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Heisenberg-limited single-mode quantum
metrology in a superconducting circuit
W. Wang1,5, Y. Wu 1,2,5, Y. Ma1, W. Cai1, L. Hu1, X. Mu1, Y. Xu1, Zi-Jie Chen3, H. Wang1, Y.P. Song1, H. Yuan4*,
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Two-mode interferometers lay the foundations for quantum metrology. Instead of exploring

quantum entanglement in the two-mode interferometers, a single bosonic mode also pro-

mises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the

infinite-dimensional Hilbert space of Fock states. Here, we demonstrate a single-mode phase

estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong

dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the

form 0j i þ Nj ið Þ= ffiffiffi
2

p
can be generated, manipulated and detected with high fidelities, leading

to an experimental phase estimation precision scaling as ∼N−0.94. A 9.1 dB enhancement of

the precision over the SNL at N= 12 is achieved, which is only 1.7 dB away from the HL. Our

experimental architecture is hardware efficient and can be combined with quantum error

correction techniques to fight against decoherence, and thus promises quantum-enhanced

sensing in practical applications.
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H igh precision measurement is one of the main driving
forces for science and technology, and the interferometer
based on the coherent interference effect is one of the

most extensively used tools1–6. Two-mode interferometers, in
particular, are widely used to precisely measure the phase dif-
ference between the two modes induced by certain physical
quantities. For example, the two-mode atomic Ramsey inter-
ferometer that manipulates the superpositions of two internal
states of an atomic ensemble7 has been used in various applica-
tions, such as clock8,9, gravimeter10, and gyro11. Similarly, by
separating photons into two spatial modes, two-mode photonic
Michelson interferometers have been extensively used in
gravitational-wave observatory5, optical coherence tomography12,
and spectrometry13. Recently, quantum metrology14–16, which
makes use of quantum mechanical effects, such as entanglement,
has gained a lot of attention in the two-mode interferometers,
as it can achieve measurement precisions beyond the
classical limit. In the applications of quantum metrology, highly
entangled states, such as the Greenberger–Horne–Zeilinger state
of an atomic ensemble17,18 or the NOON state of optical
interferometer19,20, are essential. However, to prepare these exotic
quantum states, non-local operations are required. In addition,
the optimal measurements are also typically highly non-local.
These pose significant challenges for practical applications of
quantum metrology.

Instead of exploring quantum entanglement in the two-mode
interferometer, quantum sensors with a single mode are of great
interest. For example, based on a single bosonic mode, quantum
metrology schemes have been proposed21,22 by taking advantage
of the infinite-dimensional Hilbert space of Fock states. Such
single-mode quantum sensors hold the advantages of hardware
efficiency, compactness, and robustness against non-local per-
turbations. Similarly, by exploring the large angular momentum
states, a high precision electrometer beating the shot-noise limit
(SNL) is promising with a single atom, as demonstrated in
refs. 23,24. Alternatively, by utilizing coherence and implementing
phase estimation algorithms, a quantum-enhanced magnetometry
was recently demonstrated with a single artificial atom25–27, with
a precision approaching the Heisenberg limit (HL).

In this paper, we implement the single-mode photonic quan-
tum metrology with a superconducting qubit-oscillator system28

and demonstrate an unconditional phase estimation approaching
the HL. For a single mode, the phase can be measured based on
the photon number-dependent phase accumulation. By preparing
the superpositions of Fock states as Ψ Nð Þj i ¼ 0j i þ Nj ið Þ= ffiffiffi

2
p

up
to N= 12, we demonstrate a phase estimation precision that
scales as δ~θ � N�0:94 and approaches the HL. At N= 12, δ~θ
corresponds to an enhancement of 20log10ðδ~θSNL=δ~θÞ dB ¼
9:1 dB over the SNL δ~θSNL. Envisioning future applications in the
optical regime with microwave-to-optical transduction, we also
realize a measurement scheme that is easy to implement in optics
and only uses displacement operations and photon counting.
Under this restricted measurement scheme, a sub-SNL precision,
which scales as δ~θ � N�0:62, is also achieved.

Results
Theory of optimal sensing and experimental architecture.
According to the quantum Cramér–Rao bound29, the estimation
precision of parameter θ encoded in the state |ψ(θ)〉= e−iθH|ψ〉 is
lower bounded as δ~θ � 1

2ΔH, where δ
~θ is the standard deviation of

an unbiased estimator ~θ, and (ΔH)2= 〈ψ|H2|ψ〉− 〈ψ|H|ψ〉2 is the
variance of the Hamiltonian H with the initial probe |ψ〉. The
quantum states with a maximum variance therefore are optimal
for the single-mode sensing, i.e. the equal superpositions of the
eigenstates of H corresponding to the extreme eigenvalues are the

most preferable quantum states. For example, as illustrated in
Fig. 1a, b, an atom prepared in the equal superposition of angular
momentum states |J, −J〉 and |J, J〉 has maximal sensitivity to
external field (H= Jz and Jz is the angular momentum operator).
Recently, a high precision electrometer, using the Schröinger cat
state of large angular momentum states to enhance ΔH, has also
been demonstrated to beat SNL23,24,30. Similarly, the phase pre-
cision with a single bosonic mode would be enhanced by using
the state Ψ Nð Þj i ¼ 0j i þ Nj ið Þ= ffiffiffi

2
p

(Fig. 1c, d), since it has the
maximum variance for H ¼ aya (a is the bosonic operator of the
sensing mode), given a mean photon number (average energy).
Such a maximum variance state (MVS) can in principle achieve
the HL precision δ~θ ¼ 1=N with

ffiffiffiffi
N

p
times enhancement over

the SNL.
As schematically illustrated in Fig. 1e, f, our experiment is

carried out with a superconducting system consisting of a
transmon qubit dispersively coupled to two three-dimensional
cavities31–33. The long-lived cavity serves as the sensing mode; the
transmon qubit as an ancilla assists the preparation, manipula-
tion, and detection of the photonic states in the sensing mode; the
short-lived cavity is employed for a high-fidelity readout of the
qubit state. The Hamiltonian of the qubit-oscillator system is
H ¼ ��hχqsjeihejaya28, where |e〉 is the excited state of the qubit
(the ground state is |g〉), and χqs reflects the dispersive interaction
strength between the qubit and the mode (Supplementary Note 1).
In our system, χqs/2π= 1.90 MHz is much stronger than the
decoherence rates of the qubit and the sensing mode, thus allows
full control of the photonic quantum state32–36.

Preparation of the MVS states. In our experiment, the probe
states of the sensing mode are deterministically created by
implementing a qubit-assisted unitary operation on the mode
based on carefully calibrated experimental parameters. The uni-
tary operation is realized through the so-called gradient ascent
pulse engineering method37,38, which is an optimization algo-
rithm designed to numerically find pulses that most accurately
realize a unitary operation and has been widely used for creating
cat states32,35 and other superpositions of Fock states33. With
numerically optimized control pulses, the probe states |Ψ(N)〉
with N= 1, 2, …, 12 are prepared faithfully. Compared with the
previous scheme that prepares superpositions of Fock states by
climbing the Jaynes–Cummings ladder step-by-step39, our one-
step approach allows arbitrary state preparation with higher
fidelity and shorter operation time. In Fig. 2 the experimentally
measured Wigner functions (bottom panels) of the typical MVSs
are plotted, agreeing well with the ideal ones (top panels). In the
phase-space, there are interesting periodic fringes in the polar
direction with N-fold rotational symmetry for |Ψ(N)〉. As the
rotation of the Wigner function by θ corresponds to the phase
operation U θð Þ ¼ eiθa

ya on the oscillator, the enhanced mea-
surement precision by the MVS can be intuitively explained:
because of the fine fringe features, |Ψ(N)〉 would be rotated to an
orthogonal state when the phase θ= π/N, the measurement
precision with the MVS is thus proportional to N, instead of

ffiffiffiffi
N

p
.

Optimal single-mode sensing scheme. Figure 3a depicts the
experimental circuit for the optimal sensing scheme with a Ramsey-
like interference (Fig. 1c), which can attain the ultimate HL for the
single-mode sensing. After an initialization process, the cavity is
prepared in |Ψ(N)〉 while the qubit ends up with |e〉. The phase
operation U(θ) on the sensing mode can then be generated after the
system evolves for a time period τ, where θ=−χqsτ. Then, a unitary
UH is implemented to rotate Φþ

�� � ¼ ej i 0j i þ Nj ið Þ= ffiffiffi
2

p
to |g〉 |0〉

and Φ�j i ¼ ej i 0j i � Nj ið Þ= ffiffiffi
2

p
to |e〉 |0〉. Finally, the ancillary
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qubit is projectively measured on |g〉, giving projection of U(θ)|Ψ
(N)〉 onto |Ψ(N)〉 with the ideal probability oscillation (Supple-
mentary Note 2)

PðNÞ
opt ¼ 1þ cosNθð Þ=2 ð1Þ

The experimental results of the optimal scheme P Nð Þ
opt are shown

in Fig. 3b. As intuitively expected from Fig. 2, the period of the
Ramsey interference fringes reduces with N and the contrast of
the fringes are nearly ideal. By fitting the experimentally
measured probability with P(N)(θ)= A+ B cos(Nθ), where A−B
and B represent the detected background and the contrast of the
Ramsey interference fringes, respectively, the phase estimation
precision can be inferred as

δ~θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðNÞ θð Þ 1� PðNÞ θð Þð Þ

p

∂PðNÞ θð Þ
∂θ

���
���

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1� Að Þp

NB
: ð2Þ

Figure 3c shows the results of δ~θ (blue dots) as a function of N
in a logarithmic–logarithmic scale. Clearly, the optimal scheme
beats the SNL, with the green region representing the experi-
mental results that surpass the SNL with a maximum precision
enhancement of 9.1 dB at N= 12, which is only 1.7 dB away from
the ultimate HL. The results demonstrate the quantum advantage
of our single-mode sensing unambiguously. The obtained
precision scales as N−0.94, approaching the Heisenberg scaling
(N−1). The slight deviation mainly attributes to the N-dependent
imperfections including the larger operation errors for larger

Hilbert space of Fock states (errors in the control pulse and
parameter uncertainties) and higher probability of photon loss.

The demonstrated optimal scheme can be utilized in practical
sensing applications. For example, if there is another microwave
signal coupling with the qubit with unknown amplitude or
frequency but largely off-resonant with the qubit-oscillator
system, the frequency of the sensing mode would be shifted
due to the cross-Kerr effect mediated by the qubit. This effect is
equivalent to an AC Stark-effect-induced shift of the sensing
mode. This frequency shift can cause an accumulated phase on |
N〉 with respect to |0〉, which can be detected by the presented
optimal sensing scheme. In turn, we can estimate the frequency or
amplitude of the unknown microwave signal.

Hybrid single-mode sensing scheme. By utilizing the recently
developed high-efficient bidirectional microwave-to-optical
quantum transduction40,41, our scheme with the MVS can also
be employed for the optical metrology. However, the Ramsey-like
measurement is very challenging in optical domain due to the
limited capability of deterministic quantum state manipulation of
optical photons. We thus propose a hybrid sensing scheme, as
shown in Fig. 4a, by employing a measurement scheme that only
uses easy operations in the optical domain, such as displacement
operation and photon counting42.

Envisioning the application of such a hybrid scheme, we
simulate the scheme in our superconducting system with the
restricted measurement. It is worth noting that different from
photon counting in the real optical system42, the measurement
through the ancillary qubit in the superconducting system
can only obtain a binary output, i.e. a result of whether the
photon number is n or not. So, the outcome of the measurement

has the probability PðNÞ
n ¼ hnjD αð ÞU θð Þ Ψ Nð Þj ij j2, where D(α) is

the displacement operator. We optimize the parameters α and n
for each MVS to maximize the measurement precision (Supple-
mentary Note 2).

The experimental results for the simulated hybrid scheme are
summarized in Fig. 4b. Although the fringe period reduces with N
similar to that in the optimal scheme, the contrast for the hybrid
scheme reduces with N. The reason is mainly that the probability
of the binary photon number detection reduces for large N as the
state spreads in the Fock space after a displacement operation.
However, this hybrid scheme beats the SNL as well, as indicated
by the green region in Fig. 4c, with a maximum precision
enhancement of 0.7 dB at N= 12. The obtained scaling N−0.62

(N−0.69 for an ideal experiment) is lower than that for the optimal
scheme because of the sub-optimal detection process, but can still
beat the standard scaling N−0.5 due to the initial MVS. Actually,
by using a photon number resolving detector, which is available
in optical domain, a better precision could be achieved by the
hybrid scheme in future optical sensing applications (as shown by
purple circles in Fig. 4c).

Discussion
Our single-mode quantum metrology architecture achieves a
precision near the HL and holds the advantage of hardware
efficiency, minimized sensing configuration, and compatibility
with quantum error correction that can be employed for further
enhancement of the precision43. Our scheme can also be directly
applied to other physical systems such as trapped ions44 and
nitrogen-vacancy centers45. As demonstrated in the hybrid
scheme, the precision still beats the SNL with the restricted
detecting scheme consisting of only displacement operation and
photon counting, which are easy to implement in optics. Addi-
tionally if we use microwave-to-optical up-conversion and down-
conversion twice, near-HL precisions with the optimal-detecting
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Fig. 1 Single-mode quantum metrology architectures. a, b Single-atom
Ramsey interferometer with a total angular momentum number J. The best
precision can be achieved by using the superposition of |J, −J〉 and |J, J〉
with the maximum variance of angular momentum. c, d Single-mode
Ramsey interferometer for photons/bosons with an optimal precision
achieved by the superposition of Fock states with the maximal variance of
photon numbers for a given mean photon number. e, f Schematic
illustrations of the single-mode sensing architecture and the experimental
circuit quantum electrodynamics system. A single qubit couples to two
photonic cavity modes, with the two modes serving as the sensing mode
and the ancillary qubit readout mode, respectively. The two boxes
represent the microwave cavities, between which the ancillary
superconducting qubit on a chip is located in a waveguide trench
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scheme can be achieved. Our scheme thus also adds a powerful
new platform to optical quantum metrology, which is quantum
resource saving and robust compared to the multiple-path optical
interferometer.

Note added: When submitting this work, we became aware of a
related work which demonstrates the single phonon mode sen-
sing using the superposition of Fock states in the trapped ion
system46.

Methods
Device parameters. The superconducting system consists of two three-
dimensional cavities and one ancillary transmon qubit, where the qubit couples
with the two cavities simultaneously. The ancillary qubit has a frequency ωq/2π
= 5.692 GHz, an energy relaxation time T1= 30 μs, and a pure dephasing time

Tϕ= 120 μs. The short-lived cavity is at a frequency of ωr/2π= 8.610 GHz, has a
lifetime of 44 ns due to its strong coupling to the external microwave drive line,
and assists the fast high-fidelity readout of the ancillary qubit. The long-lived
cavity serves as the sensing mode and has a frequency ωs/2π= 7.634 GHz, a
single-photon lifetime Ts

1 ¼ 143 μs, and a coherence time Ts
2 ¼ 250 μs.

Analysis of experimental imperfections. In practical quantum systems, there
are inevitable imperfections, such as the decoherence of the ancillary qubit and
the sensing mode, and the finite control precision. By including those imper-
fections in numerical simulations, we can estimate the phase estimation preci-
sion for practical experiments. It is worth noting that only the calibrated
parameters of the system and the numerically optimized control pulses are used
in the simulation, and neither further assumptions nor fitting parameters are
introduced. The excellent agreement between the experimental and numerical
results indicates that all essential experimental imperfections are captured in our
numerical model and all experimental parameters are well calibrated. The
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fidelities of 0.94, 0.92, 0.83, 0.70 for N= 3, 6, 9, 12, respectively. The measured state preparation fidelity decays with N, mainly attributed to the larger
probability of photon loss and the worse reconstruction measurement to obtain the Wigner functions for larger N. The measured range of the real and
imaginary parts of α is [−3.0, 2.9] for N= 3 and 6, [−3.6, 3.5] for N= 9, and [−3.9, 3.8] for N= 12. The angles of the dashed sectors indicate that the
sensitivity of phase estimation scales as 1/N
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numerical simulations further provide valuable information on the contribution
of each imperfection to the loss of measurement precision. The detailed analysis
of the errors in the three stages of the quantum metrology experiment: initial
state preparation, evolution of the system during the sensing process, and final
detection are described in Supplementary Note 3. Note that all the calculations
and experiments are performed unconditionally with no post-selection of the
experimental and numerical outcomes.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The code used for simulations is available from the corresponding authors upon
reasonable request.
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selective photon number (|n〉 state) detection enabled by the ancillary qubit through its dispersive interaction to photons. b The measured probability PðNÞn

of projecting to the photon number state |nopt〉 as a function of φ in the displacement operation, with the optimal nopt for each N being numerically obtained.
c Quantum advantage for the hybrid scheme. Blue dots are experimental results. The blue solid line is a linear fit and gives
log10 δ

~θ ¼ �0:62 log10 Nþ 0:068. The red crosses are the results from numerical simulations including the decoherences of our system, in good
agreement with the measured data. Green region represents the experimental results that surpass the standard limit by about 0.7 dB at N= 12. Purple
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detected. The error bars, obtained through the standard deviations of AðNÞ
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imperfect photon number detection
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