
The Value-of-Information in Matching with Queues

Longbo Huang
longbohuang@tsinghua.edu.cn

IIIS, Tsinghua University

ABSTRACT
We consider the problem of optimal matching with queues in
dynamic systems and investigate the value-of-information.
In such systems, the operators match tasks and resources
stored in queues, with the objective of maximizing the sys-
tem utility of the matching reward profile, minus the aver-
age matching cost. This problem appears in many practical
systems and the main challenges are the no-underflow con-
straints, and the lack of matching-reward information and
system dynamics statistics. We develop two online match-
ing algorithms: Learning-aided Reward optimAl Matching
(LRAM) and Dual-LRAM (DRAM) to effectively resolve both chal-
lenges. Both algorithms are equipped with a learning mod-
ule for estimating the matching-reward information, while
DRAM incorporates an additional module for learning the sys-
tem dynamics. We show that both algorithms achieve an
O(ε+ δr) close-to-optimal utility performance for any ε > 0,
while DRAM achieves a faster convergence speed and a bet-
ter delay compared to LRAM, i.e., O(δz/ε+ log(1/ε)2)) delay
and O(δz/ε) convergence under DRAM compared to O(1/ε)
delay and convergence under LRAM (δr and δz are maximum
estimation errors for reward and system dynamics). Our re-
sults reveal that information of different system components
can play very different roles in algorithm performance and
provide a systematic way for designing joint learning-control
algorithms for dynamic systems.

1. INTRODUCTION
Matching is a fundamental problem that appears in re-

source allocation in various systems across different areas.
For instance, network switch scheduling [1], online advertis-
ing [2], crowdsourcing [3], ride sharing [4], cloud computing
[5], and inventory control [6]. Hence, efficient matching al-
gorithms are of great importance to system control.

In this paper, we study the problem of optimal match-
ing with queues in a dynamic environment with unknown
matching reward statistics. Specifically, we consider a sys-
tem consists of a set of task queues and a set of resource

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiHoc’15, June 22–25, 2015, Hangzhou, China.
Copyright c© 2015 ACM 978-1-4503-3489-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2746285.2746316.

queues, which store different types of workload and different
types of resources that come into the system according to
some random processes. At every time, the system operator
decides how to match the resources to the pending workload.
Each matching incurs a cost that depends on the resource
allocated and random factors in the system, e.g., chang-
ing channel conditions in a downlink system, time-varying
prices in inventory control, or fluctuating payment require-
ments in crowdsourcing. On the other hand, the matching
also generates a reward, which is random with an unknown
distribution determined by the amount of tasks resolved and
the system condition. The objective is to design a matching
strategy that carefully manages the resources and tasks, so
as to achieve optimal system utility, which is a function of
the achieved reward profile, subject to the constraint that
all tasks are fulfilled timely.

This is a general problem and models the aforementioned
application scenarios. However, it is very challenging to
solve. First, the system utility is a function of the matching
reward, which means that it is affected by when and how
much resource is actually matched to the tasks and is only
indirectly related to the traffic rates. This differs signifi-
cantly from traditional flow utility optimization problems
[7], [8], and requires both careful admission control to avoid
instability and appropriate matching to achieve good utility.
Second, since each matching action is rewarded based on the
actual amount of tasks resolved, the matching scheme must
ensure that there are nonzero tasks and nonzero resources
in the queues, i.e., no-underflow. This constraint is complex
and is mostly tackled with dynamic programming, which can
have high computational complexity. Third, the system is
dynamic and the statistics of system conditions and reward
functions are unknown beforehand. This requires that the
matching scheme can efficiently learn the sufficient statistics
of the randomness and adapt to the changing environment.

In addition to resolving the above challenges, we also
take one step further and try to investigate the value-of-
information in such matching systems with queues, by ex-
plicitly considering the impact of information on algorithm
performance. Existing works on stochastic system control ei-
ther focus on systems with perfect a-prior information, e.g.,
[9], [10], or rely on stochastic approximation techniques that
do not require such information, e.g., [11], [12]. While the
proposed solutions are effective, they do not capture how
information affects algorithm design and performance, and
do not provide interfaces for integrating the fast-developing
“data science” tools, e.g., data collecting methods and ma-
chine learning algorithms, [13], [14], into system control.

To provide a rigorous quantification of the value of in-
formation, we first introduce an abstract notion of a learn-
ing module, which represents a general information learning
algorithm and features a learning accuracy level δ (max-
imum error), a learning time Tδ, and the probability of
learning accuracy guarantee Pδ. We then design two on-
line matching algorithms: Learning-aided Reward optimAl
Matching (LRAM) and Dual-LRAM (DRAM). LRAM utilizes a sin-
gle (Tδr , δr, Pδr) learning module for estimating the reward
statistics and achieves an O(ε + δr) system utility, for any
ε > 0, while ensuring an O(1/ε) delay bound and an O(1/ε)
algorithm convergence time, defined to be the time taken for
the algorithm to enter the optimal control state. DRAM incor-
porates an additional (Tδz , δz, Pδz) learning module for the
random system state distribution and guarantees a similar
O(ε + δr) system utility. Moreover, DRAM is able to achieve
an O(δz/ε + log(1/ε)2) delay bound and an O(δz/ε) algo-
rithm convergence time, which can be significantly faster
compared to LRAM.

Our results reveal an interesting fact that the reward in-
formation largely determines the utility performance, while
the system dynamics information greatly affects delay and
algorithm convergence. This indicates that information of
different system components can have different impacts on
algorithm performance, and may require different learning
power for achieving a desired goal. Closest to our paper
is the recent work [15], which considers joint learning and
control. Our framework allows much more general learning
methods and resolves the no-underflow constraints. We also
quantify the values of different system information.

We summarize the main contributions as follows:
1. We propose a matching queueing system model, which

can model general resource-task matching problems in
stochastic systems. To explicitly quantify the value of
information in such systems, we introduce an abstract
notion of a (Tδ, δ, Pδ)-learning module that captures
key characteristics of general learning algorithms and
provides interfaces for bringing the information learn-
ing aspect into system control.

2. We design two learning-aided matching algorithms LRAM
and DRAM. We show that with a single (Tδr , δr, Pδr)-
module for learning reward statistics, LRAM achieves an
O(ε+δr) utility, while ensuring an O(1/ε) delay bound
and anO(1/ε) algorithm convergence time. DRAM adopts
an additional (Tδz , δz, Pδz)-module for learning the sys-
tem state distribution, and guarantees a similar O(ε+
δr) system utility, while achieving anO(δz/ε+log(1/ε)2)
delay and an O(δz/ε) convergence time. We also con-

struct two (O(1/εc), O(εc/2), 1−O(εlog(1/ε))) online learn-
ing modules based on sampling (c > 0). Combining

them with DRAM, one achieves a fast O(1/ε1−c/2 +1/εc)
convergence time with c < 1 (existing algorithms re-
quire Θ(1/ε)).

3. Our algorithm design approach provides a low-complexity
way to tackle multiple simultaneous no-underflow con-
straints in systems and jointly optimize utilities that
are not defined on flow rates. The development of DRAM
also demonstrates how general learning algorithms can
be combined with queue-based control (stochastic ap-
proximation) to achieve superior delay performance
and accelerate algorithm convergence speed.

The rest of the paper is organized as follows. We first list
a few motivating examples in Section 2. We then present

the matching system model in Section 3. The algorithm
design approach and the two algorithms LRAM and DRAM are
presented in Section 4. Analysis is carried out in Section 5
and simulation results are presented in Section 6. We then
conclude the paper in Section 7.

2. MOTIVATING EXAMPLES
Crowdsourcing: In a crowdsourcing application, e.g.,

crowdsourcing query search [3] or ride-sharing [4], tasks of
different types (task) arrive at the server and are assigned
to workers (resource). The workers then carry out the tasks.
Depending on the workers’ qualifications, the types of jobs,
and the instantaneous system condition (state), e.g., whether
a query requestor is in a hurry due to weather, the requestors
receives certain reward, e.g., satisfaction, and the workers
receive payments. The objective of the system is to design
a matching scheme, so as to maximize the system utility,
which is a function of the achieved requestor reward profile.

Energy Harvesting Networks: In an energy harvest-
ing network, e.g., [16], [17], nodes are responsible for trans-
mitting data (task) and can harvest energy (resource) from
the environment. At every time, each node decides how
much energy to allocate for transmission and determines
traffic scheduling. Depending on the time-varying channel
condition (state), the amount of energy enables certain pro-
cessing results. The objective is to design a joint energy
management and scheduling algorithm, so as to maximize
traffic utility and ensure that no energy outage happens.

Online Advertisement: In an online advertising sys-
tem, [2], [18], advertisers deposit money (task) into their
accounts at the advertising platform. Queries (resource) for
different keywords arrive in the system and the server de-
cides which advertiser’s ads to show, based on their relevance
to the keywords and the available budget of the advertis-
ers. Depending on the chosen ad and the user’s condition
(state), e.g., location or mood, a business transaction may
take place. The goal of the system is to design an ad match-
ing scheme, so as to maximize the system’s utility, which is
a function of the average income profile from advertisers.

Cloud Computing: In a cloud computing platform, e.g.,
[5], computing resources (resource), e.g., CPU, memory, are
assigned to virtual machine instances (task) for processing
arriving job requests. The quality of experience of a re-
questor depends on the job completion quality, which is af-
fected by system conditions such as background task level
(state) and the user status. The objective here is to design
a resource allocation policy, such that the overall quality of
service is maximized.

In all these examples, the underlying problem is indeed
matching with queues. Below, we present the general model.

3. SYSTEM MODEL
We consider a discrete-time system shown in Fig. 1. In

this system, there are two sets of queues, task queues and
resource queues, and a central server (called operator be-
low), which coordinates resource allocation and scheduling
in the system. Time is divided into unit-size slots, i.e.,
t ∈ {0, 1, ...}.

3.1 Tasks and Resources
The task queues store jobs that come into the system and

are waiting to be served by the server. We assume there

Task Queue Resource Queue

Server

!(t)

Figure 1: The matching queueing system.

are N types of tasks and denote the set of task queues by
Q = {Q1, ...,QN}. We use An(t) to denote the amount
of new tasks arrivaling at Qn at time t and assume that
0 ≤ An(t) ≤ Amax. We then define the arrival vector A(t) =
(A1(t), ..., AN (t)). In many systems, arrivals to the system
may not always all be admitted due to congestion control,
e.g., when all servers are busy. We model this by using 0 ≤
Rn(t) ≤ An(t) to denote the actual admitted traffic to Qn
at time t. We then use Qn(t) to denote the amount of tasks
stored at Qn at time t and denote Q(t) = (Q1(t), ..., QN (t))
the task queue vector.

The resource queues, on the other hand, hold the re-
sources the system collects over time. There are M types
of system resources and we denote the resource queues by
H = {H1, ...,HM}. We similarly let em(t) be the amount of
new resource arriving at Hm with 0 ≤ em(t) ≤ hmax. We
also use Hm(t) to denote the amount of resource m the sys-
tem current holds and denote H(t) = (H1(t), ..., HM (t)) the
resource queue vector.

In many systems, it is feasible (and sometimes necessary)
to control the amount of resources in the system, e.g., to
avoid too many workers waiting in crowdsourcing. We model
this decision by using hm(t) ∈ [0, em(t)] to denote the actual
amount of type m resource admitted. For now, it is also
convenient to temporarily assume that the queues are all
of unlimited sizes. We will later show that our algorithms
ensure that finite buffer sizes are sufficient.

3.2 System State and Resource allocation
We assume that the system has a time-varying condition,

e.g., the channel conditions in a downlink system, or the
expected happiness measures of human users in a crowd-
sourcing system. We call this condition the system state
and model it by a random state variable ω(t). Note that
ω(t) represents the aggregate system condition.

Denote z(t) = (A(t), e(t), ω(t)). In this paper, we assume
that z(t) is i.i.d. and takes values in Z = {z1, ..., zK}. We
then denote πk = Pr

{
z(t) = zk

}
. Note that this allows

arbitrary dependency among A(t), e(t), and ω(t).
At every time t, the system operator determines the amount

of resource to allocate to serving each queue. We denote this
decision by a matching matrix b(t) = (bmn(t),m, n), where
bmn(t) denotes the type m resource allocated to queue n.
When z(t) = zk, b(t) takes values from a finite discrete set

Bk ⊂ RN+ .1We define bmax , maxb∈Bk,k ‖b‖∞ the maximum
amount of resource allocated to any queue at any time. It

1This assumption is made to simplify the learning algorithm
description (Section 4.2). Our results can likely be extended
to the case when {Bk, k} are general compact sets in RN+ .

is clear that at any time t, we must have:∑
n

bmn(t) ≤ Hm(t), ∀m. (1)

This is because one cannot spent more resource than what is
available. In the following, we call (1) the no-underflow con-
straint. Depending on the system state and the resource al-
location decision, each task queue gets a service rate µn(t) ,
µn(z(t), b(t)). We assume µn(z(t), b(t)) ∈ [0, µmax] for all
z(t) and b(t) and that {µn(z(t), b(t))}n∈N are known to the
operator. Also, they satisfy that µn(z(t),0) = 0 for all z(t),
and if µn(z(t), b) > 0, then

µn(z(t), b) ≥ βlµ min
m:bmn>0

bmn, (2)

for some βlµ > 0. Moreover, if two vectors b and b′ are such
that b′ is obtained by setting bmn in b to zero, then,

µn(z, b) ≤ µn(z, b′) + βuµbmn, ∀n. (3)

Note that (2) and (3) are not restrictive. They simply re-
quire that nonzero resource is needed for getting a positive
service rate, and that a positive rate is upper and lower
bounded by linear functions of the resources allocated.

3.3 Matching Cost and Reward
In every time slot, due to resource expenditure, there is

a matching cost associated with the resource allocation de-
cision. We model this by denoting c(t) = c(z(t), b(t)) the
cost for choosing the resource vector b(t). This cost can rep-
resent, e.g., cost for purchasing raw materials in inventory
control, or payments to workers in a crowdsourcing applica-
tion. One example is c(z(t), b(t)) =

∑
nm cm(z(t))bnm(t),

where cm(z(t)) denotes the per-unit resource price for type
m resource under state z(t). We assume that c(z(t), b(t)) ∈
[0, cmax] for all time and it is known to the system operator.
Also, if 0 � b1 � b2 (entrywise-less), when c(z(t), b1) ≤
c(z(t), b2).

Every time a matching is completed, the operator col-
lects a matching reward, e.g., a customer conversion due
to an ad, or user satisfaction due to job completion. We
model this by denoting the reward collected at time t from
type n tasks by κn(t). We assume that κn(t) ∈ [0, rmax]
is an i.i.d. random variable given z(t) and b(t), and its

mean is determined by the reward function rn(z(t), µ̃n(t)) ,
E
{
κn(t) | z(t), b(t),Q(t)

}
, where µ̃n(t) = min[Qn(t), µn(t)]

denotes the actual amount of tasks completed. We assume
that rn(z(t), µ̃n(t)) satisfies:

rn(z(t), µ) ≤ rn(z(t), µ′), if µ ≤ µ′, (4)

and denote r = {rn(z, µn(z, bz)),z ∈ Z, bz ∈ Bz} the re-
ward matrix. Since each Bz is finite, r is also finite.

Different from existing works, e.g., [18], [19], we do not as-
sume any prior knowledge of the functions r(z(t), µ).2 This
is quite common in practice. For example, in crowdsourc-
ing applications, it is often unknown a-prior how qualified
a worker is for a certain type of tasks; or in online adver-
tising, one often does not know the conversion probabilities
beforehand.

2This is different from the µ functions, which measure how
much resources are spent and can typically be observed by
the system controller.

3.4 Queueing
From the above, we see that the queue vectors Q(t) and

H(t) evolve according to:

Qn(t+ 1) = max[Qn(t)− µn(t), 0] +Rn(t), ∀n, (5)

Hm(t+ 1) = Hm(t)−
∑
n

bmn(t) + hm(t), ∀m. (6)

Notice that there is no max[·, ·] operator in (6). This is due
to the no-underflow constraint (1). In our paper, we say
that a queue vector process x(t) ∈ Rd+ is stable if it satisfies:
3

xav , lim
t→∞

1

t

t∑
τ=0

d∑
n=1

E
{
xn(τ)

}
<∞. (7)

3.5 Utility Optimization
The system’s utility is determined by a function of the

average matching reward profile. Specifically, define rn ,
limt→∞

1
t

∑t−1
τ=0 E

{
rn(τ)

}
. The system utility is given by:

Utotal(r) ,
∑
n

Un(rn). (8)

Here each Un(r) is an increasing concave function with Un(0) =

0 and U ′(0) <∞. We denote β , maxn,r(Un(r))′ the maxi-
mum first derivative of the utility functions. We also define
the following system cost due to resource expenditure:

Ctotal , lim
t→∞

1

t

t−1∑
τ=0

E
{
c(τ)

}
. (9)

We say that a matching algorithm Π is feasible if for all
time t, it selects 0 � R(t) � A(t), 0 � h(t) � e(t), and
b(t) ∈ Bz(t), and it ensures constraint (1) for all time. Our
objective is to design a feasible policy Π, so as to:

max : fav , Utotal(r)− Ctotal (10)

s.t. Qav <∞, Hav <∞. (11)

We denote the optimal solution value as f∗av. Here the queue
stability constraints are to ensure that the tasks and re-
sources do not stay in the queue forever. This is important
in many cases. For instance, in an energy harvesting net-
work, it is important to ensure timely packet delivery, or in
a crowdsourcing system, it is desirable to keep the worker
waiting time short.

3.6 Discussion on the Model
Due to the general matching reward function, our prob-

lem is different from a flow utility maximization problem,
e.g., [7], which is a special case when rn(t) = µ̃n(t). By
tuning the parameters of the model, our model can model
all the examples in Section 2. For example, by choosing
Utotal =

∑
n αnrn, the system models the revenue maximzi-

ation problem in online advertisement systems. By choosing
µn(t) = 1[b1(t)>bmin

1]1[b2(t)>bmin
2], our model can represent a

cloud computing system, where a computing task requires
two types of resources.

Problem (10) is very challenging. First of all, the no-
underflow constraint (1) requires a very careful selection of

3In this paper, we assume that all limits exist with proba-
bility 1. Our results can be extended to more general cases
with lim inf or lim sup arguments.

control actions, because actions in a slot can affect action
feasibility in later slots. Problems of this kind are often
tackled with dynamic programming, whose computational
complexity can be extremely high when the action space is
large. Secondly, the reward function rn(z(t), µ̃n(t)) is un-
known and is dependent on Qn(t). This makes the problem
very different from existing utility maximization works, e.g.,
[7], [8]. Thirdly, due to the more and more stringent user re-
quirements on service quality, it is more desirable to ensure
small queueing delay.

4. OPTIMAL MATCHING
In this section, we present our matching algorithms. We

will first present an ideal algorithm, which assumes full knowl-
edge of the reward functions rn(z(t), µ) and will serve as a
basic building block. Even in this case, we will see that
the problem is highly nontrivial due to the existence of the
no-underflow constraint (1) and the dependency of rn(t) on
Q(t).

4.1 With Full Reward Information
To start, we first introduce an auxiliary variable γn(t) ∈

[0, rmax] and create for each n a deficit queue dn(t) that
evolves as follows:

dn(t+ 1) = max[dn(t)− κn(t), 0] + γn(t), (12)

with d(0) = 0. Note that the input into dn(t) is κn(t) in-
stead of rn(t). The deficit queue dn(t) measures how much
the actual reward profile is currently lagging behind the tar-
get value (due to randomness).

Then, we denote f(t) ,
∑
n Un(γn(t))− c(t) the instanta-

neous system utility minus cost and denote y(t) , (Q(t),H(t),d(t)).
We also define a Lyapunov function as follows:

L(t) =
1

2
‖Q(t)− θ1‖2 +

1

2
‖H(t)− θ2‖2 +

1

2
‖d(t)‖2, (13)

where ‖ · ‖ is the euclidean norm and θ1 = θ1 · 1N and
θ2 = θ2 · 1M with 1k ∈ Rk being the vector with all compo-
nents being 1, and θ1 and θ2 are constants that will be spec-
ified later. We define the one-slot utility-based conditional
Lyapunov drift ∆V (t) , E

{
L(t+ 1)− L(t)− V f(t) | y(t)

}
.

Using the queueing dynamics (5), (6), and (12), we obtain
the following lemma, in which V ≥ 1 is a tunable param-
eter introduced for controlling the tradeoff between system
utility and service delay (explained later).

Lemma 1. Under any feasible policy, we have:

∆V (t) ≤ G− V
∑
n

E
{
Un(γn(t))− dn(t)γn(t) | y(t)

}
(14)

+
∑
n

(Qn(t)− θ1)E
{
Rn(t) | y(t)

}
+
∑
m

(Hm(t)− θ2)E
{
hm(t) | y(t)

}
+E

{
V c(t)−

∑
m

(Hm(t)− θ2)
∑
n

bmn(t)

−
∑
n

(Qn(t)− θ1)µn(t)−
∑
n

dn(t)rn(t) | y(t)
}
.

Here G , N(A2
max + µ2

max + 2r2
max) + Mh2

max + MN2b2max

does not depend on V , and the expectations are taken over
the randomness in the system as well as in the policy. 3

Proof. See Appendix A.

We now construct our algorithm by minimizing the right-
hand-side (RHS) of the drift (14).

Reward optimAl Matching (RAM): At every time t, observe

z(t) and y(t). Do:

1. Quota: For each n, choose γn(t) by solving:

max : V Un(γn(t))− dn(t)γn(t), s.t. 0 ≤ γn(t) ≤ rmax. (15)

2. Admission: For each n, if Qn(t) < θ1, let Rn(t) =
An(t); otherwise Rn(t) = 0. Similarly, for each m, if
Hm(t) < θ2, let hm(t) = em(t); otherwise hm(t) = 0.

3. Resource: Choose the resource allocation vector b(t)
by solving:

min : Ψr(b) , V c(z, b)−
∑
m

(Hm(t)− θ2)
∑
n

bmn (16)

−
∑
n

(Qn(t)− θ1)µn(z(t), b)

−
∑
n

dn(t)rn(z(t), µn(z(t), b))

s.t. b ∈ Bz(t),Constraint (1) (17)

4. Queueing: Update Q(t), H(t), and d(t), according
to (5), (6), and (12), respectively. 3

Note that in (16) we have used rn(z(t), µn(t)) instead of
rn(z(t), µ̃n(t)). We will see in our later analysis that our
algorithm automatically guarantees µ̃n(t) = µn(t). This is
very useful, for otherwise the algorithm performance will
be very hard to analyze. We also emphasize here that the
introduction of θ1 and θ2 are important. It can be seen in
the admission step here that if θ1 = θ2 = 0, i.e., without
θ1 and θ2, no task or resource will be admitted at the first
place and the algorithm will not even proceed!

4.2 With Reward Information Learning
Here we consider the case when one does not have full

reward information and provide an algorithm that can inte-
grate general learning methods for estimating r.

To also investigate the impact of learning on algorithm
design and performance, we first define learning capability.
Specifically, for any general matrix W and a learning al-
gorithm Γ that outputs an estimation Ŵ , we denote its
maximum estimation error by:

δw , ‖Ŵ −W ‖max, (18)

where ‖x‖max , maxij |xij |. Then, the formal definition of
a learning module is as follows.

Definition 1. An algorithm Γ is called a (Tδ, Pδ, δ)-learning
module, if (i) it completes learning in Tδ time, (ii) it guar-
antees that Pr

{
δw < δ

}
≥ Pδ, and (iii) for any T ≥ 0, Pδ

does not decrease if the algorithm is run for Tδ + T time. 3

Here Tδ can be both random or deterministic depending on
the termination rules. This definition is general and captures
key features of learning algorithms. With this definition,
having perfect knowledge at the beginning can be viewed as
having an (0, 1, 0)-learning module.

We now present an optimal matching algorithm for gen-
eral systems that do not possess perfect knowledge of r and

need to rely on some learning algorithms for estimation. In
the algorithm, we use βr̂ to denote the maximum “deriva-
tive”of the estimated r̂ with respect to any bmn. Specifically,
we assume that if b and b′ are such that b′ is obtained by
setting one bmn in b to zero. Then,

r̂n(z, µn(z, b)) ≤ r̂n(z, µn(z, b′)) + βr̂bmn, ∀n. (19)

Since both Z and {Bz} are finite, we see that βr̂ exists and
is Θ(1) (possibly depends on r̂).

Learning-aided Reward OptimAl Matching (LRAM):

1. (Learning) Apply any (Tδr , Pδr , δr)-learning module
Γr. Terminate at t = Tδr and output r̂.

2. (Matching) Set Q(Tδr + 1) = 0, H(Tδr + 1) = 0, and
d(Tδr + 1) = 0. Choose θ1 and θ2 according to:

θ1 = (hmax + (V β + rmax)βr̂)/β
l
µ + µmax (20)

θ2 = (V β + rmax)βr̂ + rmaxβ
u
µ +Nbmax. (21)

Run RAM with r̂. 3

In LRAM, we explicitly separate the algorithm into two dis-
joint phases. This is chosen to facilitate presentation and
analysis. Doing so also does not change the order of the
overall algorithm convergence time and performance. We
can also transform LRAM and DRAM below into continuous-
learning versions, e.g., [15], and update estimations from
time to time, e.g., using sliding-window estimation or frame-
based estimation. It is also worth noting that θ1 and θ2 can
be computed beforehand easily. This is a feature useful for
implementation.

4.3 With System State Information Learning
In the previous section, we describe how the estimated re-

ward information r̂ can be naturally integrated into a match-
ing algorithm. Here we consider the case when a learning
module is also applied to learning the statistics of the sys-
tem state z(t). Our result here generalizes the dual-learning
approach proposed in [15] to handle underflow and to allow
general learning methods.

To start, we define the following optimization problem:

max : Φ , V [
∑
n

Un(γn)− Cost] (22)

s.t. γn ≤ rn ,
∑
k

πkrn(zk, µn(zk, b
k)) (23)

Cost ,
∑
k

πkc(zk, b
k) (24)∑

k

πkR
k
n =

∑
k

πkµn(zk, b
k), ∀n (25)∑

k

πk
∑
n

bkmn =
∑
k

πkh
k
m, ∀m (26)

0 ≤ γn ≤ rmax, b
k ∈ Bk (27)

0 � Rk � Ak, 0 � hk � ek. (28)

Problem (22) can intuitively be viewed as a way to solve
our matching problem. The equalities in (25) and (26) are
due to fact that only tasks that are actually served gener-
ate reward and the no-underflow constraint (1). However, a
scheme obtained by solving (22) may not be implementable
due to (i) it ignores the no-underflow constraint, and (ii) it
assumes that all resources allocated are fully utilized, i.e.,

using µn(zk, b
k) in (23). We will also see later that, it re-

quires a much larger learning time for such a scheme to have
the right statistics for achieving a performance comparable
to ours.

We now obtain the dual problem for (22) as follows.

min : g(αd,αq,αh) s.t. αd � 0,αq ∈ RN ,αh ∈ RM , (29)

where g(αd,αq,αh) =
∑
k πkgk(αd,αq,αh) is the dual func-

tion, and gk(αd,αq,αh) is defined as:

gk(αd,αq,αh) = sup
R,γ,b,h

{
V [
∑
n

Un(γn)− Cost] (30)

−
∑
n

αdn[rn(zk, µn(zk, b))− γn]

−
∑
n

αqn[Rn − µn(zk, b)]−
∑
m

αhm[
∑
n

bmn − hn]

}
.

Note that gk(αd,αq,αh) is indeed the dual function for state
zk. With (29), we now present our algorithm, which inte-
grates system state information learning into control.
Dual learning-aided Reward optimAl Matching (DRAM):

1. (Learning) Apply any (Tδr , Pδr , δr)-learning module
Γr for r and any (Tδz , Pδz , δz)-learning module Γz for
z. Terminate at TL = max(Tδr , Tδz) and output r̂ and
π̂. Choose θ1 and θ2 according to:

θ1 = (hmax + (V β + rmax)βr̂)/β
l
µ + µmax (31)

θ2 = (V β + rmax)βr̂ + rmaxβ
u
µ +Nbmax. (32)

2. (Dual learning) Solve the empirical dual problem:

min :
∑
k

π̂kĝk(αd,αq − θ1,α
h − θ2) (33)

s.t. αd � 0,αq ∈ RN ,αh ∈ RM .

Here ĝk(αd,αq−θ1,α
h−θ2) is defined in (30) with r̂.

Denote the optimal solution as α̂∗ = (α̂d∗, α̂q∗, α̂h∗).

3. (Matching) Set Q(TL + 1) = 0, H(TL + 1) = 0, and
d(TL + 1) = 0. For all t ≥ TL + 1, define:

Q̂(t) = Q(t) + α̂q∗ − ζN (34)

Ĥ(t) = H(t) + α̂h∗ − ζM (35)

d̂(t) = d(t) + α̂d∗ − ζN . (36)

where ζk is a vector in Rk with all elements being ζ ,
2 max(δzV log(V)2, log(V)2). Run RAM with r̂, Q̂(t),

Ĥ(t), and d̂(t). If the resulting b(t) from (16) violates

(1) for some m, change {bmn(t)}n∈N to {b̃mn(t)}n∈N
with

∑
n b̃mn(t) = hm(t) and drop µn(z(t), b(t)) tasks

from each n that has bmn(t) > 0. 3 4

DRAM first utilizes learning to obtain an empirical distri-
bution, which is usually crude but fast at the beginning.
Then, it transforms to queue-based control (or more gener-
ally, stochastic approximation), by obtaining an empirical
optimal multiplier via dual learning. It then starts from the
empirical multiplier and rely on queue-based control to learn
the true optimal operation point. The procedure is shown

4In actual implementation, one can still serve the tasks with
the actual allocated resource.

in Fig. 2. This combination avoids the slow convergence
regime of statistical learning and the slow start of stochas-
tic approximation, and algorithms so developed can achieve
much faster convergence and superior delay.

Statistical
Learning

(Fast & Crude)

Stochastic
Approximation

(Linear)

Dual
Learning

Statistical
Learning

(Slow & Accurate)

Stochastic
Approximation

(Linear) Time

Figure 2: DRAM combines the fast regime of statistical
learning and the smoothness of queue-based control
(more generally, stochastic approximation).

Also note here that the dropping step is introduced to
ensure zero underflow, by giving up the service rates and
reward at that particular slot. We will see in later analysis
and simulation that such an event almost never happens and
hence does not affect performance.

4.4 Sampling-based Learning Module
Here we describe two sampling-based learning modules

for estimating r and π. We first describe a threshold-based
sampling module for estimating r. In the module, we use
s(z, b, t) to denote the number of times the pair (z, b) is
sampled, i.e., adopt b when z(t) = z, up to time t. We also
denote smin(t) = min(z,b) s(z, b, t).

Threshold-Based Sampling TBS(sth): Every time t, sample

the resource allocation vector b∗ ∈ arg minb s(z(t), b, t) un-
til smin(t) ≥ sth. If terminate at Ttbs, output r̂n(z, b) =∑Ttbs
t=1 1[z(t)=z,b(t)=b]κn(t)/s(z, b, Ttbs). 3
Here 1[x] is the indication function of x. The learning

module TBS(sth) is very intuitive. It tries to balance the
sampling frequencies of all (z, b) until every pair is sampled
at least sth times. In this case, the learning algorithm run-
ning time Ttbs is random. In the following, we look at a
deterministic time sampler for estimating π. This module
sets a sampling time threshold Tth.

Time-Limited Sampling TLS(Tth): Observe z(t) for Tth slots.

Output π̂k =
∑Tth
t=1 1[z(t)=zk]/Tth for all k. 3

The following lemma shows the performance of the two
modules.

Lemma 2. The two learning modules satisfy:

(a) TBS(sth): E
{
Ttbs

}
= Θ(sth) and with probability 1 −

O(e
− sth log(sth)2

2(sthr2max+rmax
√

sth/3)), δr = log(sth)√
sth

.

(b) TLS(Tth): With probability 1−O(e
− Tth log(Tth)2

2(Tth+
√

Tth/3)), δz =
log(Tth)√

Tth

. 3

Proof. See Appendix B.

By choosing sth = Tth = V c, we can guarantee δr = δz =
c log(V)V −c/2 with Pδr and Pδz being 1−O(V − log(V)).

5. PERFORMANCE ANALYSIS
In this section, we present the performance results of LRAM

and DRAM. We start with some definitions and assumptions.

For notation simplicity, we denote α = (αd,αq,αh) and
write α− θ = (αd,αq − θ1,α

h − θ2). Also, to indicate the
different distributions and reward functions used, we use
ĝ(α) to denote the dual function when r is replaced by r̂ in
(30) and the distribution is given by π. Then, we use gπ̂(α)
and ĝπ̂(α) to denote the dual function with distribution π̂
and r, and with π̂ and r̂, respectively.

5.1 Preliminaries
We define the following polyhedral system structure:

Definition 2. A system is polyhedral with parameter ρ >
0 if the dual function g(α) satisfies:

g(α∗) ≤ g(α)− ρ‖α∗ −α‖. (37)

Here α∗ is an optimal solution of (29). 3

The polyhedral structure typically appears in practical sys-
tems, especially when the system action sets are discrete (see
[20] for more discussions). Note that (37) holds for all V if
it holds under any V , in particular V = 1.

In our analysis, we make the following assumptions.

Assumption 1. There exist constants εr, εz = Θ(1) >
0 such that for any valid state distribution π̂ and reward
statistics r̂ with ‖π̂−π‖ ≤ εz and ||r−r̂|| ≤ εr, there exist a
set of actions {γk}k=1,...,|Z|, {Rk

i }i=1,2,...,∞
k=1,...,|Z| , {b

k
i }i=1,2,...,∞
k=1,...,|Z| ,

and {hki }i=1,2,...,∞
k=1,...,|Z| , and variables λki ≥ 0 with

∑
i λ

k
i = 1 for

all k (possibly depending on π̂ and r̂), such that:

γn −
∑
k

π̂k
∑
i

λki r̂n(zk, µn(zk, b
k
i)) ≤ −η0, (38)

where η0 = Θ(1) > 0 is independent of π̂ and r̂, and that∑
k

π̂k
∑
i

λkiR
k
in =

∑
k

π̂k
∑
i

λki µn(zk, b
k
i) (39)∑

k

π̂k
∑
i

λki
∑
n

bkimn =
∑
k

π̂k
∑
i

λki h
k
im (40)

where 0 <
∑
k π̂k

∑
i λ

k
iR

k
in < Eπ̂{An(t)} as well as 0 <∑

k π̂k
∑
i λ

k
i h

k
im < Eπ̂{em(t)}. 3

Assumption 2. For any π̂ and r̂ with ‖π̂−π‖ ≤ εz and
||r̂ − r|| ≤ εr, if g(α) is polyhedral with parameter ρ, then
ĝπ̂(α) is also polyhedral with parameter ρ. 3

Assumption 3. For any π̂ and r̂ with ‖π̂ − π‖ ≤ εz
and ||r̂−r|| ≤ εr, ĝπ̂(α) has a unique optimal solution over
RM+2N . 3

In the network optimization literature, e.g., [12], [21], As-
sumption 1 is commonly assumed with εr = εz = 0. By
allowing εr, εz > 0, we assume that systems with similar
statistics have similar stability regions. Assumption 2 as-
sumes that systems with similar statistics share a similar
dual structure. This is not restrictive. In fact, when action
sets are discrete, it is often the case that gk(α) is polyhe-
dral, which usually leads to a polyhedral structure of ĝπ̂(α).
The uniqueness assumption is also often guaranteed by the
utility maximization structure, e.g., [22].

5.2 Queue and Utility Performance
We first summarize the performance of LRAM.

Theorem 1. Suppose Tδr <∞ with probability 1. Under
LRAM, we have for all t ≥ Tδr + 1 that:

dn(t) ≤ dmax , V β + rmax, ∀n (41)

Qn(t) ≤ Qmax , θ1 + rmax, ∀n (42)

Hm(t) ≤ Hmax , θ2 + hmax, ∀m. (43)

Moreover, we have with probability Pδr that,

f LRAMav ≥ f∗av −
G+ rmaxδr

V
− 2Nβδr.3 (44)

Proof. Omitted due to space limitation. Please see our
technical report [23].

The last term in (44) involves the estimation error δr. This
can be viewed as the performance loss due to inaccurate re-
ward information. We remark here that the deterministic
queueing bounds are important for both algorithm imple-
mentation and performance guarantee. This is so because
errors in reward function estimation will be amplified by the
queue sizes when used in decision making, i.e., (16).

We now present the performance results for DRAM.

Theorem 2. Suppose max(Tδr , Tδz) < ∞ with probabil-
ity 1. Suppose g(α) is polyhedral with ρ = Θ(1) > 0, and
that δz ≤ εz and δr ≤ εr, and α∗ + θ � 0. Then, with
a sufficiently large V , we have with probability PδzPδr that,
under DRAM,

f DRAMav ≥ f∗av −
G

V
−O(1/V + δr). (45)

Also, the fraction of time dropping happens is O(V − log(V)).
Moreover, for all queues, there exist Θ(1) constants D,K, a
such that:

Pr
{
dn(t) ≥ 3

2
ζ +D + ν

}
≤ ae−Kν (46)

Pr
{
Qn(t) ≥ 3

2
ζ +D + ν

}
≤ ae−Kν (47)

Pr
{
Hm(t) ≥ 3

2
ζ +D + ν

}
≤ ae−Kν . (48)

Thus, all queues are stable. 3

Proof. Omitted due to space limitation. Please see our
technical report [23].

Note that if we have δr = 0 with Tδr = 0 and Pδr = 1,
then Theorem 1 recovers the known [O(1/V), O(V)] utility-
delay tradeoff for stochastic network problems [12]. On the
other hand, if we also have δz = 0 with Tδz = 0 and Pδz = 1,
then DRAM provides a new way for achieving the near-optimal
[O(1/V), O(log(V)2)] utility-delay tradeoff.

In both LRAM and DRAM, it is possible to continuously up-
date the reward function estimations during the control steps.
However, this does not automatically guarantee that we can
always eliminate the effect of δr. This is so because the
initial estimation r̂ may affect what options will be contin-
uously updated later. On the other hand, the same perfor-
mance results will hold if further updates do not increase
δr.

5.3 Convergence time
Here we look at another important performance metric -

algorithm convergence time, which characterizes the time it
takes for the algorithm to enter the “steady state.” Faster

convergence implies better robustness against system statis-
tics changes and higher efficiency in resource allocation, and
is particularly important when system statistics can change.
The formal definition of convergence time is as follows [15].

Definition 3. For a given constant D, the D-convergence
time of a control algorithm Π, denoted by TΠ

D , is the time it
takes for the queue vector (d(t),Q(t),H(t)) ((d̂(t), Q̂(t), Ĥ(t))
under DRAM) to get to within D distance of α∗ + θ, i.e.,

TΠ
D , inf{t | ||(d(t),Q(t),H(t))− (α∗ + θ)|| ≤ D}. 3 (49)

This definition of convergence time concerns about when
an algorithm enters its “optimal state.” It is different from
the metrics considered in [24] and [25], which concern about
the time it takes for the objective value and constraints to
be within certain accuracy. With Definition 3, we have the
following results:

Theorem 3. Suppose g(α) is polyhedral with ρ = Θ(1) >
0, δz ≤ εz and δr ≤ εr, and α∗ + θ � 0. Then, with a
sufficiently large V , we have:

E
{
T LRAM
D1

}
= O(Tδr + Θ(V)) w.p. Pδr (50)

E
{
T DRAM
D2

}
= O((Tl + Θ(δzV)) w.p. PδrPδz . (51)

Here Tl , max(Tδr , Tδz) denotes the total learning time in

DRAM, D1 , Θ(δrV) + Θ(1), and D2 , Θ(δrV) + Θ(1). 3

Proof. Omitted due to space limitation. Please see our
technical report [23].

Combining Theorems 1, 2, and 3, we see that δr largely
affects the overall utility performance (reflected by D1 and
D2), while δz can greatly improve the convergence time and
delay! This indicates that information of different system
components can play very different roles in algorithm per-
formance and learning accuracies should be carefully chosen
for meeting a desired performance goal.

5.4 Necessity in Controlling δr

Here we provide a simple example showing that it is nec-
essary to control δr for good utility performance. Hence,
it is important to learn the reward value for each match-
ing option. Consider the case when N = 2 and M = 1.
Suppose e(t) = A1(t) = A2(t) = 1 for all t. Also sup-
pose b(t) ∈ {(0, 1), (1, 0), (0, 0)}, that is, at every time t, we
can only allocate resource to one or zero queue. Suppose
c(t) = 0, µn(t) = bn(t), and rn(t) = µ̃n(t). Finally, assume
that U1(r1) = log(1 + r1) and log(1 + 2r2).

In this case, the true optimal takes place at r1 = 1/4 and
r2 = 3/4 with Utotal = 0.7828. Now suppose we incorrectly
estimate the rewards to be rn(t) = (1+ δn)µ̃n(t). Then, one
can show that the optimal rewards become:

r1 =
2(1 + δ1)(1 + δ2)− 2(1 + δ2) + (1 + δ1)

4(1 + δ1)(1 + δ2)
(52)

r2 =
2(1 + δ1)(1 + δ2) + 2(1 + δ2)− (1 + δ1)

4(1 + δ1)(1 + δ2)
, (53)

which is roughly r1 ≈ 1
4

+ 2δ1−δ2
4

and r2 ≈ 3
4
− 2δ1−δ2

4
. Thus,

the resulting optimal utility is given by:

Utotal ≈ 0.7828− |2δ1|+ |δ2|
5

. (54)

Therefore, in order to obtain an O(1/V) close-to-optimal
utility, it is necessary to ensure that max(|δ1|, |δ2|) = O(1/V).

6. SIMULATION
In this section, we present simulation results for our algo-

rithms. We consider a system that has N = 2 and M = 1.
We assume that e(t) is 0 or 2 with equal probabilities. A1(t)
is 0 or 2 with equal probabilities and A2(t) is 1 or 2 with
equal probabilities. b(t) ∈ {(0, 1), (1, 0), (0, 0)}, i.e., at ev-
ery time t, we allocate one unit resource to one or zero
queue. We set c(t) = b1(t) + b2(t) and µn(t) = bn(t),
and γn(t) ∈ {0, 1, 2}. There are two system states ω(t) ∈
{1, 2}. In each state, the reward functions are given by
rn(t) = wn(ω(t))µ̃n(t), where w1(1) = 0.8 and w2(1) = 1
and w1(2) = 1 and w2(2) = 0.8. Thus, the system state
indicates which tasks are preferred under the specific condi-
tion. Every time the corresponding reward is either 0.5rn(t)
or 1.5rn(t), with equal probabilities. Finally, we assume that
U1(r1) = 1.2 log(1 + 2r1) and U2(r2) = 1.2 log(1 + 4r2).

From the definitions, we have that β = 5, βuµ = βlµ = 1
and βr̂ = maxω(t),n r̂n(ω(t)). We also set rmax = 2, µmax =
1 and bmax = 1, hmax = 2. We simulate both LRAM and
DRAM with V = {10, 20, 50, 80, 100}. According to (20) and
(21), θ1 = (5V + 2)βr̂ + 4 and θ2 = (5V + 2)βr̂ + 3. In
DRAM, we set ζ = log(V)2. We use TBS(sth) to estimate r
and set sth = log(V)2, and use TLS(Tth) to estimate π and
set Tth = Ttbs. In LRAM, we randomly add or subtract the
estimation error δr from the true values.

0 20 40 60 80 100
0.85

0.9

0.95

1

1.05

V

0 20 40 60 80 100
0

200

400

600

800

1000

1200

V

RAM
LRAM−0.02
LRAM−0.05
LRAM−0.1
DRAM

RAM
LRAM−0.02
LRAM−0.05
LRAM−0.1
DRAM

Utility Task Queue

Figure 3: Utility performance and task queue size.

Fig. 3 first shows the utility performance and the task
queue behavior of LRAM and DRAM, where the number af-
ter LRAM denotes δr. We see from the left plot that except
for δr = 0.1, LRAM performs very well under all other er-
ror values, suggesting that estimation error indeed plays an
important role in system utility. We also see that DRAM per-
forms very well starting from V ≥ 50. The right plot shows
the backlog (delay) performance under different schemes. It
is evident that DRAM achieves an O(log(V)2) delay in this
case, while all other variants possess an O(V) delay. This
demonstrates the importance of incorporating system dy-
namics information into algorithm design.

Fig. 4 then shows the resource queue H(t) and deficit
queues d(t). We see that DRAM ensures an O(log(V)2) aver-
age resource queue, while other algorithms result in an O(V)
queue size. This implies that DRAM ensures a very short stay
in the system for the resource items! This feature is partic-
ularly useful if the resource items are human users, e.g., in
crowdsourcing.

Finally, Fig. 5 shows the convergence behavior of the al-
gorithms for V = 100. Here we show the resource queue
value as its convergence time dominates the others. We see
that RAM takes an O(V) time to converge, which is expected.
We also observe that H(t) under LRAM-0.05 and LRAM-0.1
converge to values slightly above those under RAM. This ex-

0 20 40 60 80 100
0

100

200

300

400

500

600

V

0 20 40 60 80 100
0

50

100

150

200

250

300

V

RAM
LRAM−0.02
LRAM−0.05
LRAM−0.1
DRAM

RAM
LRAM−0.02
LRAM−0.05
LRAM−0.1
DRAM

Resource Queue Deficit Queue

Figure 4: Resource queue and deficit queue sizes.

plains why their performance is slightly worse. On the other
hand, we also see that DRAM converges quickly. The reason
its steady state value is slightly above that under RAM is due
to the inaccuracy of r̂. Even in this case, we see that there
is a 2.5× convergence speedup (most of the learning time is
due to sampling) and DRAM achieves very good performance.
In the case when r can be obtained from other data source
beforehand, which can commonly be done in practice, e.g.,
in online advertising, we see that DRAM (called state-only
DRAM in this case) achieves a 10× convergence speedup (50
slots vs. 500 slots)!

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

Time

LRAM−0.05

LRAM−0.1
Sampling

Convergence Speedup − 1

Convergence Speedup − 2

State−only
DRAM

RAMDRAM

Figure 5: Convergence of LRAM and DRAM for V = 100.

We observe in all simulation instances that no dropping
occurs. This demonstrates the effectiveness of the algo-
rithms and validates Theorem 2.

7. CONCLUSION
In this paper, we study the problem of optimal matching

with queues in dynamic systems. We develop two online
learning-aided algorithms LRAM and DRAM for resolving the
challenging underflow problem and to achieve near-optimality.
We show that LRAM achieves an O(ε + δr) system utility,
for any ε > 0, while ensuring an O(1/ε) delay bound and
an O(1/ε) algorithm convergence time. DRAM, on the other
hand, guarantees a similar O(ε + δr) system utility, while
achieving an O(δz/ε+log(1/ε)2) delay bound and an O(δz/ε)
algorithm convergence time, which can be significantly bet-
ter compared to LRAM when δz is small. Our algorithms
and results reveal the interesting fact that different system
information can play very different roles in algorithm per-
formance and provide insights into joint learning-control al-
gorithm design for dynamic systems.

8. ACKNOWLEDGEMENT
This work was supported in part by the National Basic Re-

search Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant

61033001, 61361136003, 61303195, Tsinghua Initiative Re-
search Grant, and the China Youth 1000-talent Grant.

9. REFERENCES
[1] N. Mckeown, V. Anantharam, and J. Walrand.

Achieving 100% throughput in an input-queued
switch. Proceedings of INFOCOM, 1996.

[2] A. Mehta. Online Matching and Ad Allocation.
Foundations and Trends in Theoretical Computer
Science Vol. 8, no. 4, pp. 265-368, 2013.

[3] F. Alt, A. Shirazi, A. Schmidt, U. Kramer, and
Z. Nawaz. Location-based crowdsourcing: Extending
crowdsourcing to the real world.

[4] Uber. https://www.uber.com/.

[5] S. Maguluri, R. Srikant, and L. Ying. Stochastic
models of load balancing and scheduling in cloud
computing clusters. Proceedings of INFOCOM, 2012.

[6] M. J. Neely and L. Huang. Dynamic product assembly
and inventory control for maximum profit. IEEE
Conference on Decision and Control (CDC), Atlanta,
Georgia, Dec. 2010.

[7] M. J. Neely. Super-fast delay tradeoffs for utility
optimal fair scheduling in wireless networks. IEEE
Journal on Selected Areas in Communications
(JSAC), Special Issue on Nonlinear Optimization of
Communication Systems, 24(8):1489–1501, Aug. 2006.

[8] Libin Jiang and Jean Walrand. A distributed csma
algorithm for throughput and utility maximization in
wireless networks. IEEE/ACM Transactions on
Networking, vol. 18, no.3, pp. 960 - 972, Jun. 2010.

[9] C. W. Tan, D. P. Palomar, and M. Chiang.
Energy-robustness tradeoff in cellular network power
control. IEEE/ACM Transactions on Networking, Vol.
17, No. 3, pp. 912-925, 2009.

[10] X. Lin P. Huang and C. Wang. A low-complexity
congestion control and scheduling algorithm for
multihop wireless networks with order-optimal
per-flow delay. Proceedings of INFOCOM, 2011.

[11] I. Hou and P.R. Kumar. Utility-optimal scheduling in
time-varying wireless networks with delay constraints.
Proceedings of MobiHoc, 2010.

[12] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource
Allocation and Cross-Layer Control in Wireless
Networks. Foundations and Trends in Networking Vol.
1, no. 1, pp. 1-144, 2006.

[13] Committee on the Analysis of Massive Data;
Committee on Applied, Theoretical Statistics; Board
on Mathematical Sciences, Their
Applications; Division on Engineering, and Physical
Sciences; National Research Council. Frontiers in
Massive Data Analysis. 2013.

[14] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[15] L. Huang, X. Liu, and X. Hao. The power of online
learning in stochastic network optimization.
Proceedings of ACM Sigmetrics, 2014.

[16] O. Simeone C. Tapparello and M. Rossi. Dynamic
compression-transmission for energy-harvesting
multihop networks with correlated sources.
IEEE/ACM Trans. on Networking, 2014.

[17] S. Chen, P. Sinha, N. B. Shroff, and C. Joo. A simple
asymptotically optimal joint energy allocation and

routing scheme in rechargeable sensor networks.
IEEE/ACM Trans. on Networking, to appear.

[18] B. Tan and R. Srikant. Online advertisement,
optimization and stochastic networks. 50th IEEE
Conference on Decision and Control and European
Control Conference (CDC-ECC) Orlando, FL, USA,
December 2011.

[19] L. Huang and M. J. Neely. The optimality of two
prices: Maximizing revenue in a stochastic network.
IEEE/ACM Transactions on Networking,
18(2):406–419, April 2010.

[20] L. Huang and M. J. Neely. Delay reduction via
Lagrange multipliers in stochastic network
optimization. IEEE Trans. on Automatic Control,
56(4):842–857, April 2011.

[21] T. Ji J. Ghaderi and R. Srikant. Flow-level stability of
wireless networks: Separation of congestion control
and scheduling.

[22] A. Eryilmaz and R. Srikant. Fair resource allocation in
wireless networks using queue-length-based scheduling
and congestion control. IEEE/ACM Trans. Netw.,
15(6):1333–1344, 2007.

[23] L. Huang. The value-of-information in matching with
queues. ArXiv Tech Report arXiv:1503.07975, 2015.

[24] B. Li, A. Eryilmaz, and R. Li. Wireless scheduling for
utility maximization with optimal convergence speed.
Proceedings of IEEE INFOCOM, Turin, Italy, April
2013.

[25] M. Neely. Energy-aware wireless scheduling with near
optimal backlog and convergence time tradeoffs.
Proceedings of INFOCOM, 2015.

[26] F. Chung and L. Lu. Concentration inequalities and
martingale inequalities - a survey. Internet Math., 3
(2006-2007), 79–127.

Appendix A – Proof of Lemma 1
We prove Lemma 1 here.

Proof. (Lemma 1) Using the queueing dynamics (5) and
(6), we have:

(Qn(t+ 1)− θ1)2 ≤ (Qn(t)− θ1)2

−2(Qn(t)− θ1)(µn(t)−Rn(t)) +Rn(t)2 + µn(t)2.

Similarly, we get:

(Hm(t+ 1)− θ2)2 ≤ (Hm(t)− θ2)2

−2(Hm(t)− θ2)(
∑
n

bmn(t)− hm(t)) + (
∑
n

bmn(t))2 + hm(t)2,

and that

dn(t+ 1)2 ≤ dn(t)2 − 2dn(t)(κn(t)− γn(t)) + κn(t)2 + γn(t)2.

Summing the above and using the definition of L(t) and
∆V (t), we get:

L(t+ 1)− L(t)− V f(t)

≤ G− V (
∑
n

Un(γn(t))− c(t))

−
∑
n

(Qn(t)− θ1)(µn(t)−Rn(t))

−
∑
n

dn(t)(κn(t)− γn(t))

−
∑
m

(Hm(t)− θ2)(
∑
n

bmn(t)− hm(t)).

Here G , N(A2
max + µ2

max + 2r2
max) + Mh2

max + MN2b2max.
Rearranging terms, we obtain:

L(t+ 1)− L(t)− V f(t)

≤ G− V
∑
n

[Un(γn(t))− dn(t)γn(t)]

+
∑
n

(Qn(t)− θ1)Rn(t) +
∑
m

(Hm(t)− θ2)hm(t)

+

[
V c(t)−

∑
m

(Hm(t)− θ2)
∑
n

bmn(t)

−
∑
n

(Qn(t)− θ1)µn(t)−
∑
n

dn(t)κn(t)

]
.

Taking an expectations on both sides conditioning on y(t)
and using the fact that κn(t) is an i.i.d. random variable
given z(t), b(t),Q(t), we see that the lemma follows.

Appendix B – Proof of Lemma 2
We prove Lemma 2 here. In our proof, we will use the
following theorem from [26].

Theorem 4. [26] Suppose Xi are independent random
variables satisfying Xi ≤ B for 1 ≤ i ≤ n. Let X =

∑
iXi

and ‖X‖ =
√∑

i E
{
X2
i

}
. Then we have:

Pr
{
X ≤ E

{
X
}
− b
}
≤ e−

b2

2(‖X‖2+Bb/3) .3 (55)

Proof. (Lemma 2) First of all, we show that E
{
Ttbs

}
=

Θ(log(V)2). To see this, notice that since each Bk is finite,
if the state z(t) = k appears |Bk|sth times, we must have
sampled every b ∈ Bk sth times. Thus,

Ttbs ≤
∑
k

T{visitzk |Bk|sth times}. (56)

Taking the expectations, we see that E
{
Ttbs

}
≤ sth

∑
k
|Bk|
πk

.

Then, we see that in r̂, each single value has been sampled
sth times. Using Theorem 4 and the fact that κn(t) ≤ rmax,
we get:

Pr
{ Ttbs∑
t=1

1[z(t)=z,b(t)=b]κn(t) ≤ rn(z, b)s(z, b, Ttbs)− b
}

≤ e
− b2

2(sthr2max+rmaxb/3) .

Choosing b =
√
sth log(sth), dividing both sides of the in-

equality inside by s(z, b, Ttbs), and using s(z, b, Ttbs) ≥ sth,
we get:

Pr
{
r̂n(z, b) ≤ rn(z, b)− log(sth)√

sth

}
≤ e
− sth log(sth)2

2(r2maxsth+rmax
√

sth/3) .

Using Theorem 4 with −X, we get a similar bound for the
other side. Hence,

Pr
{
|r̂n(z, b)− rn(z, b)| ≤ log(sth)√

sth

}
≤ 2e

− sth log(sth)2

2(r2maxsth+rmax
√

sth/3) .

Using the union bound, we see that Part (a) follows. Part
(b) can be proven similarly.

