 Some previous works state their space usages in terms of bits. We convert into words.
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Table 1: Time and workspace of suffix array construction algorithms for integer alphabets

Time Workspace (words) Algorithms

O(n2 log n) cn+O(1) c < 1 [MF04,MP06,MP08]
O(n2 log n) |Σ|+O(1) [IT99]

O(n2) O(n) [SS07]
O(n log2 n) O(n) [Sad98]
O(n log n) O(n) [MM90,MM93,LS99,LS07]
O(vn) O(n/

√
v) v ∈ [1,

√
n] [KSB06]

O(n
√

|Σ| log(n/|Σ|)) O(n) [BB05]
O(n log log n) O(n) [KJP04]
O(n log log |Σ|) O(n log |Σ|/ log n) [HSS03,HSS09]
O(n log |Σ|) |Σ|+O(1) [NZ07]

O(n) O(n) [KSPP03,KS03,KA03,KA05,KSB06]
O(n) n+ n/ log n+O(1) [NZC09a,NZC11]

O(1
ǫ
n) ⋆ nǫ + n/ log n+O(1) 2 [NZC09b,NZC11]

O(n) |Σ|+O(1) [Non13]
O(n) O(1) this paper

T is read-only in all algorithms except in the third to last row(marked with⋆).

elementary, yet effective tricks to further reduce the space usage to constant. This algorithm and the new
tricks are also useful for read-only integer and general alphabets.

Our algorithm is practical and easy to implement. Our C implementation of the algorithm requires only 8
Bytes workspace for any integer string and the running time is also competitive. We report our experimental
results in Section6.

1.1.2 Read-only Integer Alphabets

In this section, we consider the harder case where the input string T is read-only. There are many algo-
rithms for this case. See Table1 for an overview. Again, the alphabets is[1,Σ] where|Σ| ≤ n. In 2007,
Franceschini and Muthukrishnan [FM07] posed an open problem for designing an in-place algorithm that
takeso(n log n) time or ultimatelyO(n) time for integer alphabets (they did not specify whether theinput
stringT is read-only or not). The current best result along this lineis provided by Nong [Non13], which
uses|Σ| words workspace, as we just mentioned. In this paper, we settle down this open problem.

Theorem 2 There is an in-place linear time algorithm for suffix sortingover integer alphabets, even if the
input stringT is read-only.

1.1.3 Read-only General Alphabets

Now, we consider the general case where the stringT is over an arbitrary alphabet. The only operations
allowed on the characters of stringT (read-only) are comparisons. See table2 for an overview of re-
sults. In 2002, Manzini and Ferragina [MF02] posed an open problem, which asked whether there exists an

2 Nong et al. [NZC09b,NZC11] assume the word size is 32 bits and any integer can fit into oneword. The result listed here is
under the standard assumption that a word containsO(log n) bits. It is easy to verify the bucket arrayB in their algorithm requires
nǫ words. They also need ann bits array (or equivalentlyn/ log n words).
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Table 2: Read-only general alphabets

Time Workspace(words) Algorithms

O(n log n) O(n) [MM90,MM93,LS99,LS07]
O(vn+ n log n) O(v + n/

√
v) v ∈ [2, n] [BK03]

O(vn+ n log n) O(n/
√
v) v ∈ [1,

√
n] [KSB06]

O(n log n) O(1) [FM07]
O(n log n) O(1) this paper

O(n log n) time algorithm usingo(n) workspace. In ICALP 2007, Franceschini and Muthukrishnan [FM07]
obtained the first in-place algorithm that runs in optimalO(n log n) time. Their conference paper is com-
plicated and densely-argued. We also give an algorithm which achieves the same result. In addition, we do
not make any bit operations while they use bit operations in many places in their algorithm.

Theorem 3 There is an in-placeO(n log n) time algorithm for suffix sorting over general alphabets, even
if the input stringT is read-only and only comparisons between characters are allowed.

1.2 Our techniques

Almost all of the previous algorithms [KA03,KA05,KSB06,PST07,NZC09a,NZC11] require extra arrays to
sort the suffixes ofT , e.g.,bucket array(which needs|Σ| words),type array(needsn/ log n words) and/or
other arrays which needO(n) words. Currently the best result is provided by Nong [Non13]. However, he
still requiresbucket arrayin the first level, which needs|Σ| words. Note that the workspace needed in the
first level is the most difficult part to be removed because it seems no extra space we can use sinceSA needs
to store the final order of all suffixes now. The deeper recursive level is, the more extra space we can reuse
in SA, because the size of the recursive sub-problems in the deeper level are less than half of the problems
in current level for many algorithms. Therefore the highestbits in SA can be reused as extra space in the
recursive level. So the main difficulty is to remove the workspace which are needed by bucket array and
type array in the first level. In addition, we note that our in-place algorithms do not need the highest bits in
SA to store the type information.

Now, we describe our algorithms that overcome these difficulties as follows:

1. (Section3) integer alphabets:
In a high level, the framework of our algorithm is based on induced sorting [KA03] which will be
introduced in Section2. However, the actual implementation is different, as we must carefully avoid
to store the information explicitly (e.g. types and pointers) to obtain an in-place algorithm.

We give some properties and observations between stringT and suffix arraySA which are useful to
obtain the type information. Furthermore, we provide aninterior counter trickwhich can represent the
dynamic pointer information inSA, and we temporarily occupy the space ofT (note that in this case
T is not read-only) to represent the bucket information. Combining these methods, we can overcome
these difficulties (i.e., remove the space needed bybucket arrayandtype array) to obtain an in-place
linear time algorithm for integer alphabets.

2. (Section4) read-only general alphabets:
We provide simple sorting steps and extend our interior counter trick to obtain the optimal in-place
algorithm for this case.
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3. (Section5) read-only integer alphabets:
Our in-place algorithm for this case is a bit complex than theabove algorithms since this is the hardest
case. In general, we provide apointer data structurewhich can implicitly represent the bucket infor-
mation and combine these methods that we used in the general alphabets case to obtain the optimal
in-place algorithm.

Organization : The remaining of the paper is organized as follows. Section2 is a preliminary section
where we introduce some useful notions and tools. In Section3, 4 and5, we describe the framework of
our in-place suffix sorting algorithms and detail the steps of the algorithms for integer alphabets, read-only
general alphabets and read-only integer alphabets respectively. Next, we report the experimental results of
our algorithm for integer alphabets in Section6. Finally, we give a conclusion in Section7.

2 Preliminaries

We consider a stringT = T [0 . . . n − 1] with n characters over the alphabetsΣ, where|Σ| ≤ n. We use
T [i . . . j] denote the substringT [i]T [i+1] . . . T [j] in T . To simplify the argument, we assume that the final
characterT [n − 1] is a sentinel which is lexicographically smaller than any other characters inΣ. Without
loss of generality, we assume thatT [n − 1] = 0 3. Let suf(i) denote the suffixT [i . . . n − 1] of T . Any
two suffixes inT must be different since their length are different, and their lexicographical order can be
determined by comparing their characters one by one until wesee a difference due to the existence of the
sentinel.

The suffix array of a stringT , which we write asSA, is the array which contains the indices of the
suffixes ofT , sorted in lexicographical order. Formally,SA is an arraySA[0 . . . n − 1] that contains the
permutation of the integer of[0 . . . n− 1], such thatsuf(SA[i]) < suf(SA[j]) for all i < j.

A suffix suf(i) is said to beS-suffix(S-type suffix) ifsuf(i)< suf(i+1). Otherwise, it isL-suffix(L-type
suffix) [KA03]. The last suffixsuf(n − 1) containing only the single character0 (the sentinel) is defined to
be S-suffix. Equivalently, we can see thatsuf(i) is S-suffix if and only if (1)i = n−1; or (2)T [i] < T [i+1];
or (3)T [i] = T [i+ 1] andsuf(i + 1) is S-suffix. Obviously, the types can be computed by a linear scan of
T (from T [n− 1] to T [0]). Given the type of a suffix, we further define the type of a characterT [i] is S-type
(or L-typeresp.) ifsuf(i) is S-suffix (or L-suffix resp.). A substringT [i . . . j] is called anS-substringif (1)
i = j = n− 1; or (2) i < j, bothT [i] andT [j] are S-type, and there is no other S-type characters between
them. We can defineL-substringsymmetrically.
Example: We use the following running example throughout the paper.Consider stringT [0 . . .12] = “2113311331210”
(the integer alphabet).

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

type L S S L L S S L L S L L S

T [2] is S-type sinceT [2] = 1 < T [3] = 3. The S-substrings are{11, 1331, 11, 1331, 1210, 0}. �

Obviously, the indices of all suffixes, which start with the same character, must appear consecutively in
SA. We denote a subarray inSA for these suffixes with the same first character as abucket, where thehead
and thetail of a bucket refer to the first and the last index of the bucket inSA respectively. Moreover, we
define the first common character as itsbucket character. We often use the bucket character to index the

3 Some previous papers use$ to denote the sentinel. We use0 here since we consider the integer alphabets.
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bucket. For example, if the bucket character isT [i], we refer to it as bucketT [i]. Sometimes we say that we
place suffixsuf(i) of T into SA, it always means that we place its corresponding indexi into SA.

The induced sortingtechnique, developed by Ko and Aluru [KA03], is responsible for many recent
advances of suffix sorting algorithms [KA05,PST07,FM07,NZC09a,NZC09b,NZC11,Non13], and is also
crucial to us. It can be used to induce the lexicographical order of L-suffixes from the sorted S-suffixes.
Before introducing the induce sorting technique, we need the following useful property with respect to
L-suffixes and S-suffixes (the proof simply follows from the definition of L- and S-suffix).

Property 1 [KA03] In any bucket, S-suffixes always appear after the L-suffixesin SA, i.e., if an S-suffix
and an L-suffix begin with the same character, the L-suffix is always smaller than the S-suffix.

Now, we briefly introduce the standard induced sorting technique.

Inducing the order of L-suffixes from S-suffixes : Assume that all S-suffixes are already sorted and in
their correct positions inSA. We scanSA from left to right (i.e., fromSA[0] to SA[n− 1]). We maintain an
LF-pointer (leftmost free pointer) for each bucket which points to theLF-entry (leftmost free entry) of the
bucket. The LF-pointers initially point to the head of theircorresponding buckets. When we scanSA[i], let
j = SA[i] − 1. If T [j] is L-type (i.e.,suf(j) is L-suffix), we placesuf(j) into the LF-entry in bucketT [j],
and then let the LF-pointer of this bucket (i.e., bucketT [j]) point to the next entry. IfT [j] is S-type, we do
nothing. Sort all S-suffixes from sorted L-suffixes is completely symmetrical: we scanSA from right to left,
maintain anRF-pointer(rightmost free pointer) for each bucket which points to theRF-entry(rightmost free
entry) of the bucket.

Lemma 1 [KA03] Suppose all S-suffixes (or L-suffixes resp.) ofT are already sorted. Then using induced
sorting, all L-suffixes (or S-suffixes resp.) can be sorted correctly.

Example: Now, we show the induce sorting step in our running example.
Suppose all S-suffixes (i.e.,1, 2, 5, 6, 9, 12) are already sorted inSA: (E denotes an Empty entry.)

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

type L S S L L S S L L S L L S
SA (12) (E 1 5 9 2 6) (E E) (E E E E)

bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

(NoteSA[0] = 12 sincesuf(12) = “0” is the smallest suffix. The entries between a pair of parentheses denote a
bucket inSA which are these suffixes that start with the same character. The heads of bucket0, 1, 2, 3 are0, 1, 7, 9,
respectively.)

The scanning process is as follows. An arrow on top of a numberindicates that it is the current entry we are
scanning.

index 0 1 2 3 4 5 6 7 8 9 10 11 12
type L S S L L S S L L S L L S

SA (
−→
12) (11 1 5 9 2 6) (E E) (E E E E)

SA (12) (
−→
11 1 5 9 2 6) (10 E) (E E E E)

SA (12) (11
−→
1 5 9 2 6) (10 0) (E E E E)

SA (12) (11 1
−→
5 9 2 6) (10 0) (4 E E E)

SA (12) (11 1 5
−→
9 2 6) (10 0) (4 8 E E)

SA (12) (11 1 5 9 2 6) (10 0) (
−→
4 8 3 E)

SA (12) (11 1 5 9 2 6) (10 0) (4
−→
8 3 7)
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We first scanSA[0] = 12. Now, j = 11 andT [11] is L-type. We place11 to the LF-entry of bucket1 (i.e.,SA[1]),
note that the LF-pointer of bucket1 initially points toSA[1] (head of bucket1). Next, we scanSA[1] = 11, and we
place10 (T [10] is also L-type) to the LF-entry of its bucket (i.e., bucket2), and so on. �

The idea of induced sorting is that the lexicographical order betweensuf(i) andsuf(j) are decided by
the order ofsuf(i+1) andsuf(j+1) if suf(i) andsuf(j) are in the same bucket (i.e.,T [i] = T [j]). We only
need to specify the correct order of these L-suffixes in the same buckets since we always place the L-suffixes
in their corresponding buckets. Considering two L-suffixessuf(i) andsuf(j) in the same bucket, we have
suf(i + 1) < suf(i) andsuf(j + 1) < suf(j) by the definition of L-suffix. Since we scanSA from left to
right, suf(i+1) andsuf(j+1) must appear earlier thansuf(i) andsuf(j). Hence the correctness of induced
sorting is not hard to prove by induction.

Inducing the order of L-suffixes from LMS-suffixes : A suffix suf(i) is called anLMS-suffix(Leftmost
S-type) ifT [i] is S-type andT [i− 1] is L-type, fori ≥ 1. Nong et al. [NZC09a] observed that we can sort
all L-suffixes from the sorted LMS-suffixes (instead of all S-suffixes) if they are stored in the tail of their
corresponding buckets inSA. Roughly speaking the idea is that in the induced sorting, only LMS-suffixes
are useful for sorting L-suffixes. One difference from the standard induced sorting is that we may scan
some empty entries inSA. However, the empty entries can be ignored and all L-suffixescan still be sorted
correctly. We provide a running example in AppendixA.

Lemma 2 [NZC09a] Suppose all LMS-suffixes ofT are already sorted and stored in the tail of their
buckets. Then using induced sorting, all L-suffixes can be sorted correctly.

After we sort all L-suffixes from the sorted LMS-suffixes, we can induce the order of all S-suffixes from
the sorted L-suffixes by Lemma1, and sort all suffixes. Now, we introduce how to sort the LMS-suffixes.

Sort the LMS-suffixes : First, we define some notations. A characterT [i] of T is calledLMS-character
if suf(i) is LMS-suffix. A substringT [i . . . j] is called anLMS-substringif (1) i = j = n − 1; or (2)
i < j, bothT [i] andT [j] are LMS-characters, and there is no other LMS-characters between them (similar
to above S-substring). Similarly, we can defineLML-suffix (Leftmost L-type) andLML-substring. If we
know the lexicographical order of all LMS-substrings, thenwe can use their ranks to construct the reduced
problemT1. Sorting the suffixes ofT1 is equivalent to sorting the LMS-suffixes ofT .
Example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

type L S S L L S S L L S L L S
LMS ∗ ∗ ∗ ∗

Note that the LMS-substrings are{11331, 11331, 1210, 0}. Their ranks in lexicographical order are{1, 1, 2, 0}. Thus,
the reduced problem isT1 = 1120. The order of the suffixes ofT1 is the same as the order of corresponding LMS-
suffixes ofT .

Nong et al. [NZC09a] showed that we can use the same induced sorting step to sort all LMS-substrings
from sorted LMS-characters ofT . We briefly sketch their idea. We refer the readers to [NZC09a] for
the details. We define theLMS-prefixof an suffix suf(i) to beT [i . . . j], wherej > i is the smallest
position insuf(i) such thatT [j] is an LMS character (e.g., the LMS-prefix ofsuf(4) is “31”). Suppose all
LMS-characters are stored in the tail of their corresponding bucket inSA. First we sort all LMS-prefix of
L-suffixes from the sorted LMS-characters, using one scan ofinduced sorting from left to right (the same
as induce the order of L-suffixes from LMS-suffixes). Then we sort all LMS-prefix of S-suffixes from the
sorted LMS-prefix of L-suffixes (the same as induce the order of S-suffixes from L-suffixes). After this, we
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have sorted all LMS-substrings since all LMS-substrings are LMS-prefix of S-suffixes by the definition of
LMS-prefix. The correctness proof follows the same argumentas in the standard setting.

3 Suffix Sorting for Integer Alphabets

3.1 Framework

Our suffix sorting algorithm for integer alphabets consistsof the following steps. To avoid the confusion,
we recall that an LMS-character is a single character, an LMS-substring is a substring which begins with an
LMS-character and end with an LMS-character, and an LMS-suffix is a suffix ofT which begins with an
LMS-character.

1. (Section3.2) RenameT .

2. (Section3.3) Sort all LMS-characters ofT .

3. (Section3.4) Sort all LMS-substrings from the sorted LMS-characters.

4. (Section3.5) Construct the reduced problemT1 (in which we need to sort all LMS-suffixes) from the
sorted LMS-substrings.

5. (Section3.6) Sort LMS-suffixes by solvingT1 recursively.

6. (Section3.7) Sort all suffixes from the sorted LMS-suffixes (T1).

In a high level, the framework is similar to several other previous algorithms based on induced sort-
ing [KA03, KA05, FM07,PST07, NZC09a, NZC09b, NZC11, Non13], and in particular to [NZC09a]. Our
algorithm differs in the detailed implementation of the above steps to obtain an in-place algorithm. We
describe the details of the above steps in the following Sections. Finally, see AppendixB for restoringT .

3.2 RenameT

In this section, we rename each L-type character ofT to be the index of its bucket head and each S-type
character ofT to be the index of its bucket tail. (Nong et al. [NZC11] has a similar renaming step).

The correctness of the step is shown in Lemma3 below. Now, we describe how to implement this step
using linear time andO(1) workspace. We divide this into two part, one part is for renaming all L-type
characters to be the index of its bucket head and the other part is for renaming all S-type characters to be the
index of its bucket tail. This step is similar to counting sort (see e.g., [CLRS01, Ch. 8]).

1. First we scanT once to compute the number of times each character occurs inT and store them inSA
(i.e., first initializeSA[i] = 0 for all i ∈ [0, n − 1], then for eachT [i] we increaseSA[T [i]] by one).
Then we perform aprefix sum computationto determine the starting position of each character (i.e.
bucket head) inSA (i.e., scanSA once, for eachSA[i], let SA[i] = sum, andsum = sum + SA[i],
wheresum denote how many characters so far). Finally we scanT once again, for eachT [i] we let
T [i] = SA[T [i]] (the index of its bucket head). Now, all characters ofT has renamed as the index of
its bucket head.

8



2. Then we need to let the S-type characters ofT to be the index of its bucket tail. First we scanT once
to compute the number of times each character occurs inT and store them inSA. Then, we scanT
once again from right to left, for each S-typeT [i], we letT [i] = T [i] + SA[T [i]]− 1 (the index of its
bucket tail). (Note that if we scanT from right to left, for eachT [i], we can know its type is L-type
or S-type inO(1) time. There are two case : 1) ifT [i] 6= T [i+1] , we can know its type immediately
by definition; 2) ifT [i] = T [i+ 1] then its type is the same as the type ofT [i + 1]. We only need to
maintain a Boolean variable which represent the type of previous characterT [i+ 1])

Lemma 3 The renaming step does not change the lexicographical orderof all suffixes ofT .

Proof: For two suffixes, beginning with the same character, the L-suffix is smaller than the S-suffix. Hence,
the renaming step does not change the relative orders of all suffixes. �

Example: We illustrate the renaming process in our running example.

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

type L S S L L S S L L S L L S
SA (12) (11 1 5 9 2 6) (10 0) (4 8 3 7)

bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

After renaming, we getT ′ as following:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T ′ 7 6 6 9 9 6 6 9 9 6 7 1 0

T ′[0] = 7 sinceT [0] is L-type and the head of bucket2 (i.e., bucketT [0]) is 7. T ′[1] = 6 sinceT [1] is S-type and the
tail of bucket1 (i.e., bucketT [1]) is 6.

3.3 Sort all LMS-characters

Now, we sort all LMS-characters ofT , i.e., place the indices of the LMS-characters in the tail oftheir
corresponding buckets inSA. Note that we do not have extra space to store the pointers/counters for each
bucket to indicate how many entries we have used in the process. For this purpose, we develop a simple
trick, calledinterior counter trick, which allows us to carefully use the space inSA to store the information
of both the indices and the pointers. The implementation details are described below. In the steps, we use
three special symbols which areUnique, Empty andMulti. 4

Step 1. Initializing SA : First we clearSA (i.e.,SA[i] = Empty, for all i ∈ [0, n − 1]). Then we scanT
once from right to left. For everyT [i] which is an LMS-character (this can be easily decided in constant
time), do the following:

(1) If SA[T [i]] = Empty, let SA[T [i]] = Unique (meaning it is the unique LMS-character in this bucket).
Note that after the renaming,T [i] is the index of its bucket tail.

(2) If SA[T [i]] = Unique, letSA[T [i]] = Multi (meaning the number of LMS-characters in this bucket is at
least2).

(3) Otherwise, do nothing.

4 We assume that a word contains enough bits to represent any character inΣ and all such special symbols (there are at most
five special symbols).
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Step 2. Placing all indices of LMS-characters intoSA : We scanT once from right to left. For everyT [i]
which is an LMS-character, we distinguish the following cases:

(1) SA[T [i]] = Unique: In this case, we letSA[T [i]] = i (i.e., T [i] is the unique LMS-character in its
bucket, and we just put its index into its bucket).

(2) SA[T [i]] = Multi andSA[T [i] − 1] = Empty: In this case,T [i] is the first LMS-character in its bucket.
So if SA[T [i]− 2] = Empty, we letSA[T [i]− 2] = i andSA[T [i]− 1] = 1 (i.e., we useSA[T [i]− 1] as
the counter for the number of LMS-characters which has been added to this bucket so far). Otherwise,
SA[T [i] − 2] 6= Empty (i.e., SA[T [i] − 2] is in a different bucket, which implies that this bucket has
only two LMS-characters). Then we letSA[T [i]] = i andSA[T [i] − 1] keepsEmpty (We do not need
a counter in this case and the last LMS-character belonging to this bucket will be dealt in the later
process).

(3) SA[T [i]] = Multi andSA[T [i] − 1] 6= Empty: In this case,SA[T [i] − 1] is maintained as the counter.
Let c = SA[T [i] − 1]. We check whether thec + 2 positions before its tail (i.e.,SA[T [i] − c − 2]) is
Empty or not. IfSA[T [i]− c− 2] = Empty, letSA[T [i]− c− 2] = i and increaseSA[T [i]− 1] by one
(i.e., update the counter number). OtherwiseSA[T [i]− c− 2] 6= Empty (i.e., reaching another bucket),
we need to shift thesec indices to the right by two positions (i.e., moveSA[T [i]− c− 1 . . . T [i]− 2] to
SA[T [i]− c+1 . . . T [i]]), and letSA[T [i]− c] = i andSA[T [i]− c− 1] = Empty. After this, only one
LMS-character needs to be added into this bucket in the laterprocess.

(4) SA[T [i]] is an index: From case (2) and (3), we know the currentT [i] must be the last LMS-character in
its bucket. So we scanSA from right to left, starting withSA[T [i]], to find the first positionj such that
SA[j] = Empty. Then we letSA[j] = i. Now, we have filled the entire bucket. However, we note that
not every bucket is fully filled as we have only processed LMS-characters so far.

After the above scan step, all indices of LMS-characters have been placed inSA. Note that there may be
still some special symbolsMulti and the counters (due to the bucket is not fully filled, so we have not shifted
these indices to right in this bucket). We need to free these position. We scanSA once more from right to
left. If SA[i] = Multi, we shift the indices of LMS-characters in this bucket to right by two positions (i.e.,
SA[i− c−1 . . . i−2] to SA[i− c+1 . . . i]) and letSA[i− c−1] = SA[i− c] = Empty, wherec = SA[i−1]
denote the counter.
Example: Continue our example (U,E andM denoteUnique, Empty andMulti, respectively): Step 1. Initializing
SA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

LMS ∗ ∗ ∗ ∗
SA E E E E E E E E E E E E E

After initialization:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (U) (E) (E E E E M) (E E) (E E E E)

Step 2. Placing all indices of LMS-characters intoSA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (E) (E E E E M) (E E) (E E E E)
SA (12) (E) (E E 9 1 M) (E E) (E E E E)
SA (12) (E) (E 5 9 2 M) (E E) (E E E E)
SA (12) (E) (1 5 9 3 M) (E E) (E E E E)
SA (12) (E) (E E 1 5 9) (E E) (E E E E)
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In the last step, we remove allMulti symbols and counters.

Lemma 4 The indices of the LMS-characters can be placed in the tail oftheir corresponding buckets inSA
using linear time andO(1) workspace.

Proof: We only need to explain the Step 2 which Placing all indices ofLMS-characters intoSA takesO(n)
time. For each scannedT [i], it takesO(1) time except when theT [i] is the last two LMS-characters of its
bucket. In this case, we need to shift the indices in this bucket (the last but one) and scan the bucket once
(the last one). It takesO(n) time since every bucket only need to be shifted and scanned once. �

3.4 Sort all LMS-substrings

In this section, we sort all LMS-substrings from the sorted LMS-characters using induced sorting. Since
all LMS-substrings are LMS-prefix of S-suffixes (Recall thatLMS-prefix of an suffixsuf(i) is T [i . . . j],
wherej > i is the smallest position insuf(i) such thatT [j] is an LMS character) and sort the LMS-prefix
of all suffixes ofT from the sorted LMS-characters is the same as sort all suffixes of T from the sorted
LMS-suffixes (see the Preliminary Section2). Now, we divide this step into two parts.

(1) First, we sort the LMS-prefix of all suffixes from the sorted LMS-characters. Since this part is the same
as sorting all suffixes from the sorted LMS-suffixes, we will describe this in Section3.7.

(2) Then, we place the indices of all sorted LMS-substrings in SA[n − n1 . . . n − 1], wheren1 denote
the number of LMS-characters. Note that the number of LMS-characters, LMS-suffixes and LMS-
substrings are the same. Moreover,n1 ≤ n

2 since any two LMS-characters are not adjacent.

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
LMS ∗ ∗ ∗ ∗
SA (12) (E) (E E 1 5 9) (E E) (E E E E)

(1) Sort the LMS-prefix of all suffixes (see Section3.7):

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (1 5 9 2 6) (10 0) (4 8 3 7)

(2) Place the indices of all sorted LMS-substrings inSA[n− n1 . . . n− 1]:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA E E E E E E E E E 12 1 5 9

We only need to explain the second part which place the indices of all sorted LMS-substrings inSA[n−
n1 . . . n− 1]. First, we need the following observation. Then we give a lemma to show that this step can be
done in linear time usingO(1) workspace.

Observation 1 For every bucket inSA, let t to be its bucket tail. ThenT [SA[t]] is S-type if and only if
T [SA[t]] < T [SA[t] + 1]. Similarly,T [SA[h]] is L-type if and only ifT [SA[h]] > T [SA[h] + 1], whereh is
the bucket head.
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Lemma 5 The indices of all sorted LMS-substrings can be placed inSA[n−n1 . . . n− 1] using linear time
andO(1) workspace.

Proof: After Step (1), we can scanSA once from right to left to place the indices of all LMS-substrings
into the end ofSA. We only need to explain that when we scanningSA[i] how to identifyT [SA[i]] is LMS-
character or not. Note that if we can identifyT [SA[i]] is S-type or not, we can also identifyT [SA[i]] is
LMS-character or not sinceT [SA[i]] is LMS-character if and only ifT [SA[i]] is S-type andT [SA[i] − 1] >
T [SA[i]]. In the scanning process, when we reach a new bucket, we can identify this bucket contains S-type
characters or not from Observation1. Furthermore, if we can compute the number of S-type characters
in this bucket, we will have done this step. To compute the number of S-type characters in this bucket, we
continue to scan this bucket from its tail. For the current scanning entrySA[i], 1).If T [SA[i]] ≥ T [SA[i]+1],
do nothing; 2).Otherwise, letj to be the smallest index such thatT [k] = T [SA[i]] for anyk ∈ [j,SA[i]],
then we increasenum by j − SA[i] + 1, where we maintain a variablenum to count the number of S-
type characters in this bucket and initially to be0. This step costO(n) time overall since each character is
scanned at most twice. �

3.5 Get reduced problemT1

In this section, we construct the smaller problemT1 which we need to solve recursively. We rename the
sorted LMS-substrings (obtained from the previous step) using their ranks.

Now, we spell out the details. Initially, all LMS-substrings are sorted inSA[n − n1 . . . n − 1]. First
let the rank of the smallest LMS-substringSA[n − n1] to be 0 (it must be the sentinel). Then we scan
SA[n − n1 + 1 . . . n − 1] once from left to right to compute the rank for each LMS-substring. When we
scanningSA[i], we compare the LMS-substring corresponding toSA[i] and that corresponding toSA[i− 1].
If they are the same,SA[i] gets the same rank asSA[i − 1]. Otherwise, the rank ofSA[i] is the rank of
SA[i − 1] plus 1. Since we have no extra space, we need to store the ranksin SA as well. In particular, the
rank ofSA[i] is stored inSA[⌊SA[i]2 ⌋]. There is no conflict since any two LMS-characters are not adjacent.

Finally, we shifting nonempty entries inSA[0 . . . n−n1−1] to the left, so that the ranks occupy a contin-
uous segment of space. Now, we have obtained the reduced problemT1 which are stored inSA[0 . . . n1−1].
In other words,SA[i] (i ∈ [0, n1−1]) stores the new name of thei-th LMS-substring (w.r.t. their appearance
in the input stringT ).
Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

LMS ∗ ∗ ∗ ∗
SA E E E E E E E E E 12 1 5 9

After scanSA[n− n1 . . . n− 1] (which stored the sorted LMS-substrings):

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 E 1 E 2 E 0 E E 12 1 5 9

Finally, we letT1 in theSA[0 . . . n1 − 1] by shifting nonempty items inSA[0 . . . n− n1 − 1] to the head ofSA.

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E 12 1 5 9

NoteT1 = “1120” corresponding to the LMS-substrings{“66996”, “66996”, “6710”, “0”}.
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First, we give an observation which help us to identify the S-type and L-type character ofT . Then we
can obtain the following lemma showed thatT1 can be obtained in linear time using this observation.

Observation 2 For any indexi of T , let j ∈ [i + 1, n − 1] be the smallest index such thatT [j] < T [j + 1]
(SoT [j] is S-type). Furthermore letk ∈ [i + 1, j] be the smallest index such thatT [l] = T [j] for any
k ≤ l ≤ j. ThenT [k] is the first S-type character after indexi. Moreover, all characters betweenT [i] and
T [k] are L-type, and betweenT [k] andT [j] are S-type.

Lemma 6 T1 can be obtained usingO(n) time andO(1) workspace.

Proof: For the workspace term is obvious since we do not use extra space beyondSA in above step. For
the time, we only need to explain the time of the comparison process used. When we compareSA[i] and
SA[i− 1], we can know the length of these two LMS-substrings (indicated bySA[i] andSA[i− 1]) from the
Observation2. Note that each character of T is scanned at most twice since it only be scanned when identify
the length of its adjacent predecessor LMS-substring and itself. Thus the comparison process takesO(n)
time because the total length of all LMS-substrings is less than2n. �

3.6 Sort all LMS-suffixes

In this section, we sort all LMS-suffixes and place their indices in the tail of their corresponding buckets in
SA, which is carried out as follows:

1. We first solveT1 recursively. From Section3.5, we haveT1 stored inSA[0 . . . n1 − 1]. DefineSA1 to
beSA[n− n1 . . . n− 1]. We useSA1 to store the output of the subproblemT1.

2. Now, we put all indices of LMS-suffixes inSA. First we moveSA1 to SA[0 . . . n1 − 1] (i.e., move
SA[n − n1 . . . n − 1] to SA[0 . . . n1 − 1]). Then we scanT once from right to left. For every LMS-
characterT [i], placei (i.e., index ofsuf(i)) in the tail ofSA.

3. For notational convenience, we defineLMS[0 . . . n1] = SA[n−n1 . . . n−1]. Now, we obtain the sorted
order of all LMS-suffixes of the original stringT by lettingSA[i] = LMS[SA[i]] for all i ∈ [0, n1−1].

4. Finally, we scanSA[0 . . . n1 − 1] once more from right to left, and move the indices of LMS-suffixes
in same bucket to the tail of its bucket and clear other entries. This is easy to do since each S-type
T [i] (after the renaming step in Section3.3) has pointed to the tail of its bucket.

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E E E E E

Step 1. SolveT1 recursively:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 1 1 2 0 E E E E E 3 0 1 2

Step 2. After moveSA1 to SA[0 . . . n1 − 1] and put all LMS-suffixes inSA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 3 0 1 2 E E E E E 1 5 9 12
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Step 3. Get all sorted LMS-suffixes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA 12 1 5 9 E E E E E 1 5 9 12

Step 4. Move the indices of LMS-suffixes in same bucket to the tail of its bucket and clear other entries:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (E) (E E 1 5 9) (E E) (E E E E)

Lemma 7 All LMS-suffixes can be sorted by solving the reduced problemT1 recursively and placed in the
tail of their corresponding buckets inSA usingO(n) time andO(1) workspace.

Proof: Each LMS-substring correspond to a character ofT1 and this character is the rank of the LMS-
substring from Section3.5. Hence, the lexicographical order of LMS-suffixes ofT are the same as the order
of suffixes inT1. �

3.7 Sort all suffixes

Now, we sort all suffixes ofT from the sorted LMS-suffixes using induced sorting (Note that this step is the
same as we do in Section3.4, we give the details here). First, we induce the order of all L-suffixes from
LMS-suffixes. Then we induce the order of S-suffixes from the L-suffixes. Now, we show how to carry out
these steps with the desired time and space.

Step 1. Sort all L-suffixes using induced sorting :We divide this step into two parts, and describe the
details as follows:

(1) First initializeSA: We scanT once from right to left. For everyT [i] which is L-type, do the following:

(i) If SA[T [i]] = Empty, letSA[T [i]] = Unique (unique L-type character in this bucket).

(ii) If SA[T [i]] = Unique, let SA[T [i]] = Multi (number of L-type characters in this bucket is at least
2).

(iii) Otherwise do nothing.

(2) Then we scanSA once from left to right to sort all the L-suffixes.

(i) If SA[i] = Empty, do nothing.

(ii) If SA[i] is an index: letj = SA[i] − 1. If suf(j) is L-suffix (This can be identified in constant
time from the following lemma8), we placesuf(j) into the LF-entry of its bucket and increase the
counter by one. This is similar to previous Step 2 which placing the indices of LMS-characters
into SA in Section3.3.

(iii) If SA[i] = Multi, which meansSA[i] is the head of its bucket, and this bucket has at least two L-
suffixes which are not sorted. In this case,SA[i] andSA[i+1] are used as bucket head (the symbol
Multi) and counter of this bucket, respectively. Then we skip these two entries and continue to
scanSA[i+ 2].
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Now, all L-suffixes have be sorted. Note that we still need to scanSA once more to free these positions
occupied byMulti and counters. After this, the indices of all L-suffixes are intheir final position inSA.

Step 2. Remove LMS-Suffixes fromSA : We can use a trick similar to previous Step 2 which placing
the indices of LMS-characters intoSA in Section3.3. The difference is that instead of placing actual LMS-
characters, we placeEmpty symbol instead. Also note that we do not delete the sentinel since it must be in
the final position. Now,SA contains only all L-suffixes and the sentinel, and all of themare in their final
position inSA.

Step 3. Sort all S-suffixes using induced sorting :Now, this step is completely symmetrical to above Step
1. Sort all L-suffixes using induced sorting. We use S-type and RF-entry instead of L-type and LF-entry,
and we do not repeat it here.

In order to show the time used in this step, we need the the following useful lemma in the induced sort
step which scanSA from left to right to sort L-suffixes.

Lemma 8 When we are scanningSA[i], we want to identity the type ofsuf(SA[i] − 1). If T [SA[i] − 1] 6=
T [SA[i]], the type ofsuf(SA[i]− 1) can be obtained immediately. OtherwiseT [SA[i] − 1] = T [SA[i]] (this
casesuf(SA[i] − 1) belongs to the current scanning bucketT [SA[i]]), if all L-suffixes ofT that belong to
bucketT [SA[i]] are not already sorted, then thesuf(SA[i]− 1) is L-suffix.

Proof: From the Property1, in any bucket, S-suffixes always appear after the L-suffixesin SA. Moreover, it
is obvious that every suffix ofT is considered exactly once. Combine these observations imply this lemma.
Furthermore, whether all L-suffixes ofT that belong to current bucketT [SA[i]] are already sorted or not is
not hard to identify by scanning current bucket once when we are reaching a new bucket. �

Example: Continue our example:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 7 6 6 9 9 6 6 9 9 6 7 1 0

type L S S L L S S L L S L L S
SA (12) (E) (E E 1 5 9) (E E) (E E E E)

Step 1. Sort all L-suffixes using induced sorting:
(1) After initialization:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (U) (E E 1 5 9) (M E) (M E E E)

(2) ScanSA from left to right to sort all the L-suffixes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA (
−→
12) (11) (E E 1 5 9) (M E) (M E E E)

SA (12) (
−→
11) (E E 1 5 9) (10 E) (M E E E)

SA (12) (11) (E E
−→
1 5 9) (10 0) (M E E E)

SA (12) (11) (E E 1
−→
5 9) (10 0) (M 1 4 E)

SA (12) (11) (E E 1 5
−→
9 ) (10 0) (M 2 4 8)

SA (12) (11) (E E 1 5 9) (10 0) (M 2
−→
4 8)

SA (12) (11) (E E 1 5 9) (10 0) (
−→
4 8 3 E)

SA (12) (11) (E E 1 5 9) (10 0) (4
−→
8 3 7)

The third last line is the case (iii), so we skip these two entries (i.e., ‘M ’ and ‘2’).
Step 2. Remove LMS-Suffixes fromSA:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (E E E E E) (10 0) (4 8 3 7)
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Step 3. Sort all S-suffixes using induced sorting:
(1) After initialization:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
SA (12) (11) (E E E E M) (10 0) (4 8 3 7)

(2) ScanSA from right to left to sort all the S-suffixes:

index 0 1 2 3 4 5 6 7 8 9 10 11 12

SA (12) (11) (E E 6 1 M) (10 0) (4 8 3
←−
7 )

SA (12) (11) (E 2 6 2 M) (10 0) (4 8
←−
3 7)

SA (12) (11) (9 2 6 3 M) (
←−
10 0) (4 8 3 7)

SA (12) (11) (9 2
←−
6 3 M) (10 0) (4 8 3 7)

SA (12) (11) (E 5 9 2
←−
6 ) (10 0) (4 8 3 7)

SA (12) (11) (1 5 9
←−
2 6) (10 0) (4 8 3 7)

SA (12) (11) (1 5 9 2 6) (10 0) (4 8 3 7)

Lemma 9 Given all sorted LMS-suffixes ofT , all the suffixes use these induced sorting steps can be sorted
correctly usingO(n) time andO(1) workspace.

Proof: For the correctness: we can sort all L-suffixes correctly from the sorted LMS-suffixes using induced
sorting step from Lemma2 and we can sort all S-suffixes correctly from the sorted L-suffixes using induced
sorting step from Lemma1. �

Now, we have the following theorem.

Theorem 4 Our algorithm takesO(n) time andO(1) workspace to compute the suffix array of stringT
over an integer alphabet.

4 Suffix sorting for read-only general alphabets

4.1 Framework

In this section, we give the framework of our suffix sorting algorithm for read-only general alphabets. Let
nL andnS denote the number of L-suffixes and S-suffixes, respectively. Now, the framework is described
as follows:

1. If nS ≤ nL (i.e., the number of S-suffixes is less), then

(1) (Section4.2) Sort all S-substrings ofT using mergesort directly.
We use mergesort to sort all S-substring ofT in SA[0 . . . nS−1]. In the merging step of mergesort,
we useSA[nS . . . 2nS − 1] as the temporary space. After this step, all S-substrings should be in
the lexicographical order stored inSA[0 . . . nS − 1].

(2) (Section4.3) Construct the reduced problemT1 from the sorted S-substrings.
We construct the reduced problemT1 using the ranks of all sorted S-substrings which are stored
in SA[0 . . . nS − 1]. The ranks of S-substrings are corresponding to the lexicographical order of
the sorted S-substrings. After this step, we get the reducedproblemT1 in SA[nS . . . 2nS − 1].
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(3) (Section4.4) Sort S-suffixes by solvingT1 recursively.
We sortT1 = SA[nS . . . 2nS−1] recursively, in the recursive step, we useSA1 = SA[0 . . . nS−1]
as the output space forT1. Then we use the suffix array ofT1 which stored inSA1 to place all
indices of S-suffixes ofT in lexicographical order intoSA[0 . . . nS − 1].

(4) (Section4.5) Sort all suffixes from the sorted S-suffixes.
First we place all indices of S-suffixes in the their final positions inSA by using mergesort together
with a stable, in-place, linear time merging algorithm [SS87]. Then we use induced sorting step
to sort all L-suffixes from the sorted S-suffixes. After this,all suffixes ofT have been sorted in
SA[0 . . . n− 1].

2. Otherwise, execute the above steps switching the roles ofL andS.

The purpose of comparingnL andnS is to guarantee the size of the reduced problemT1 is no more than
half of |T | (i.e., |T1| ≤ |T |/2). Without lost of generality, we assume thatnS ≤ nL.

4.2 Sort all S-substrings ofT

In this section, we sort all S-substrings ofT as follows:

1. First, we scanT from right to left and place all indices of S-type charactersinto SA[0 . . . nS − 1].
Note thatnS ≤ n/2 since we assume thatnS ≤ nL.

2. Then, we sortSA[0 . . . nS − 1] using mergesort (the sorting key forSA[i] is the S-substring ofT
which begins atT [SA[i]]). We useSA[nS . . . 2nS − 1] as the temporary space for mergesort. To
compare two keys (i.e., two S-substrings) in mergesort, we simply do the straightforward character-
wise comparisons.

After the above two steps, all the S-substring have been sorted inSA[0 . . . nS − 1]. We have the following
lemma.

Lemma 10 We can sort all S-substrings usingO(n log n) time andO(1) workspace.

Proof: Step 1 does not need any extra space and costs linear time, because we can compute the type of
each character inO(1) time during the right-to-left scan ofT . Moreover, we know mergesort needs linear
workspace. Hence, it is sufficient to useSA[nS . . . 2nS − 1] as the workspace for mergesort. We need to
show that Step 2 takesO(n log n) time. It suffices to show that the time spent for comparison process in
one recursive level of mergesort (there areO(log n) recursive levels) can be bounded byO(n). Since each
S-substring is compared to exactly one other S-substring. The length of the S-substrings can be obtained
according to Observation2. Note that each character ofT is scanned at most twice since it only be scanned
when identify the length of its adjacent predecessor S-substring and itself. Thus the comparison process
takesO(n) time because the total length of all S-substrings is less than 2n. �

4.3 Construct the reduced problemT1 from the sorted S-substrings

In this section, we construct the reduced problemT1 by renaming the sorted S-substrings. After Section4.2,
all S-substrings have been sorted inSA[0 . . . nS − 1]. The construction ofT1 consists of the following two
steps:
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1. We rename the S-substrings by their ranks (this step is similar to the step of renaming the LMS-
substrings by their ranks in Section3.5). First let the rank ofSA[0] be 0. We scanSA[1 . . . nS − 1]
from left to right. When scanningSA[i], we compare S-substring beginning withT [SA[i]] and S-
substring beginning withT [SA[i − 1]]. If they are different, let the rank ofSA[i] be the rank of
SA[i− 1] plus one. Otherwise the rank ofSA[i] is the same as that ofSA[i− 1]. We store the rank of
SA[i] in SA[nS + i].

2. Next, we use heapsort to sortSA[0 . . . nS − 1] (the sorting key forSA[i] is SA[i] itself). When we
exchange two entries (say,SA[i] andSA[j], i, j ∈ [0 . . . nS − 1]) in SA[0 . . . nS − 1] during heapsort,
we also exchange the corresponding two entries (i.e.,SA[nS+i] andSA[nS+j]) in SA[nS . . . 2nS−1].
Note that we use heapsort here since it is in-place and we do not need any extra space.

After the above two steps, we get the reduced problemT1 in SA[nS . . . 2nS − 1].

Lemma 11 T1 can be constructed inO(n log n) time andO(1) workspace.

Proof: In Step 1, each S-substring beginning withT [SA[i]] is compared with S-substring beginning with
T [SA[i+ 1]]. So each S-substring can only participate in two comparisons. Now the argument is similar to
a comparison process in one recursive level of mergesort in Lemma10, thus it costs linear time. Obviously,
Step 2 takesO(n log n) time andO(1) workspace. �

4.4 Sort all S-suffixes by solvingT1 recursively

In this section, we solveT1 = SA[nS . . . 2nS − 1] recursively to obtain the order of all S-suffixes in
SA[0 . . . nS − 1]. For the recursive step, we useSA1 = SA[0 . . . nS − 1] as the output space forT1.
After the recursive call,SA1 stores the suffix array ofT1. We need to restore their names back to the indices
of S-suffixes inT they represent. This can be done as follows.

1. First we scanT from right to left. We maintain a countersum for the number of S-type characters
we have scanned so far. Initiallysum is 0. If T [i] is S-type, we increasesum by 1 and placesuf(i)
into SA[2nS − sum] (i.e., letSA[2nS − sum]← i). NowSA[nS . . . 2nS − 1] stores the indices of all
S-suffixes ofT .

2. Then fori ∈ [0, nS − 1], letSA[i]← SA[nS + SA[i]].

Now, we have obtained all S-suffixes in the lexicographical order inSA[0 . . . nS − 1].

4.5 Sort all suffixes ofT

From Section4.4, we have obtained the sorted S-suffixes inSA[0 . . . nS− 1]. Now, we sort all suffixes from
these sorted S-suffixes.

Preprocessing :First, we move these S-suffixes fromSA[0 . . . nS−1] toSA[n−nS . . . n−1]. Then we scan
T from right to left to place all indices of L-suffixes intoSA[0 . . . n−nS − 1]. Now, we sortSA[0 . . . n− 1]
(the sorting key ofSA[i] is T [SA[i]] i.e., the first character ofsuf(SA[i])) using the mergesort, with the
merging step implemented by the stable, in-place, linear time merging algorithm developed by Salowe and
Steiger [SS87]. After this sorting step, we make some useful observations.

Observation 3 All suffixes ofT have been sorted by their first characters inSA.
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Observation 4 All the indices of L-suffixes beginning with the same character inSA are in increasing order,
due to the stableness of the above sorting algorithm.

Lemma 12 All S-suffixes are already in their final position inSA.

Proof: Before the sorting step, all sorted S-suffixes are inSA[n − nS . . . n − 1] and all L-suffixes are in
SA[0 . . . n−nS−1]. Because the merging step is stable, the S-suffixes are behind the L-suffixes in the same
bucket and hence are already in their final positions inSA from Observation3 and Property1. �

Induced Sorting : Now, we induce the order of all L-suffixes from the sorted S-suffixes (which are already
in their final position inSA by Lemma12) using induced sorting. Now, we extend the interior counter
trick in Section3.3 to handle the read-only general alphabets. We use five special symbolsH (Head),TL

(Tail of L-suffixes),E (Empty),R1 (one remaining L-suffix) andR2 (two remaining L-suffixes). We do the
following two steps to sort all L-suffixes :

Step 1. Initializing SA : Firstly, we initialize all buckets inSA by placing some special symbols in each
bucket in order to inform us the number of L-suffixes in the bucket. Concretely, we scanT once from right
to left. For each scanning characterT [i] which is L-type, if bucketT [i] has not been initialized, we need
to initialize bucketT [i] (we will show that how to identify the bucket is initialized or not in the end of
this step). Before to initialize bucketT [i], we first need to obtain the valueNL, which is the number of
L-suffixes in this bucket. Letl denote the head of bucketT [i] in SA (i.e. l is the smallest index inSA such
thatT [SA[l]] = T [i]) andr denote the tail of bucketT [i] in SA (i.e. r is the largest index inSA such that
T [SA[r]] = T [i]). Furthermore, we letrL denote the tail of L-suffixes in this bucket (i.e.,r is the largest
index inSA such thatT [SA[rL]] = T [i] andT [SA[r]] is L-type). Note thatNL = rL − l + 1. Hence, it
suffices to computel andrL. The following steps computel andrL, respectively.

(i) We can findl by binary searchT [i] in SA (the search key forSA[i] is T [SA[i]]) usingO(log n) time
from Observation3.

(ii) For rL, since the bucketT [i] has not been initialized,suf(i) is the first L-suffix in its bucket being
scanned. From Observation4, suf(i) must be stored inSA[rL] (i.e.,SA[rL] = i) since we scanT from
right to left. Hence, we can scan this bucket once froml to r to find rL which satisfiesSA[rL] = i.

After this, we have obtained the value ofNL. Now, we initialize the bucketT [i] as follows :

(1) If NL = 1, we do nothing (there is only one L-suffix in this bucket and obviously it is in the final
position).

(2) If NL = 2, let SA[l + 1] = TL (recall thatl is the head of bucketT [i] andr is the bucket tail, i.e.,
SA[l . . . r] is the bucketT [i]. Moreover,rL is the tail of L-suffixes in this bucket)

index l l + 1(rL) l + 2 . . . r
type L L S . . . S
SA SA[l] TL SA[l + 2] . . . SA[r]

(3) If NL = 3, let SA[l + 1] = H andSA[l + 2] = TL.

index l l + 1 l + 2(rL) l + 3 . . . r
type L L L S . . . S
SA SA[l] H TL SA[l + 3] . . . SA[r]
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(4) If NL > 3, let SA[l + 1] = H, SA[l + 2] = E andSA[l +NL − 1] = TL.

index l l + 1 l + 2 l + 3 . . . l +NL − 1(rL) l +NL . . . r
type L L L L . . . L S . . . S
SA SA[l] H E SA[l + 3] . . . TL SA[l +NL] . . . SA[r]

Note that we can find out whether the bucketT [i] is already initialized or not inO(log n) time. We do a
binary search findl, then checkSA[l+1] isH,TL or others. If the bucketT [i] has been initialized,SA[l+1]
is H or TL. Otherwise, it has not been initialized yet.5 It is not hard to see that this initialization step uses
O(n log n) time andO(1) workspace.

Step 2. Sort all L-suffixes using induced sorting :We scanSA from left to right to sort all L-suffixes. The
step is similar to sorting all suffixes in our first algorithm in Section3.7. The main difference is that we use
binary search to find the head of bucket (while in the first algorithm, the renamedT [i] is used to point to the
head of bucket). Specifically, we scanSA once from left to right. For everySA[i], let j = SA[i]− 1. If T [j]
is L-type, then placesuf(j) into the LF-entry of its bucket, and increase the head counter by one. To specify
how to place the L-suffix into the LF-entry of its bucket inSA, We only specify the case whereNL > 3
for the bucket. The other cases withNL ≤ 3 are similar and simpler. LetLi denote thei-th L-suffix which
needs to be placed into the LF-entry of this bucket. We distinguish the following four cases:

(1) SA[l + 1] = H andSA[l + 2] = E: The first L-suffix (i.e.,L1) need to be placed into this bucket.
We letSA[l] = j andSA[l + 2] = 1 (useSA[l + 2] as the counter to denote the number of L-suffixes
have been placed so far). Recall thatsuf(j) is the current L-suffix we want to place.

(2) SA[l + 1] = H andSA[l + 2] 6= E: These L-suffixes except the first L-suffix (L1) and the last two
L-suffixes (LNL−1 andLNL

) need to be placed.
Let c = SA[l + 2] (counter). IfSA[l + c + 2] 6= TL, we letSA[l + c + 2] = j andSA[l + 2] = c+ 1.
Otherwise (this is the last but two L-suffix, i.e.,LNL−2), we shift thesec − 1 L-suffixes to the left by
one position (i.e., moveSA[l + 3 . . . rL − 1] to SA[l + 2 . . . rL − 2] ) and letSA[rL − 1] = j and
SA[l + 1] = R2.

(3) SA[l + 1] = R2: The last but one L-suffix (i.e.,LNL−1) need to be placed.
We scan this bucket to findrL such thatSA[rL] = TL. Then, we moveSA[l + 2 . . . rL − 1] to SA[l +
1 . . . rL − 2]. After, we letSA[rL − 1] = j andSA[rL] = R1.

(4) Otherwise, the last L-suffix (i.e.,LNL
) need to be placed.

We scan this bucket to findrL such thatSA[rL] = R1. Then letSA[rL] = j.

5 Note that we can also do binary search inSA, though there are special symbols (i.e,H,TL, E) in SA. Since the longest
continuous special symbol entries inSA is 2, i.e., any three of continuous entries inSA must have at least one suffix entry (i.e., this
entry represent an index of suffix ofT ).
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index l l + 1 l + 2 l + 3 . . . l +NL − 1(rL) l +NL . . . r
type L L L L . . . L S . . . S

case (1) :
SA SA[l] H E SA[l + 3] . . . TL SA[l +NL] . . . SA[r]
SA L1 H 1 SA[l + 3] . . . TL SA[l +NL] . . . SA[r]

case (2) :
SA L1 H 1 SA[l + 3] . . . TL SA[l +NL] . . . SA[r]
SA L1 H 2 L2 . . . TL SA[l +NL] . . . SA[r]

...
SA L1 H NL − 3 L2 . . . TL SA[l +NL] . . . SA[r]
SA L1 R2 L2 L3 . . . TL SA[l +NL] . . . SA[r]

case (3) :
SA L1 R2 L2 L3 . . . TL SA[l +NL] . . . SA[r]
SA L1 L2 L3 L4 . . . R1 SA[l +NL] . . . SA[r]

case (4) :
SA L1 L2 L3 L4 . . . R1 SA[l +NL] . . . SA[r]
SA L1 L2 L3 L4 . . . LNL

SA[l +NL] . . . SA[r]

We have the following lemmas and theorem.

Lemma 13 When we scanSA[i] in the induced sorting step, whetherT [SA[i] − 1] is L-type or S-type can
be identified inO(1) time. The only exception is whensuf(SA[i]− 1) is the last L-suffixes which needs to be
inserted into the bucketT [SA[i] − 1]. This special case needsO(NLS) time, whereNLS denote the size of
the bucketT [SA[i]− 1] (i.e.,NLS = r − l + 1).

Proof: Let j = SA[i] − 1. First if T [j] 6= T [j + 1], by definition it is trivial. Otherwise,T [j] = T [j + 1].
From Lemma8, we only need to know whether all L-suffixes in the bucketT [j] (i.e., bucketT [SA[i]]) have
already been sorted or not. In our algorithm, we use the interior counter trick which maintain the counters
of the buckets. So we can identify whether all L-suffixes in the bucketT [j] have already been sorted or
not immediately except whensuf(j) is the last L-suffixes which needs to be placed into the bucketT [j]
(corresponding to case (4)). However, we can scan this bucket from left to right to identify whether the
special symbolR1 exists or not. If exists, which means there is one L-suffix remained, this must be the
suf(j). Otherwise all L-suffixes in the bucketT [j] have already been sorted. This scanning operation takes
O(NLS) time. �

Lemma 14 All the suffixes can be sorted correctly from the sorted S-suffixes inO(n log n) time andO(1)
workspace.

Proof: We can sort all the S-suffixes correctly using induced sorting by Lemma1. For workspace, it is
obvious. For time, we useO(log n) time binary search to find the head of its bucket for each L-suffix . Then
we use the above step to locate the position of the L-suffix inO(1) time except for the last two L-suffixes of
the bucket. For the last two L-suffixes, we need to scan all L-suffixes in this bucket in order to find the final
position (corresponding to case (4) in Step 2) and shift these L-suffixes by one position (corresponding to
case (3) in Step 2). But this only takesO(n) time overall since each bucket is scanned at most twice. Thus
the time is mainly spent in the binary search step. To sum up, this sorting step takesO(n log n) time. �
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Theorem 5 Our algorithm takesO(n log n) time andO(1) workspace to compute the suffix array for string
T over a general alphabet.

Proof: All steps in our algorithm takesO(n log n) time. Besides, the size of recursive problemT1 is not
larger than half of|T |. We haveT (n) = T (n/2) +O(n log n), thusT (n) = O(n log n+ n

2 log
n
2 + · · · ) =

O(n log n). For workspace, every step usesO(1) workspace, and in the recursive subproblem we can also
reuse theO(1) workspace. Moreover, in the same recursive level, the different steps can reuse thisO(1)
workspace too. �

5 Suffix sorting for read-only integer alphabets

5.1 Framework

Our suffix sorting algorithm for read-only integer alphabets requires to use some steps of the above two
algorithms. First, we provide a framework of our algorithm as follows:

1. If the number of S-suffixes ofT is more than that of the L-suffixes (i.e.,nS > nL), then:

1) (Section5.2) Sort all LMS-characters ofT .

2) (Section5.3) Sort all LMS-substrings from the sorted LMS-characters.

3) Construct and solve the reduced problemT1 from the sorted LMS-substrings.

4) (Section5.3) Sort all suffix from sorted LMS-suffixes (T1).

2. Otherwise, execute above steps switching the role of LMS with LML.

Note that the number of LMS-characters are less than|T |/2, because any two LMS-characters are not
adjacent by the definition of LMS-characters. The same holdsfor LML-characters. Hence the size of the
reduced problemT1 constructed by our algorithm is less than|T |/2. Without loss of generality, we assume
thatnS > nL.

Recall that the purpose for renamingT is to access the heads or tails of the buckets in constant time
during the scanning process in the induced sorting step. Fortunately, we can accomplish these steps without
modifyingT . In Section5.2, we show how to sort all LMS-characters (i.e. Step 1)). SinceStep 2) and Step
4) are almost the same (see our first algorithm for integer alphabets in Section3.4and Section3.7), we only
need to show how to sort all suffixes from the sorted LMS-suffixes (i.e. Step 4)) in Section5.3. Step 3)
is exactly the same as our first algorithm which was in Section3.5 and Section3.6. Because the operation
(which did withT ) in this step is only to compare characters (i.e.,T is renamed or not does not influence
this step), we omit the Step 3) in this algorithm.

5.2 Sort all LMS-characters

In this section, we sort all LMS-characters ofT . Since we can not modify the input stringT , we do not place
the indices of LMS-characters in the tail of their corresponding bucket inSA as we did in our first algorithm.
Note that this placing step in our first algorithm is equivalent to sorting all LMS-characters since bucket
characters are in the lexicographical order inSA. Moreover, the next immediate step is to use these sorted
LMS-characters to sort all LMS-substrings using induced sorting. So the observation here is that we can
place the sorted LMS-characters in arbitrary positions inSA, as long as we can sort all LMS-substrings. In
Section5.3, we will show how to sort all suffixes from sorted LMS-suffixes(same as sort all LMS-substrings
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from sorted LMS-characters), when the sorted LMS-suffixes are placed inSA[n − n1 . . . n − 1], wheren1

denote the number of LMS-suffixes andn = |T |. In this section, we first show how to place the sorted
LMS-characters inSA[n − n1 . . . n − 1]. Recall that when we say that placing characters or suffixes of T
into SA, it always means that placing its corresponding indices ofT into SA.

Now, we show how to place the sorted LMS-characters intoSA[n − n1 . . . n− 1]. We usem to denote
the number of LMS-characters which belong to[1, |Σ|/2] (i.e., these LMS-charactersT [i] satisfyT [i] ∈
[1, |Σ|/2]), where the size of alphabets is|Σ| ≤ n. We do the following:

1. Sort thesem LMS-characters in[1, |Σ|/2].
We use counting sort (see e.g., [CLRS01, Ch. 8]) to sort thesem LMS-characters. Concretely, we
useSA[1 . . . |Σ|/2] as thecount array, and useSA[|Σ|/2+1 . . . |Σ|/2+m] as the output array. After
this counting sort step, the indices of thesem sorted LMS-characters have been placed inSA[|Σ|/2+
1 . . . |Σ|/2 +m].

2. Sort the remainingn1 −m LMS-characters in[|Σ|/2 + 1, |Σ|].
Similar to the above step, we also use counting sort to sort the remaining LMS-characters. In the
counting sort step, we useSA[1 . . . |Σ|/2] as thecount array(note that we useSA[T [i] − |Σ|/2] to
count the number of times LMS-charcterT [i] ∈ [|Σ|/2+1, |Σ|]), and useSA[|Σ|/2+m+1 . . .Σ|/2+
n1] as the output array. After this counting sort step, the indices of thesen1 − m remaining LMS-
characters have been placed inSA[|Σ|/2 +m+ 1 . . . |Σ|/2 + n1].

After the above two steps, we have sorted all LMS-charactersin SA[|Σ|/2 + 1, |Σ|/2 + n1] (i.e., placed
their corresponding indices inSA[|Σ|/2 + 1, |Σ|/2 + n1]). Then we move them toSA[n − n1 . . . n − 1],
which can be easily done inO(n) time andO(1) workspace.

5.3 Sort all suffixes from sorted LMS-suffixes

In this section, we need to sort all suffixes from the sorted LMS-suffixes. The sorted LMS-suffixes have
been placed inSA[n− n1 . . . n− 1]) from the previous steps.

Let SAL = SA[0 . . . nL − 1] andSAS = SA[nL . . . n − 1] (note thatnL + nS = n). Now, we do the
following three steps to sort all suffixes:

1. (Section5.3.1) Sort all nL L-suffixes from the sorted LMS-suffixes which are stored inSA[n −
n1 . . . n− 1] and store the sorted L-suffixes inSAL.

2. (Section5.3.2) Sort allnS S-suffixes from the sorted L-suffixes which are stored inSAL and store the
sorted S-suffixes inSAS .

3. (Section5.3.3) Merge the L-suffixes (stored inSAL) and S-suffixes (stored inSAS) to sort all suffixes
in SA[0 . . . n− 1]

5.3.1 Sort all L-suffixes from the sorted LMS-suffixes

In this section, we sort allnL L-suffixes from the sorted LMS-suffixes which are stored inSA[n−n1 . . . n−1]
and store the sorted L-suffixes inSAL. Before we sort L-suffixes, we need the following lemma.

Lemma 15 For anym distinct integers0 ≤ a0 < a1 . . . < am−1 ≤ n, wherem ≤ n andn > 1024,
one can construct a data structure using linear time (i.e.,O(n) time) and at mostcn/ log n space, where
1 < c < 2, such that each query to thei-th smallest integerai can be answered inO(1) time.
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Proof: We first construct a bitmapB[0 . . . n]. we initializeB byB[ai] = 1 for all i ∈ [0,m− 1]. We need a
data structure to support queryselect(i), which asks for the index ofi-th 1 in B. There is an auxiliary data
structure usingO(n/ log log n) bits (more precisely3n/ log log n+n

1

4 (14 log n log log n+log log n)) which
can be constructed inO(n) time to support constant timeselect query inB [Jac89,Cla96]. Converting bits
to words, we can see that the data structure uses at mostcn/ log n words (for1 < c < 2 if n > 1024). �

Let cp = ⌈5cn/ log n⌉. Without loss of generality, we assumen > 2cp (otherwise it is easy to solve
sincen is constant). Now, we describe how to sort allnL L-suffixes from the sorted LMS-suffixes which
are stored inSA[n− n1 . . . n− 1]. We divide this sorting step into three steps as follows:

Step 1. Construct thepointer data structures for all L-suffixes : Since we cannot modifyT , we need to
find another method to get the bucket heads for the L-suffixes efficiently. Especially, it should be space-
efficient. For this purpose, we construct a space-efficientpointer data structuresto represent the bucket
heads of all L-suffixes and support to find the bucket head of any L-suffix in constant time. We store the
pointer data structures inSA[n/2 − cp . . . n/2 − 1]. Note that the buckets of the L-suffixes we talked in
this section is inSAL (recall thatSAL = SA[0 . . . nL − 1]). Moreover, the space storing the pointer data
structures (i.e.,SA[n/2− cp . . . n/2− 1]) has no conflict to the space storing the sorted LMS-suffixes (i.e.,
SA[n− n1 . . . n− 1]) sincen1 ≤ n

2 . Now, we show the details how to construct the pointer data structures.
This contains four parts as follows:

(1) Construct thepointer data structurefor these L-suffixessuf(i) satisfyingT [i] ∈ [1, |Σ|
4 ]. We useD1 to

denote this pointer data structure. Because these four steps (1)-(4) are almost the same, we only show
the details how we construct the pointer data structureD1. We do the following:

(i) First, we letSA[i] = 1 for all i ∈ [1, |Σ|
4 ]. Then we scanT once from right to left. For every L-type

T [i] ∈ [1, |Σ|
4 ], we increaseSA[T [i]] by one.

(ii) Then we scanSA[1 . . . |Σ|
4 ] once from left to right. We use a variablesum to count the sum,

first initialize sum = 1. Then for eachSA[i] which is being scanned, letSA[i] = sum, and
sum = sum + SA[i](similar to the prefix sum computation in the counting sort).Now, for any
L-suffix suf(i) satisfyingT [i] ∈ [1, |Σ|

4 ], SA[T [i]] − T [i] must indicate the head of bucketT [i]

in SAL. Since we want every entry inSA[1 . . . |Σ|
4 ] to be distinct, we initializeSA[i] = 1 for all

i ∈ [1, |Σ|
4 ] in above Step (i). Hence the head of bucketT [i] is SA[T [i]] − T [i].

(iii) Finally, we construct the pointer data structureD1 for SA[1 . . . |Σ|
4 ]. D1 usesc(n + |Σ|

4 )/ log n
words space, and it can support to find the bucket head of any L-suffix suf(i) satisfyingT [i] ∈
[1, |Σ|

4 ] in O(1) time according to Lemma15. We storeD1 in the tail ofSA[0 . . . n/2 − 1] (i.e.,

SA[n/2− c(n + |Σ|
4 )/ log n . . . n/2− 1] ).

(2) Construct the pointer data structure for these L-suffixes suf(i) satisfyingT [i] ∈ [ |Σ|
4 + 1, |Σ|

2 ]. We use
D2 to denote this pointer data structure.

(3) Construct the pointer data structure for these L-suffixes suf(i) satisfyingT [i] ∈ [ |Σ|
2 + 1, 3|Σ|

4 ]. We use
D3 to denote this pointer data structure.

(4) Construct the pointer data structure for these L-suffixes suf(i) satisfyingT [i] ∈ [3|Σ|
4 + 1, |Σ|]. We use

D4 to denote this pointer data structure.
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Step (2),(3) and (4) do the same as Step (1). After this four steps, the pointer data structures (D1,D2,D3

andD4) are stored inSA[n/2− cp . . . n/2− 1].
Now, we can have the following lemma:

Lemma 16 We can construct the pointer data structures in linear time and this pointer data structures uses
at mostcp words and can support to find the bucket head of any L-suffix in constant time.

Proof: D1,D2,D3 andD4 takes at most4c(n + |Σ|
4 )/ log n ≤ cp words. We need four valuesm1,m2,m3

andm4, which denote the number of L-suffixes in above step (1), (2),(3) and (4), respectively (They can
be obtained from the variablesum which is computed in the final stage of the step (ii)). Now, if we want to
find the bucket head of an L-suffixsuf(i), we first compareT [i] with |Σ|

4 , |Σ|
2 and 3|Σ|

4 to see which pointer

data structureT [i] belongs to. Assume it belongs toDj . Then we do aselect(T [i] − (j − 1) |Σ|
4 ) query on

Dj and combine theselect result with the correspondingmk (k < j) to identify the head of bucketT [i]. All
the above operations can be done inO(1) time. �

Step 2. Sort the firstnL − cp smallest L-suffixes :Now, we show how to sort the firstnL − cp smallest
L-suffixes inSAL[0 . . . nL − cp − 1]. From Step1, we have obtained the pointer data structures stored in
SA[n/2 − cp . . . n/2 − 1] which can support finding the bucket head of any L-suffix in constant time by
Lemma16. The sorted LMS-suffixes are stored inSA[n − n1 . . . n − 1]. Thus, the firstnL − cp smallest
L-suffixes can be sorted intoSAL[0 . . . nL−cp−1] using the same induced sorting step in our first algorithm
(which sorts all L-suffixes in Section3.7 ) except in the scanning process, we use theselect query in the
pointer data structures to find the bucket head. Note that we do nothing when the L-suffix is in the remaining
cp largest L-suffixes. It is not hard to see that the firstnL − cp smallest L-suffixes can be sorted correctly
since the remainingcp largest L-suffixes can not influence the order of the firstnL − cp smallest L-suffixes
in the induced sorting step.

Now, we specify that how to identify an L-suffix belongs to thefirst nL − cp smallest L-suffixes or not.
First, we can scanT once to find the character ofnL− cp smallest L-suffix using this pointer data structures
(let ch to denote this character). If the head of the bucketch is exactlynL− cp in SAL, then we identify the
L-suffix by comparing it withch. Otherwise, thenL − cp smallest L-suffix belongs to bucketch, and it will
be stored inSA[nL − cp]. We only need two variables to indicate whether the L-suffix belongs to the first
nL − cp smallest L-suffixes or not. One is the number to denote the head of bucketch, and the other is a
number to denote the gap between the head of bucketch andSA[nL − cp].

We have the following lemma:

Lemma 17 The firstnL − cp smallest L-suffixes can be sorted intoSAL[0 . . . nL − cp − 1] in linear time
andO(1) workspace.

Step 3. Sort the remainingcp L-suffixes : Now we sort the remainingcp L-suffixes intoSAL[nL −
cp . . . nL − 1]. Since the pointer data structures has occupiedcp words inSA[n/2 − cp . . . n/2 − 1], we
need to free these entries in order to store the remainingcp L-suffixes. We cannot do the same as in our
first algorithm since we do not have the pointer data structures. Fortunately, we can sort the remainingcp L-
suffixes using the similar step in our second algorithm (sortL-suffixes from the sorted S-suffixes in Section
4.5). Sincecp = ⌈5cn/ log n⌉, this step takesO(n) time. Now we describe how we do this. First we scanT
to place the remainingcp L-suffixes intoSAL[nL− cp . . . nL− 1] (not sorted yet). Sincecp = ⌈5cn/ log n⌉,
we can sort these remainingcp L-suffixes using their first characters inO(n) time. After this, the remaining
cp L-suffixes are in their buckets (recall that the buckets are defined inSAL). Now we can do the same
induced sorting step as we do in our second algorithm (sort L-suffixes from the sorted S-suffixes in Section
4.5).
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Lemma 18 The remainingcp L-suffixes can be sorted intoSAL[nL− cp . . . nL− 1] in linear time and O(1)
workspace.

From the above steps and lemmas, we have the following lemma:

Lemma 19 All L-suffixes can be sorted correctly from the sorted LMS-suffixes in linear time andO(1)
workspace.

5.3.2 Sort all S-suffixes from the sorted L-suffixes

In this section, we sort allnS S-suffixes from the sorted L-suffixes which are stored inSAL (i.e.,SA[0 . . . nL−
1]) and store the sorted S-suffixes inSAS (i.e.,SA[nL . . . n − 1]). Note that this step is almost the same as
the step in Section5.3.1where we sort all L-suffixes from the sorted LMS-suffixes. More concretely, we do
the following three similar steps:

Step 1. Construct thepointer data structures for all S-suffixes : SincenL ≤ n/2 (note that we have
assumednS ≥ nL at the beginning of our algorithm), we can useSA[n/2 . . . n/2 + cp − 1] to store the
pointer data structures which represent the bucket tails ofall S-suffixes inSAS . The step is the same as Step
1 in Section5.3.1where we construct the pointer data structures for all L-suffixes.

Step 2. Sort the lastnS − cp largest S-suffixes : We sort the lastnS − cp largest S-suffixes into
SAS [cp . . . nS − 1]. This step is the same as above Step 2 in Section5.3.1where we sort the firstnL − cp
smallest L-suffixes.

Step 3. Sort the remainingcp S-suffixes :We sort the remainingcp S-suffixes intoSAS [0 . . . cp − 1]. This
step is the same as above Step 3 in Section5.3.1where we sort the remainingcp L-suffixes.

Therefore, we have the similar lemma as follows :

Lemma 20 All S-suffixes can be sorted correctly from the sorted L-suffixes in linear time andO(1) workspace.

5.3.3 Sort all suffixes

Now we have all sorted L-suffixes inSAL (i.e., SA[0 . . . nL − 1]) and all sorted S-suffixes inSAS (i.e.,
SA[nL . . . n − 1]). We use the stable, in-place, linear time merging algorithm [SS87] to merge the ordered
SAL and SAS (the merging key forSA[i] is T [SA[i]], i.e., the first character ofsuf(SA[i])). After this
merging step, all suffixes ofT have be sorted inSA[0 . . . n− 1].

Lemma 21 All suffixes can be sorted correctly from all sorted L-suffixes and S-suffixes in linear time and
O(1) workspace.

Proof: Since the merging step is stable, after merging, all L-suffixes and S-suffixes are still sorted. We only
need to show the order between L-suffixes and S-suffixes are right. Note that before the merging step all
L-suffixes are in front of all S-suffixes. Since the merging step is stable, it guarantees that an L-suffix is still
in front of the S-suffix if they are in the same bucket inSA. So the order between L-suffixes and S-suffixes
are correct according to Property1. �

From above lemmas, we can obtain the following theorem.

Theorem 6 Our algorithm takesO(n) time andO(1) workspace to compute the suffix array of stringT
over a read-only integer alphabet.

26



6 Experiments

In this section, we report our experimental results for our first algorithm (the linear time in-place algo-
rithm for integer alphabets). The experiments were conducted on a Intel(R) Core(TM) i5-3470 Proces-
sor(3.2GHz,4 cores) and 4GB RAM. The operating system was Ubuntu 14.04.3LTS x8664. The compiler
was gcc(version 4.8.4) executed with the “-W -Wall -fomit-frame-pointer -DNDEBUG -O3” options.

The datasets were generated by choosing a random number inΣ independently for each position. We
test our algorithm for|Σ| = 100, |Σ| = 1000 and |Σ| = n (n is the length of the input). Each integer
occupies 4 Bytes. The maximum input size we can handle is 1600MB as the main memory is only 4GB and
we also need 1600MB for the output.

See Table3 for the results. For the running times, we took the mean over three runs (measured using
clock() function). Note that we only record the time interval for sortingSA, excluding the time for reading
the input stringT into the main memory, writing the outputSA to disk and restoring the input stringT . The
total space is the heap peak measured by memusage command. The workspace is the total space subtracting
the space ofT andSA. The workspace of our algorithm is invariably 8 Bytes. We canalso see that the
running time grows approximately linearly with the size of the input. The overall running time is quite
competitive: the algorithm can sort 20MB input data in about1.5 second and 1.6GB data in less than 4
minute. The size of the alphabets does not significantly affect the running time.

Input Time Speed Workspace Total space Space ofT andSA
(Seconds) (MB/s) (Bytes) (Bytes) (Bytes)

20MB-100 1.120 17.857 8 41,943,048 41,943,040
20MB-1k 1.137 17.590 8 41,943,048 41,943,040
20MB 1.557 12.845 8 41,943,048 41,943,040
100MB-100 8.456 11.826 8 209,715,208 209,715,200
100MB-1k 8.745 11.435 8 209,715,208 209,715,200
100MB 8.476 11.798 8 209,715,208 209,715,200
1000MB-100 116.156 8.609 8 2,097,152,008 2,097,152,000
1000MB-1k 127.473 7.845 8 2,097,152,008 2,097,152,000
1000MB 142.648 7.010 8 2,097,152,008 2,097,152,000
1600MB-100 192.387 8.317 8 3,355,443,208 3,355,443,200
1600MB-1k 210.308 7.607 8 3,355,443,208 3,355,443,200
1600MB 234.348 6.827 8 3,355,443,208 3,355,443,200

Table 3: Experimental Results: Note thatn× 4 is the space usage (in Bytes) of the input string. Input name
20MB-100 indicates that the input size is 20MB, and|Σ| = 100 and name 20MB indicates that the input
size is 20MB and|Σ| = n = 5, 242, 880.

7 Conclusions

In this paper we present three in-place algorithms for suffixsorting over (read-only) integer alphabets and
read-only general alphabets. For (read-only) integer alphabets, our in-place algorithm takes linear time.
The algorithm is also easy to implement and competitive in practice. For read-only general alphabets, our
in-place algorithm takesO(n log n) time. All of them are optimal both in time and space. Our algorithms
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for integer alphabets solve the open problems posed by Franceschini and Muthukrishnan [FM07], and our
algorithm for general alphabets recovers the result obtained by Franceschini and Muthukrishnan [FM07]
which was an open problem posed by Manzini and Ferragina [MF02].

There is a surge of interests in developing external memory algorithms for suffix sorting in recent
years [FGM12, NCHW15]. Many such algorithms are extensions of existing lightweight internal mem-
ory algorithms. It would be interesting to investigate the external memory setting and see whether our
tricks and data structures are applicable in this setting. We also plan to consider other string processing
problems that are tightly connected with SA, such as compressed suffix arrays, longest common prefixes,
Burrows-Wheeler transform and Lempel-Ziv factorization.
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A Example

In this section, we show the induce sorting step which sorting the L-suffixes from LMS-suffixes in our
example.
Example: Suppose all LMS-suffixes (i.e.,1, 5, 9, 12) are already sorted in the tail of their corresponding bucket in
SA: (E denotes an Empty entry.)

index 0 1 2 3 4 5 6 7 8 9 10 11 12
T 2 1 1 3 3 1 1 3 3 1 2 1 0

type L S S L L S S L L S L L S
SA (12) (E E E 1 5 9) (E E) (E E E E)

bucket (0) (1 1 1 1 1 1) (2 2) (3 3 3 3)

The scanning process is as follows. An arrow on top of a numberindicates that it is the current entry we are scanning.
When we are scanning an empty entry inSA, we ignore this entry (i.e., do nothing).

index 0 1 2 3 4 5 6 7 8 9 10 11 12
type L S S L L S S L L S L L S

SA (
−→
12) (11 E E 1 5 9) (E E) (E E E E)

SA (12) (
−→
11 E E 1 5 9) (10 E) (E E E E)

SA (12) (11 E E
−→
1 5 9) (10 0) (E E E E)

SA (12) (11 E E 1
−→
5 9) (10 0) (4 E E E)

SA (12) (11 E E 1 5
−→
9 ) (10 0) (4 8 E E)

SA (12) (11 E E 1 5 9) (10 0) (
−→
4 8 3 E)

SA (12) (11 E E 1 5 9) (10 0) (4
−→
8 3 7)

B RestoreT

In this Appendix, we show that we can restore the stringT in our first algorithm which is designed for the
stringT over the integer alphabets{1, 2, . . . ,Σ}. First, we can see that in the termination of our algorithm.
Suffix arraySA contains the indices of all suffixes ofT which are in lexicographical order. Note that if we
do not modifyT , we will have the following observation.

Observation 5 For each suffixsuf(SA[i]) in SA, let bi denote its bucket character (i.e., the first common
character), thenT [SA[i]] = bi.

The key point to recoverT is that we need to maintain the equal relationship of the characters ofT . So
if we modify T to T ′ under this condition such thatT ′[i] = T ′[j] (or T ′[i] 6= T ′[j], resp.) if and only if
T [i] = T [j] (or T [i] 6= T [j], resp.). Then, we can recoverT from SA andT ′ using linear time (scanSA
once) andO(1) workspace from above Observation5. Now, we need to modify the first renaming step in our
algorithm to rename each characterT [i] to be its bucket tail (note that this modification maintain the equal
relationship). This change only lead the details in the later induced sorting step changed. In the induced
sorting step, since we let allT [i] points to its bucker tail, so the induced sort LMS-suffixes orS-suffixes will
be the same as before. The only thing we need to explain in the induced sorting step is that we induced sort
L-suffixes from the sorted LMS-suffixes since there are not exist pointers which point to the bucket head
(see Step 1 of Section3.7 which sort all L-suffixes from the sorted LMS-suffixes using induced sorting).
However, we can fix this step using our interior counter trickwhich we widely used in this paper. Now, we
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describe the details. We consider the buckets inSA into two types, one type dose not contain LMS-suffixes,
the other contains LMS-suffixes. These two types are easy to identify since the LMS-suffixes have already
been sorted in the tail of their corresponding buckets inSA.

Type 1. The buckets do not contain LMS-suffixes :In this type, we initialize the bucket in the following
steps. ScanningT once from right to left. For everyT [i] which is L-type and its bucket is this type, do the
following:

(1) If SA[T [i]] = Empty, letSA[T [i]] = Unique1 (unique L-type character in this bucket).

(2) If SA[T [i]] = Unique1, let SA[T [i]] = Multi1 andSA[T [i] − 1] = 2 (number of L-type characters in
this bucket is2).

(3) If SA[T [i]] = Multi1, increaseSA[T [i]−1] by one. (SA[T [i]−1] denote the number of L-type characters
in this bucket)

After this initialization, the head of this type bucket can be indicated bySA[t] andSA[t − 1], wheret is its
bucket tail.

Type 2. The buckets contain LMS-suffixes :In this type, we initialize the bucket in the following steps.
ScanningT once from right to left. For everyT [i] which is L-type and its bucket is this type, do the
following:

(1) If SA[T [i]] is an index, shift these LMS-suffixes (which are sorted in this bucket tail) to left by one
position and letSA[T [i]] = Unique2 (unique L-type character in this bucket).

(2) If SA[T [i]] = Unique2, shift these LMS-suffixes (which have been shifted by one position) to left by
one position again and letSA[T [i]− 1] = 2 (number of L-type characters in this bucket is2).

(3) If SA[T [i]] = Multi2, increaseSA[T [i]−1] by one. (SA[T [i]−1] denote the number of L-type characters
in this bucket)

After this initialization, the head of this type bucket can be indicated bySA[t] andSA[t− 1] too, wheret is
its bucket tail.

Now, all L-suffixes can be sorted using induced sort like before, but their indices are not in their final
position inSA. We need scanT once more from right to left to compute the number of suffixes in each
bucket, then shift these sorted L-suffixes to their bucket head (it is not hard to see that this shift step can
be done in linear time). Now, all L-suffixes are placed in their final position inSA, then using induced sort
as before we can sort all S-suffixes, so all suffixes have been sorted. In conclusion, we have the following
lemma.

Lemma 22 The stringT can be restored using linear time andO(1) workspace.
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