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We theoretically and experimentally study the electromagnetically-induced-transparency (EIT)
cooling of two-dimensional ion lattices in a Paul trap. We realize the EIT ground-state cooling
with 171Yb+ ions with hyperfine-energy levels different from other ions with a simple Λ-scheme
that has already been used. We observe a cooling rate ˙̄n = 3 × 104quanta/s and a cooling limit
n̄ = 0.06±0.059 for a single ion. The measured cooling rate and limit are consistent with theoretical
predictions. We apply the double-EIT cooling on two-dimensional (2D) lattices with up to 12 ions
and observe an average phonon number of n̄ = 0.82 ± 0.34 for the center of mass mode. Different
from the 2D crystal in the Penning trap, cooling rates of multiple ions are similar to that of a single
ion. The ground-state cooling of a 2D lattice with a large number of 171Yb+ ions will advance the
field of the quantum simulation of 2D systems. Our method can also be extended to the other
hyperfine qubits.

Cooling down mechanical oscillators into ground states
enabled experimental investigation and applications with
atoms and ions for quantum information science, includ-
ing quantum metrology and quantum computation [1].
Quantized vibrations of mechanical oscillators can be re-
sources for continuous-variable quantum computation [2–
6] or Boson sampling [7–12], which begins with ground
state preparation. Experimental demonstration of such
applications showing quantum advantages requires the
ground state cooling of dozens of vibrational modes [7].

Ground-state cooling of vibrational degrees of freedom
can also enhance the performance of quantum opera-
tions with atoms and ions. Phase noises and fluctua-
tions of qubit-qubit interaction strengths introduced by
thermal motions of ions or atoms can also be suppressed
by ground-cooling, which is important for realizing the
high-fidelity quantum gates [13, 14] and reliable quan-
tum simulations [15, 16]. Moreover, quantum simulation
using both vibrational and fermionic degrees of freedom
[17, 18] naturally demands the ground state cooling of
vibrational modes. In the current race of quantum tech-
nology, the size of the quantum systems that can be ma-
nipulated in the quantum regime is scaling up, which
requires simultaneous cooling of multiple mechanical os-
cillators.

The laser cooling provides a practical way to prepare
the quantum ground state of a mechanical oscillator with
atoms and ions, and even mesoscopic or macroscopic
oscillator by removing the entropy from the oscillators
to the photons. Laser cooling is first demonstrated us-
ing velocity-dependent radiative force [19, 20], which is
called as Doppler cooling. The final temperature that
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can be achieved in Doppler cooling is limited by the
natural linewidth of the atoms being cooled. Sisyphus
cooling can provide lower temperature than the Doppler
limit [21, 22]. While Sisyphus cooling has been widely
used with neutral atoms, it is hard to cool down to the
ground state and suffering from slow cooling speed for
trapped ions [22]. The ground state cooling can be real-
ized by resolved-sideband cooling [23, 24]. However, the
narrow excitation range of the resolved-sideband transi-
tion makes it difficult to perform ground-state cooling
for a large number of motional modes with multiple ions.
Moreover, some of sideband transitions are driven by high
power lasers and induce charging problem [25], which is
much worse for UV laser beams.

Electromagnetically-Induced-Transparency (EIT)
cooling [26–28] can provide an alternative possibility
that can apace cool down a wide range of vibrational
modes simultaneously and has been demonstrated in
the linear trap and Penning trap with tens to hundreds
of ions [29, 30]. The typical EIT cooling utilizes the
quantum interference emerged in three-level Λ-system
and has been demonstrated only in ions without clock
states. Here, we demonstrate a novel cooling method
for 171Yb+ ions with clock state, based on the double
EIT [31–36] in a four-level system instead of three-level.
The double-EIT cooling has been theoretically studied
[37–40] without experiment realizations. We experimen-
tally perform the double-EIT cooling of 171Yb+ ions
to prepare ground states of all the transverse motional
modes in a two-dimensional(2D) ion crystal [41]. We sys-
tematically study the efficiency of EIT cooling depending
on various control parameters including intensities and
detunings of probe and driving laser beams and find
optimal conditions. For multiple motional mode, we
cool the crystal near to the ground state in a couple
of hundreds microseconds, which is similar to that of a

ar
X

iv
:2

00
3.

10
27

6v
1 

 [
qu

an
t-

ph
] 

 2
3 

M
ar

 2
02

0

mailto:mu.q.phys@gmail.com
mailto:kimkihwan@mail.tsinghua.edu.cn 


2

𝜎+

|−⟩

Δd

𝛿B
𝛿B

12.6GHz

|𝑒⟩

𝜋

𝜎−

Δp

(a)

2.1GHz

|0⟩

|+⟩

(c)

AOM AOM
+𝟏

−𝟏

trap

Raman

Raman

EIT 2

EIT 1AOM

Doppler

Protection

B

369.5-nm 
laser

AOM

Transverse 
mode

230MHz

300MHz

270MHz Variable

PBS

x

y

(b)m = -1F
m = 0F

m = 1F

m = 0F

F=0

F=1

F=1

F=0

2P1/2

2S1/2

80

71

-40 -20 0 20 40 60
0

0.02

Δp/(2𝜋) MHz

59 67

𝑃|𝑒⟩

0.01

𝑃|𝑒⟩

55
0

63

FIG. 1. (a)Relevant energy levels of 171Yb+ for EIT cooling. (b)The Fano-like profile of double-EIT. The spectrum is calculated
by numerically solving the steady state solution of the master equation or by analytically finding scattering amplitude [Appendix
B]. In the simulation we set ∆d/(2π) = 55.6MHz, δB/(2π) = 4.6MHz, Ωσ,±/(2π) = 17MHz, Ωπ/(2π) = 4MHz, ν/(2π) =
1.5MHz, where ν is the frequency of the mode we want to cool. The bottom one shows the spectrum in a large range and the
red lines represent the theoretical prediction of the position of the dressed states. The top one shows the spectrum around
the peak we use for cooling, and the blue (red) line represents the position of the motional sideband, while the dark line
represents the carrier transition. (c) Optical configuration: Our EIT beams are split from the Doppler cooling beam with 14
GHz sideband. A PBS separates the EIT beams, and the relative detunings, ∆d − ∆p, are controlled by two AOMs in one of
the EIT optical path. We use the first-order diffraction beam of the first AOM and the negative first-order of the second to
add a small relative detuning, ∆d −∆p, between two EIT beams. The net propagating vectors of both EIT and Raman beams
are along the direction of transverse mode.

single ion.

The double-EIT cooling for 171Yb+ ion involves four
energy level, different with the ordinary three-level Λ
system. As indicated in Fig.1 (a), the excited-state
|e〉 ≡ |F = 0,m = 0〉 in P 1

2
manifold is coupled to three

states of |−〉 ≡ |F = 1,m = −1〉, |0〉 ≡ |F = 1,m = 0〉,
and |+〉 ≡ |F = 1,m = +1〉 in S1/2 manifold. We can un-
derstand this four-level system as two of the Λ structures,
which results in two of Fano-like profiles in the absorp-
tion spectrum. For example, one of the Λ schemes consist
of two ground states of |−〉, |0〉 (or |+〉, |0〉) and the ex-
cited state |e〉, which are coupled by the driving beam
with σ+ (or σ−) polarization and the probe beam with
π polarization, respectively. As shown in the Fig.1(b),
the absorption spectrum of the probe beam for an ion at
rest has two null points corresponding to two-dark states
when the detuning of the transition |0〉 ↔ |e〉matches the
detunings of the transitions |±〉 ↔ |e〉 [Appendix A]. And
the two narrow peaks originate from the dressed states
formed by |±〉 and |e〉 interacting with driving beams
[Appendix B,C]. The distance between a null point and
the corresponding narrow peak is determined by ac Stark
shift of the dressed state.

The principle for the double-EIT cooling of trapped
171Yb+ ions in a harmonic potential is similar to that of
the ordinary one, using the asymmetry of absorption pro-
file to enhance red sideband transition and suppress the
carrier and blue sideband transitions as shown in Fig.
1(b). We note that the relatively broad width of the
peak provides the ability for wide-range cooling. As long
as the asymmetry between red and blue sideband tran-
sition exists, we can cool the motional modes of the ion,

which results in ground-state cooling for a wide-range of
motional modes. With the detuning ∆p of π probe beam
set to ∆σ+ ≡ ∆d + δB, the internal state of the ion is
pumped to the dark state, and the ion will not absorb
any photon unless the motion of the ion induces a differ-

ential Doppler shift ~v · (k̂π − k̂σ+)/c = δ+ on π and σ+

light. This condition indicates the double-EIT can only
cool down the motional modes that are not perpendicular

to the difference in wave vector (k̂π− k̂σ+). Therefore, we
set the net k-vector along the direction of motional modes
of interest. Although we choose the right peak, both of
the peaks in the absorption spectrum can be used with
similar cooling rates and limits.

We experimentally demonstrate double-EIT cooling
with 171Yb+ ions, which has a clock-state qubit. The
energy splitting ω0 of the qubit states |F = 1,m = 0〉
and |F = 0,m = 0〉 in S 1

2
manifold is 12.642812 GHz,

which demonstrated long coherence times of superposi-
tion states [42]. The 171Yb+ ions locate at a pancake-
like potential produced by a radio-frequency Paul trap
described in Ref. [41], where the ions can form a 2D
crystal. We experimentally study the double-EIT cooling
from single ion to twelve ions in 2D crystal. A non-zero
magnetic field breaks the dark state resonance in Doppler
cooling. We apply B-field of 3.32 Gauss horizontally as
shown in Fig.1 (c)

The configuration of EIT beams consists of two laser
beams close to the S 1

2
|F = 1,m = 0〉 to P 1

2
|F = 0,m =

0〉 transition. We apply the EIT beams to make the dif-
ference in wave vectors parallel to the transverse direction
of the motional mode, which is of our interest. One of
the beam, EIT 1, works for driving the σ± transitions
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between |±〉 ↔ |e〉. The other beam, EIT 2, works as
probe beam coupling to the transition |0〉 ↔ |e〉. The de-
tuning ∆p of the probe beam is fixed at (2π)55.6 MHz,
and the detuning ∆d of the driving beam is adjusted
by varying the frequency difference between two AOMs.
As shown in Fig. 1(c), the EIT 1 passes through two
AOMs to adjust ∆d. We measure the Rabi frequencies
and the polarization of the probe and driving beams by
observing the differential ac Stark shift of the qubit tran-
sition and the Zeeman state qubits [22, 43] [Appendix
E]. The Rabi frequencies, {Ωσ− ,Ωπ,Ωσ+}/(2π), of the
driving beam of 24µW and probe beam of 5.5µW are
{16.74,1.72, 18.03}MHz and {1.49, 6.67, 3.17}MHZ.

Fig.2 (a) shows the experimental sequence to study the
EIT cooling with a single ion. For a single 171Yb+ ion, we
use the trap frequency of ωy/2π = 2.38 MHz along of the
transverse direction and {ωx, ωz}/2π = {0.42, 0.47} MHz
in the crystal plane. We first apply Doppler cooling,
which leads to Doppler-limit temperatures of the mo-
tional modes around the mean phonon number n̄ ≈ 7.
After Doppler cooling, 95% population of the internal
state of the ion falls into the S 1

2
|F = 1〉 manifold, which

the EIT cooling involves. We then apply EIT beams for
a duration τEIT. To measure the final phonon number n̄,
we first apply 3µs optical pumping to prepare the ground
state S 1

2
|F = 0,m = 0〉. Then we drive blue sideband

transition, and we extract n̄ by fitting the time evolution
of it [44].

We experimentally study the EIT cooling dynamics
with the optimized relative detuning, ∆d −∆p, by mea-
suring the mean phonon number n̄ at various cooling du-
ration τEIT, as indicated in Fig.2 (b). We measure n̄
by fitting the blue sideband transitions, which are shown
in Fig.2 (c) before and (d) after EIT cooling. Without
EIT cooling, the blue sideband transition decays fast due
to the various excitation on different vibrational modes
with different Rabi frequencies. The minimum value of
n̄min=0.06 reached by EIT cooling shown in Fig.2 (d)
demonstrates a near ground state cooling similar to the
sideband cooling. The 1/e cooling time τcool = 1/γcool,
where γcool is cooling rate, is 25 µs. The duration of 200
µs is sufficient to reach the ground state.

The optimal cooling condition and cooling range of the
double-EIT are studied by changing the relative detuning
of the EIT beams. The efficiency of the EIT cooling is
determined by the ratio of absorption strengths between
red-sideband and blue-sideband transitions, as shown in
Fig. 1(b), which is controlled by the detuning of the
driving beam ∆d in our experiment.

We observe the optimal detuning (∆p −∆d)/(2π) for
the EIT cooling locates at 4.55 MHz. This value is in
good agreement with the predicted value of 4.57 MHz,
which can be calculated by δB+δDR−ν, where δDR= (2π)
2.31 MHz is dressed-state ac Stark shift [Appendix B, C].
We also performed a numerical simulation of the cooling
range, including the heating rate of 0.67 quanta/ms of the
trap. The average phonon number from the simulation
are indicated as solid line in Fig.2 (e) and are in good

agreement with our experimental results.
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FIG. 2. (a) Experimental sequence to study the efficiency of
EIT cooling of a single trapped ion. (b) Cooling dynamics for
the transverse mode of y-direction. Red points are experimen-
tal data obtained by fitting blue-sideband transitions shown
in (c) and (d). Here, error bars are fitting errors. The black
line is fitting curve by an exponential decay function. The
horizontal dashed line indicates 1/e of initial phonon number.
(c,d) The blue-sideband transition after (c) Doppler cooling
and (d) EIT cooling of 200µs. (e) Average phonon number n̄
at the end of the EIT cooling depending on the relative de-
tuning between the probe beam and the driving beam. The
black line is the numerical simulation results by solving the
master equation.

We also experimentally study the EIT cooling rate,
γcool and minimum phonon number nmin depending on
intensities of driving and probe beams as shown in Fig.
3. We vary the powers of the driving beam and the probe
beam with the probe beam of 5.5µW (Ωp/2π = 6.67
MHz) and the driving beam of 24µW (Ωd/2π = 17.39
MHz), respectively. We note that we search the optimal
EIT detuning (∆p−∆d) at each point of laser powers. As
shown in Fig. 3(a), by increasing the power of the driv-
ing beam up to our experimental limitation, we observe
the enhancement of cooling effect with high cooling rate
and low cooling limit. We find that there is an optimal
value for the Rabi frequency of the probe beam.

To investigate the EIT cooling effect on a large ion
crystal, we hold a 2D crystal formed by 12 ions in
a pancake harmonic potentials [41] with trap frequen-
cies {ωx, ωy, ωz}/(2π) = {0.34, 1.22, 0.42}MHz. The ef-
ficiency of the EIT cooling on the large crystal is as-
sessed by comparing the ratio of red-sideband and blue-
sideband transition from the Raman spectrum before and
after EIT cooling. Fig.4 (a) is the spectrum with only
Doppler cooling, where the peaks of blue sideband (blue
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FIG. 3. (a) and (b) show the final mean phonon numbers
(red points) and cooling rates (green points) depending on
the power of (a) driving beam and (b) probe beam. Error
bars are from the fitting of blue-sideband transitions, similar
to Fig. 2(c,d). Solid lines are empirical fittings to guide the
dependency.

curve) and red sideband (red curve) transitions have simi-
lar heights across all the motional modes, which indicates
the phonon numbers are much larger than 1. Fig.4 (b)
shows the spectrum after Doppler and EIT cooling. The
disappearance of red-sideband transitions indicates the
simultaneous ground state cooling of all the modes. The
small peak in the spectrum of red sideband transitions
comes from not perfect ground-state cooling of center of
mass (COM) mode due to the high heating rate with 12
ions. We numerically simulate the red-sideband absorp-
tion spectrum of the crystal in the vicinity of each mode
for the parameters of our experiment [29]. The estimated
phonon numbers of COM mode is 1.04±0.26 [Appendix
F].

We also use the optical-dipole-force (ODF) thermom-
etry [45] to measure the final phonon number of COM
mode. The ODF, which is realized by simultaneously ap-
plying red-sideband and blue-sideband transitions, gener-
ates a σxσx interaction, where the decoherence from ion-
phonon coupling appears in the x basis. We use the Ram-
sey measurement to probe this decoherence, as shown in
Fig. 4(c). We first prepare all the qubits to its ground
state in σz basis, |↓〉z, then apply the ODF for two fixed
duration τODF with a spin-echo pulse sandwiched in be-
tween. Near the COM mode of 12 ions, we obtain the
spectrum depending on the detuning µR of ODF beams,
as shown in Fig. 4 (d). We can estimate the temperature
of the crystal by fitting the spectrum to the formula in
[Appendix G] [45], where the n̄ of Doppler cooling and
EIT cooling are 9.97± 4.86 and 0.82± 0.34, respectively.
Here, we calibrate the strength of ODF beams with a sin-
gle ion, whose temperature is also accurately measured
by fitting the blue-sideband transition.

We also investigate the EIT cooling dynamics for the
COM mode of 12 ions, and compare it for the case of a
single ion, as shown in Fig.4 (e). We develop a simple
method to estimate n̄ instead of using the whole ODF
spectrum in Fig. 4(d). We find the relation between n̄
and the heights of the ODF signal at the detuning with

1. 1.1 1.2 1.3

0.

0.5

1.

-3 -2 -1 0 1 2 3
0.

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500
-2

-1

0

1

200 sμ
Doppler Cooling

n̄

(d)

(μR − ωCOM)τODF/(2π)

Cooling duration ( s)μ

12 ion crystal
Single ion

(c) EIT Detectionπ |yOP ODF ODF
1000 sμ

3 sμ
τODF τODF

4 sμ
375 sμ

(b)

1 1.1 1.2

0

1

0.5

1. 1.1 1.2 1.3

0.

0.5

1.1

0.50.5

0
1 1.1 1.2 1.3

1 1.1 1.2 1.3
Raman detuning  (MHz)|μR |

Av
er

ag
ed

P ↑

(a)

Av
er

ag
ed

P ↑

0
0.01

200 300 400 500

0.1

1

10
(e)

1 2 30-1-2-30

0.1

0.2

0.3

0.4

0.5

Av
er

ag
ed

P ↓

100

n̄ = 0
n̄ = 4
n̄ = 8
n̄ = 12

1

0.5

0

FIG. 4. (a,b) Blue (blue curve) and red-sideband (red curve)
spectrum after (a) Doppler cooling and (b) EIT cooling. The
horizontal axis µR = ωR − ω0 is the detuning of the Raman
transition from the qubit transition. Dashed lines indicate
the locations of 12 motional modes perpendicular to the 2D-
crystal plane. (c) Pulse sequence for the ODF thermometry.
(d) ODF spectrum with different average phonon number.
The dashed black line indicates the position we choose for
the cooling rate measurement. (e) Cooling dynamics for the
single ion (green) and 12 ions in 2D crystal (red). Dots are
experimental data with error bars representing the standard
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the largest decoherence [Appendix G], which is used to
convert the heights of the ODF signal to the correspond-
ing n̄. We observe the cooling speed of 12 ions is as fast
as that of a single ion shown in Fig. 4(e). We do not
observe the enhancement of cooling speed as the num-
ber of ions increase [30, 46], which would come from the
difference between stationary and rotating nature of 2D
crystal.

In this paper, we provide the experimental evidence
that EIT cooling can be performed with 171Yb+ ions and
used for the efficient ground-state cooling of all the mo-
tional modes in 2D crystal. Our demonstration shows
the possibility that EIT cooling can be realized for atoms
and ions with more complicated level structures than Λ-
scheme. We believe this fast ground-state cooling will
be the essential experimental building block with a large
number of ions for quantum simulation including quan-
tum magnetism, quantum chemistry, and quantum ma-
chine learning.
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APPENDIX

A. The dark states

Considering the semi-classical treatment for the system of Fig. 1(a) in the rotating frame, we have the Hamiltonian

Ĥ =


0 Ωσ−

2 −Ωπ
2

Ωσ+
2

Ωσ−
2 ∆d + δB 0 0
−Ωπ

2 0 ∆p 0
Ωσ+

2 0 0 ∆d − δB

 (1)

where the basis is {|e〉, |+〉 , |0〉, |−〉}, ∆d is the detuning between the driving laser and |0〉 to |e〉 transition, ∆p is the
detuning between the probe laser and |0〉 to |e〉 transition, and δB is the Zeeman splitting. Here we denote ~ = 1.

Once the detuning of the probe beam matches to one of the Zeeman level ∆p = ∆d + δB ≡ ∆, the Hamiltonian can
b change to to

Ĥ =


0 Ωσ−

2 −Ωπ
2

Ωσ+
2

Ωσ−
2 ∆ 0 0
−Ωπ

2 0 ∆ 0
Ωσ+

2 0 0 ∆− 2δB

 (2)

This Hamiltonian gives us one dark state

|D1〉 =
1√

Ω2
π + Ω2

σ−

(Ωπ |+〉+ Ωσ−|0〉) (3)

And the coincidence with the other Zeeman level gives us the second dark state

|D2〉 =
1√

Ω2
π + Ω2

σ+

(Ωσ+|0〉+ Ωπ |−〉) (4)
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B. The scattering amplitude interpretation for the bright Resonance

We can more precisely understand this four-level atomic system interacting with laser beams by quantizing laser
field, which provides the Hamiltonian written as

H = H0 + Vσ+ + Vσ− + Vπ +
∑
v

Vv, (5)

where

H0 = Eσ+ |−〉 〈−|+ Eπ|0〉〈0|+ Eσ− |+〉 〈+|+ Ee|e〉〈e|+ ωσ−a
†
σ−aσ−

+ ωπa
†
πaπ + ωσ+a

†
σ+aσ+ +

∑
v

ωva
†
vav

Vσ+ =
dσ+

2
(aσ+|e〉 〈−|+ a†σ+ |−〉 〈e|)

Vπ =
dπ
2

(aπ|e〉〈0|+ a†π|0〉〈e|)

Vσ− =
dσ−

2
(aσ−|e〉 〈+|+ a†σ− |+〉 〈e|)

Vv =
dv
2

(av|e〉 〈−|+ a†v |−〉 〈e|+ av|e〉〈0|+ a†v|0〉〈e|+ av|e〉 〈+|+ a†v |+〉 〈e|).

(6)

Here, the last term represent the interaction with the vacuum field. Basically, the absorption spectra is proportional
to the squared scattering amplitude of the transition

|i〉 ≡ |0, 1, N1, N2, 0〉 → |f〉 ≡ |0, 0, N1, N2, 1〉, (7)

where the first index represent the atom internal state, the second number represent the Fock state of the probe field,
and the last three terms represent the Fock state of σ− field, σ+ field and vacuum field. It is worthy to remind you
that the absoption spectra means the atom absorb one photon and then emit it to the vacuum, where part of it can
be detected by PMT.

The scattering amplitude can be calculated by the T matrix

T = 〈f |V |i〉+ lim
η→0+

〈
f

∣∣∣∣V 1

Ei −H + iη
V

∣∣∣∣ i〉 (8)

and due to V = Vσ+ + Vσ− + Vπ +
∑
v Vv, V |i〉 and V |f〉 can be written by

V |i〉 =
Ωπ
2
|ϕe〉, V |f〉 =

Ωv
2
|ϕe〉. (9)

where we denote |ϕe〉 ≡ |e, 0, N1, N2, 0〉. There are two states strongly coupled to |ϕe〉, which are

|−, 0, N1 + 1, N2, 0〉, |+, 0, N1, N2 + 1, 0〉, (10)

since

V |+, 0, N1 + 1, N2, 0〉 =
Ωσ−

2
|ϕe〉, V |−, 0, N1, N2 + 1, 0〉 =

Ωσ+

2
|ϕe〉, (11)

respectively. We note that the subspace is closed. We can calculate the T matrix by projecting the Hamiltonian to
the subspace spanned by {|+, 0, N1 + 1, N2, 0〉, |−, 0, N1, N2 + 1, 0〉, |ϕe〉}.

In the second order perturbation theory[48], the effective Hamiltonian in this subspace can be calculated by

PHeffP = PH0P + PV P + PV Q
1

E0 −QH0Q
QV P, (12)
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where P is the projection operator to the subspace and Q = 1 − P . After calculating all the terms, the effective
Hamiltonian can be simplified by

Ĥeff =

∆π + iΓ
2 −Ωσ−

2 −Ωσ+
2

−Ωσ−
2 ∆π −∆σ− 0

−Ωσ+
2 0 ∆π −∆σ+.

 (13)

Therefore the fluorescence, W (∆) = |T (∆)|2, which is proportional to the square of the scattering amplitude is

W (∆π) =
16(∆π −∆σ−)2(∆π −∆σ+)2

Z
(14)

where

Z = 4Γ2(∆π −∆σ−)2(∆π −∆σ−)2 +
[
4∆π(∆π −∆σ+)(∆π −∆σ−)− (∆π −∆σ+)Ω2

σ− − (∆π −∆σ−)Ω2
σ+

]2
And Γ is the total decay rate of the excited state. The bright resonance will appear when

4∆π(∆π −∆σ+)(∆π −∆σ−)− (∆π −∆σ+)Ω2
σ− − (∆π −∆σ−)Ω2

σ+ = 0 (15)

In the experiment, we control ∆π by changing the detuning of the probe beam that has only the π-polarization. The
three roots independently correspond to the big Doppler peak and two narrow Fano peaks.

-30 -10 10 30 50 70-30 -10 10 30 50 70

A
br

. U
ni

ts

  (MHz)Δp/(2π)

Master equation result

Analytical result

FIG. 5. The spectrum calculated by the master equation and the analytical solution. Here we set Γ/(2π) = 21 MHz,
∆σ+/(2π) = 50.4 MHz, ∆σ−/(2π) = 59.6 MHz, Ωσ−/(2π) = Ωσ+/(2π) = 17 MHz, and Ωπ/(2π) = 0.5 MHz. The dot
represent the result calculated from the master equation and the curve is calculated by the Eq.(14).
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C. The dressed-states interpretation for the bright resonance

With only the two driving beams and no probe beam, we have the Hamiltonian

Ĥ =


0 Ωσ−

2 0 Ωσ+
2

Ωσ−
2 ∆σ− 0 0
0 0 0 0

Ωσ+
2 0 0 ∆σ+

 (16)

The energy of the dressed states can be calculated by diagonalizing the above Hamiltonian, which results in solving
the following equation

1

4
λ
[
4λ(λ−∆σ+)(λ−∆σ−)− (λ−∆σ+)Ω2

σ− − (λ−∆σ−)Ω2
σ+

]
= 0. (17)

These energies of dressed states can be observed by applying a probe beam with π-polarization, as shown in Fig.
6, which is consistent to the result of Eq.(15).

mF = − 1 mF = 0

mF = + 1

mF = 0

σ−σ+ Probe
Probe

FIG. 6. The dressed states. The gray dotted lines are the energy level without the interaction without the Ωσ,± fields. The
red lines are the dressed states formed by the laser field and the atomic levels.



11

D. The master equation treatment for the double-EIT cooling

The Hamiltonian that describes the interaction between the four-level system and the laser fields shown in Fig.
1(a) can be written as

Ĥ =


ω|e〉

Ωσ−
2 e−i(

~kd·~r−ωdt) −Ωπ
2 e
−i(~kp·~r−ωpt) Ωσ+

2 e−i(
~kd·~r−ωdt)

Ωσ−
2 ei(

~kd·~r−ωdt) ω|+〉 0 0

−Ωπ
2 e

i(~kp·~r−ωpt) 0 ω|0〉 0
Ωσ+

2 ei(
~kd·~r−ωdt) 0 0 ω|−〉,

 (18)

where ~kp(d) and ωp(d) are the k-vector and the frequency of the probe (driving) beam and ω|e〉, (ω|−〉ω|0〉, ω|+〉) are
the energies of the corresponding levels. For a rest ion, in the rotating frame the Hamiltonian can be simplified to

Ĥs =


0 Ωσ−

2 −Ωπ
2

Ωσ+
2

Ωσ−
2 ∆d + δB 0 0
−Ωπ

2 0 ∆p 0
Ωσ+

2 0 0 ∆d − δB

 (19)

The absorption spectrum can be obtained by numerical solving the steady state solution of the master equation
corresponding to the Hamiltonian Eq.(19)

dρ̂

dt
= −i[Ĥs, ρ̂] + Lρ, (20)

where L is the Lindblad operator corresponding to the three spontaneous decay channel Lρ =
∑3
i=1 ciρc

†
i − 1

2 [c†i ci, ρ]

and c1 =
√

Γ/3 |+〉 〈e|, c2 =
√

Γ/3 |0〉 〈e|, c1 =
√

Γ/3 |−〉 〈e|.
For the moving ion, the Hamiltonian in the rotating frame can be written as

Ĥm =


0 Ωσ−

2 e−i
~kd·~r −Ωπ

2 e
−i~kp·~r Ωσ+

2 e−i
~kd·~r

Ωσ−
2 ei

~kd·~r ∆d + δB 0 0

−Ωπ
2 e

i~kp·~r 0 ∆p 0
Ωσ+

2 ei
~kd·~r 0 0 ∆d − δB.

 (21)

In the simulation for the cooling effect, we set ~kd = −~kp = ŷ to deal only the relevant motional mode by the
laser beams. For the quantized ion motion in the harmonic potential, the position operator can be decomposed to

the creation and the annihilation operator of the phonon ŷ =
√

1
2MωCOM

(â + â†), where ωCOM is the frequency of

the harmonic potential. The cooling speed can be calculated by solving the time evolution of the master equation
corresponding to Ĥm and the cooling limit can be calculated by the average phonon number of the steady state
solution of the master equation.
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E. Measurements of Rabi Frequencies of the probe and driving beams

We measure the Rabi frequencies of the probe and driving laser beams by observing Ramsey oscillations from
the differential AC-stark shift of the beams. We use the clock qubit and Zeeman qubits to measure all the three
components of polarizations, as shown in the Fig.7.

σ− π

δB
ΔS = 12.6GHz

ΔP = 2.1GHz

σ− σ+

Δ

π

σ+π

P1/2
2

S1/2
2

F=1

F=0

F=0

F=1
m = -1F

m = 0F

m = 1F

m = 0F

m = 0F

m = -1F

m = 1Fm = 0F

FIG. 7. Energy levels of the 171Yb+ . The AC stark shift originated from different transitions are labelled by different colors.
The blue and red lines corresponding to the transitions contribute to the differential AC stark shift of the Zeeman qubits and
the orange lines corresponding to the transitions for the clock qubit.

For the clock state qubit 2S1/2|F = 0,mF = 0〉 to 2S1/2|F = 1,mF = 0〉, the AC-stark is given by the following
formula

∆clock
AC (Ω+,Ω−,Ωπ,∆) = Ω2

π

(
1

∆
+

1

∆P + ∆S −∆

)
+ (Ω2

− + Ω2
+)

(
1

∆P + ∆S −∆
− 1

∆P −∆

)
, (22)

where the first term comes from the transition 2S1/2|F = 1,mF = 0〉 to 2P1/2|F = 0,mF = 0〉 and 2S1/2|F =

0,mF = 0〉 to 2P1/2|F = 1,mF = 0〉 while the second term comes from the transition 2S1/2|F = 1,mF = 0〉 to
2P1/2|F = 1,mF = ±1〉 and 2S1/2|F = 0,mF = 0〉 to 2P1/2|F = 1,mF = ±1〉. Including the dephasing due to the

spontaneous emission whose strength is proportional to the 1/∆2, the Ramsey oscillation can be described by

sin2[∆clock
AC (Ω+,Ω−,Ωπ,∆)t]× e−Γ∗Ω2

πt/∆
2

e−Γ∗(Ω2
−+Ω2

+)t/(∆p−∆)2 . (23)

In a similar way, Ramsey oscillations of the two Zeeman qubits can be described by

sin2[∆±1
AC(Ω+,Ω−,Ωπ,∆)t]× e−γ∗Ω

2
∓t/(∆±δB)2e−γ∗Ω

2
πt/(∆p−∆)2 , (24)

where ∆±1
AC are the differential AC-stark shifts of the Zeeman qubits which are given by
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∆±1
AC(Ω+,Ω−,Ωπ,∆) = Ω2

∓

(
1

∆± δB
− 1

∆P −∆∓ δB
+

1

∆P + ∆S −∆

)
+

Ω2
π

(
− 1

∆P −∆
+

1

∆P + ∆S −∆

)
+

Ω2
±

∆P + ∆S −∆
.

(25)

To measure the Ramsey oscillation, we first prepare the ion to its ground state 2S1/2|F = 1,mF = 0〉 by the optical
pumping. Then a Ramsey sequence [43] is applied. To measure the Rabi frequencies of the three components, we run
the Ramsey sequence on all of three qubits, where the measurement and fitting results are shown in Fig. 8.
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FIG. 8. Results of the Ramsey measurements (a-c) for the driving beam and (d-f) for the probe beam.

We note that the signal of Fig. 8 (b) is used to align the direction of B-field. Once the B-field is parallel to the
driving beam, the π component of the driving beam will be eliminated, and the dephasing induced by the spontaneous
emission will be reduced.
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F. Extraction of the phonon number from the sideband transitions

In our experiment the states |F = 0,mF = 0〉 and |F = 1,mF = 0〉 in the 2S1/2 manifold, where the energy difference
is ω0, are defined as the |↓〉 and |↑〉 states of the qubit, respectively. A pair of 355 nm laser beams shown in Fig. 1(c)
with a frequency difference ωR are used to drive the qubit through the Raman transition [49]. As in the main text,
we define µR ≡ ωR − ω0 as the detuning of the Raman transition relative to the qubit transition.

When the detuning of the transition µR matches the frequency of a motional mode, the Hamiltonians Ĥr,m and

Ĥb,m, which represent the case of µR = −ωm and µR = ωm, respectively, can be written by

Ĥr,m = âm

√
1

2Mωm

∑
j

bmj σ̂
+
j + h.c. (26)

Ĥb,m = â†m

√
1

2Mωm

∑
j

bmj σ̂
+
j + h.c., (27)

where M is the mass of single 171Yb+ ion, â†m, âm and ωk are the creation, annihilation operator and angular frequency
of the k-th motional mode, bkj is the normal mode transformation matrix of the j-th ion with k-th mode. After the

time evolution Ûr(b),m(t) of the Hamiltonian with an initial state |↓↓↓ · · · ↓〉 |n〉m, where |n〉m is a Fock state of k-th
mode, we can get the time dependence of the normalized average upstate population as

P
r(b),m
↑ (t, n) = Tr

∑
j

σ̂z
j + Îs

2
⊗ Îm

 ρr(b),m(t, n)

 (28)

where Îs and Îm are the identity operators of spins and the k-th mode and ρr(b),m(t, n) =

Û(t)r(b),m |↓↓↓ · · · ↓〉 〈↓↓↓ · · · ↓| ⊗ |n〉m 〈n|m Û(t)†r(b),m is the density matrix after the time evolution of duration t.

If we start from a thermal state which is described by the density matrix

ρth(n̄) =
∑
i

n̄i

(n̄+ 1)i+1
|i〉m 〈i|m . (29)

Instead of simulating the master equation with this density matrix as initial state, we numerically solve
the time evolution from a Fock state with different phonon number and obtain the probabilities of a set

{P r(b),m
↑ (t, 0), P

r(b),m
↑ (t, 1), · · ·P r(b),m

↑ (t, n)}. Then the average upper-state probability after the time evolution from
a thermal state can be calculated by the weighted superposition of each evolution of a Fock state, as shown below
equation.

P
r(b),m
↑ (t) = Tr

∑
j

σ̂z
j + Îs

2
⊗ Îm

 ρr(b),th(t, n̄)

 =
∑
i

n̄i

(n̄+ 1)i+1
P

r(b),m
↑ (t, i) (30)

At the π duration of COM mode, we compare the ratio between blue-sideband and red-sideband transition for the

k-th mode, P r,m
↑ (t)/P b,m

↑ (t) to the Eq. (30). Then we deduce the n̄ for the k-th mode.

With this method we fit the peaks in Fig. 4(b) and estimate the final temperature after the double-EIT cooling.
The fitted results are {0.101 (zig-zag mode), 0.0460, 0.0283, 0.0817, 0.0996, 0.0181, 0.0759, 0.0337, 0.0388, 0.0495,
0.0274, 1.04 (COM mode)}.
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G. Thermometry based on the optical-dipole-force

Fig. 9 shows the laser setup for generating the optical-dipole-force(ODF).

ω0 + μ

ω0 − μ

FIG. 9. Laser setting for the ODF measurement.

For the pair of Raman beam, the effective Hamiltonian can be written as

H
(eff)
I =

∑
j

Ωj
2
e−i[∆k·rj(t)−δt−∆ϕ]σ̂+

j + H.c., (31)

where δ = ωR − ω0, Ωj and ∆k are the Rabi frequency and net wave-vector of Raman laser beams, respectively. If
we use two pair of Raman beam to generate two effective coupling simultaneously with opposite detuning µR for the
ODF, the whole Hamiltonian can be written as

H
(eff)
I,ODF =

∑
j

Ωj
2
e−i[∆k1·rj(t)−µRt−ϕ1]σ̂+

j +
Ωj
2
e−i[∆k2·rj(t)+µRt−ϕ2]σ̂+

j + H.c. (32)

Though we have four transitions and two Raman transitions, we typically use only two laser beams. One has only
one component, and the other has two frequency components. In this situation we have ∆k1 = ∆k2. And we can
rewrite the two phase terms by ϕs = ϕ1+ϕ2

2 and ϕm = ϕ1−ϕ2

2 . Then the Hamiltonian becomes

H
(eff)
I,ODF =

Ωj
2

(cos(∆k · rj) + i sin(∆k · rj)) cos(µRt+ ϕm)(σ̂(j)
x cosϕs − σ̂(j)

y sinϕs). (33)

In experiment, we calibrate the phase of two different frequency components to be the same, ϕs = ϕm = 0, and the
∆k along the y direction. Then we have

H
(eff)
I =

Ωj
2

[cos(∆k · yj) cosµRt+ i sin(∆k · yj) cosµRt] σ̂
(j)
x , (34)

where the first term gives us the dephasing dependent on the motional state along the x-axis in the Bloch sphere [45]:

P j↑ =
1

2

[
1− e−2ΓDτ exp

(
−2
∑
m

|αjm|2 (2n̄m + 1)

)]
, (35)

where ΓD describes the decoherence in the experiment and

αjm =
Ωjbjm

(µ2
R − ω2

m)

√
1

2Mωm
(ωm(1− cosφ) + iµR sinφ − eiωmτ {ωm [cos (µRτ)− cos (µRτ + φ)]

−iµR [sin (µRτ)− sin (µRτ + φ)]}) ,
(36)
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where φ = (τ + τπ) (µR − ωm) and τπ is the duration for the π-pulse during the ODF measurement. For the relative
long duration of the ODF pulse we have φ ≈ τ (µR − ωm)

The spectrum resulting from the Eq.(36) with different phonon number are shown in 10(a). The null point corre-
sponding to τ (µR − ωm) = 2nπ. In the experiment we individually detect the fluorescence of ions in the crystal to
get the downstate population and measure the strength of ODF by the Rabi oscillation of the carrier transition.

We develop a convenient way to study the cooling dynamics without obtaining the spectroscopy signal of Fig. 10(a)
at each step of the cooling. We fix the detuning of the ODF beams at the highest peak of the spectrum shown in
the dashed line of Fig. 10(a), which is (µR − ωCOM)τODF/(2π) = 0.37 in our experiment, and record the up-state
probability during the cooling. As shown in Fig.10(a), with the same strength and duration of the ODF beams, the
decrease of the temperature will lower the height of the spectrum.
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FIG. 10. ODF spectrum and the heating measurement. (a) The ODF spectrum of average up-state population with different
phonon number for the COM mode. The dashed black line indicates the chosen detuning to measure the average phonon
number. (b) The relation between the average phonon number and the average downstate population at the detuning of ODF
pulse indicated in (a). (c) Comparison of the results of heating measurements between blue-sideband (blue line) and ODF
height method (red line). (d) The heating measurement of multiple ions by the ODF height method.

The relation between the up-state probability at the chosen detuning and the temperature is shown in the Fig.10(b).
By fitting the experimentally measured P↑ to the corresponding function, we can quickly obtain the temperature of
the mode, which we name as ODF height method. The reliability of this method is verified with the blue-sideband
measurement for the heating of a single ion. We first measure the heating rate of a single ion by both the blue-sideband
method and the ODF height method. Then we compare their results, which are consistent, as shown in Fig.10(c).
Then we apply the ODF height method to measure the heating rate for COM mode of 2D crystals consisted of 2, 4,
6 and 12 ions. As shown in Fig.10(d), the heating rate for the COM mode increases linearly with the number of ions
as expected.

Fig.11 shows the cooling dynamics for the 2D crystal with different number of ions by using the ODF height method.
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FIG. 11. Multi-ion crystal heating measurement by the ODF height method for 2, 4, 6 and 12 ions.
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