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Abstract. We introduce a new multi-player geometric game, which we will refer
to as the isolation game, and study its Nash equilibria and best or better response
dynamics. The isolation game is inspired by the Voronoi game, competitive facil-
ity location, and geometric sampling. In the Voronoi game studied by Dürr and
Thang, each player’s objective is to maximize the area of her Voronoi region. In
contrast, in the isolation game, each player’s objective is to position herself as far
away from other players as possible in a bounded space. Even though this game
has a simple definition, we show that its game-theoretic behaviors are quite rich
and complex. We consider various measures of farness from one player to a group
of players and analyze their impacts to the existence of Nash equilibria and to the
convergence of the best or better response dynamics: We prove that it is NP-hard
to decide whether a Nash equilibrium exists, using either a very simple farness
measure in an asymmetric space or a slightly more sophisticated farness measure
in a symmetric space. Complementing to these hardness results, we establish ex-
istence theorems for several special families of farness measures in symmetric
spaces: We prove that for isolation games where each player wants to maximize
her distance to her mth nearest neighbor, for any m, equilibria always exist. More-
over, there is always a better response sequence starting from any configuration
that leads to a Nash equilibrium. We show that when m = 1 the game is a poten-
tial game — no better response sequence has a cycle, but when m > 1 the games
are not potential. More generally, we study farness functions that give different
weights to a player’s distances to others based on the distance rankings, and obtain
both existence and hardness results when the weights are monotonically increas-
ing or decreasing. Finally, we present results on the hardness of computing best
responses when the space has a compact representation as a hypercube.

1 Introduction

In competitive facility location [4,5,7] data clustering [8], and geometric sampling [10],
a fundamental geometric problem is to place a set of objects (such as facilities and
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cluster centers) in a space so that they are mutually far away from one another. Inspired
by the study of Dürr and Thang [3] on the Voronoi game, we introduce a new multi-
player geometric game called isolation game.

In an isolation game, there are k players that will locate themselves in a space (Ω, Δ)
where Δ(x, y) defines the pairwise distance among points in Ω. If Δ(x, y) = Δ(y, x),
for all x, y ∈ Ω, we say (Ω, Δ) is symmetric. The ith player has a (k−1)-place function
fi(. . . , Δ(pi, pi−1), Δ(pi, pi+1), . . .) from the k − 1 distances to all other players to a
real value, measuring the farness from her location pi to the locations of other players.
The objective of player i is to maximize fi(. . . , Δ(pi, pi−1), Δ(pi, pi+1), . . .), once the
positions of other players (. . . , pi−1, pi+1, . . .) are given.

Depending on applications, there could be different ways to measure the farness
from a point to a set of points. The simplest farness function fi() could be the one that
measures the distance from pi to its nearest player. Games based on this measure are
called nearest-neighbor games. Another simple measure is the total distance from pi

to other players. Games based on this measure are called total distance games. Other
farness measures include the distance of pi to its mth nearest player, or a weighted
combination of the distances from player i to other players.

Isolation games with simple farness measures can be viewed as an approximation of
the Voronoi game [1,2,6]. Recall that in the Voronoi game, the objective of each player is
to maximize the area of her Voronoi cell in Ω induced by {p1, ..., pk} — the set of points
in Ω that are closer to pi than to any other player. The Voronoi game has applications in
competitive facility location, where merchants try to place their facilities to maximize
their customer bases, and customers are assumed to go to the facility closest to them.
Each player needs to calculate the area of her Voronoi cell to play the game, which
could be expensive. In practice, as an approximation, each player may choose to simply
maximize her nearest-neighbor distance or total-distance to other players. This gives
rise to the isolation game with these special farness measures.

The generalized isolation games may have applications in product design in a com-
petitive market, where companies’ profit may depend on the dissimilarity of their prod-
ucts to those of their competitors, which could be measured by the multi-dimensional
features of products. Companies differentiate their products from those of their com-
petitors by playing some kind of isolation games in the multi-dimensional feature space.
The isolation game may also have some connection with political campaigns such as in
a multi-candidate election, in which candidates, constrained by their histories of public
service records, try to position themselves in the multi-dimensional space of policies
and political views in order to differentiate themselves from other candidates.

We study the Nash equilibria [9] and best or better response dynamics of the isolation
games. We consider various measures of farness from one player to a group of players
and analyze their impact to the existence of Nash equilibria and to the convergence
of best or better response dynamics in an isolation game. For simple measures such
as the nearest-neighbor and the total-distance, it is quite straightforward to show that
these isolation games are potential games when the underlying space is symmetric.
Hence, the game has at least one Nash equilibrium and all better response dynamics
converge. Surprisingly, we show that when the underlying space is asymmetric, Nash
equilibria may not exist, and it is NP-hard to determine whether Nash equilibria exist in



150 Y. Zhao, W. Chen, and S.-H. Teng

an isolation game. The general isolation game is far more complex even for symmetric
spaces, even if we restrict our attention only to uniform anonymous isolation games. We
say an isolation game is anonymous if for all i, fi() is invariant under the permutation
of its parameters. We say an anonymous isolation game is uniform if fi() = fj() for
all i, j. For instance, the two potential isolation games with the nearest-neighbor or
total-distance measure mentioned above are uniform anonymous games. Even these
classes of games exhibit different behaviors: some subclass of games always have Nash
equilibrium, some can always find better response sequences that converge to a Nash
equilibrium, but some may not have Nash equilibrium and determining the existence of
Nash equilibrium is NP-complete. We summarize our findings below.

First, We prove that for isolation games where each player wants to maximize her
distance to her mth nearest neighbor, equilibria always exist. In addition, there is always
a better response sequence starting from any configuration that leads to a Nash equilib-
rium. We show, however, this isolation game is not a potential game — there are better
response sequences that lead to cycles. Second, as a general framework, we model the
farness function of a uniform anonymous game by a vector w = (w1, w2, . . . , wk−1).
Let dj = (dj,1, dj,2, . . . , dj,k−1) be the distance vector of player j in a configura-
tion, which are distances from player j to other k − 1 players sorted in nondecreasing
order, i.e., dj,1 ≤ dj,2 ≤ . . . ≤ dj,k−1. Then the utility of player j in the configura-
tion is w · d =

∑k−1
i=1 (wi · dj,i). We show that Nash equilibrium exists for increasing

or decreasing weight vectors w, when the underlying space (Ω, Δ) satisfies certain
conditions, which are different for increasing and decreasing weight vectors. For a par-
ticular version of the decreasing weight vectors, namely (1, 1, 0, . . . , 0), we show that:
(a) it is not potential even on a continuous one dimensional circular space; (b) in gen-
eral symmetric spaces Nash equilibrium may not exist, and (c) it is NP-complete to
decide if a Nash equilibrium exists in general symmetric spaces. Combining with the
previous NP-completeness result, we see that either a complicated space (asymmetric
space) or a slightly complicated farness measure ((1, 1, 0, . . . , 0) instead of (1, 0 . . . , 0)
or (0, 1, 0, . . . , 0)) would make the determination of Nash equilibrium difficult.

We also examine the hardness of computing best responses in spaces with compact
representations such as a hypercube. We show that for one class of isolation games
including the nearest-neighbor game as the special case it is NP-complete to compute
best responses, while for another class of isolation games, the computation can be done
in polynomial time.

The rest of the paper is organized as follows. Section 2 covers the basic definitions
and notation. Section 3 presents the results for nearest-neighbor and total-distance iso-
lation games. Section 4 presents results for other general classes of isolation games.
Section 5 examines the hardness of computing best responses in isolation games. We
conclude the paper in Section 6. The full version of the paper with complete proofs can
be found in [11].

2 Notation

We use (Ω, Δ) to denote the underlying space, where we assume Δ(x, x) = 0 for all
x ∈ Ω, Δ(x, y) > 0 for all x, y ∈ Ω and x �= y, and that (Ω, Δ) is bounded — there
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exists a real value B such that Δ(x, y) ≤ B for every x, y ∈ Ω. In general, (Ω, Δ)
may not be symmetric or satisfy the triangle inequality. We always assume that there
are k players in an isolation game and each player’s strategy set is the entire Ω. A
configuration of an isolation game is a vector (p1, p2, . . . , pk), where pi ∈ Ω speci-
fies the position of player i. The utility function of player i is a (k − 1)-place func-
tion fi(. . . , Δ(pi, pi−1), Δ(pi, pi+1), . . .). For convenience, we use ut i(c) to denote
the utility of player i in configuration c.

We consider several classes of weight vectors in the uniform, anonymous isolation
game. In particular, the nearest-neighbor and total-distance isolation games have the
weight vectors (1, 0, . . . , 0) and (1, 1, . . . , 1), respectively; the single-selection game has
vectors that have exactly one nonzero entry; the monotonically-increasing (or decreas-
ing) games have vectors whose entries are monotonically increasing (or decreasing).

A better response of a player i in a configuration c = (p1, . . . , pk) is a new position
p′i �= pi such that the utility of player i in configuration c′ by replacing pi with p′i in c is
larger than her utility in c. In this case, we say that c′ is the result of a better-response
move of player i in configuration c. A best response of a player i in a configuration
c = (p1, . . . , pk) is a new position p′i �= pi that maximizes the utility of player i while
player j remains at the position pj for all j �= i. In this case, we say that c′ is the result
of a best-response move of player i in configuration c.

A (pure) Nash equilibrium of an isolation game is a configuration in which no player
has any better response in the configuration. An isolation game is better-response poten-
tial (or best-response potential) if there is a function F from the set of all configurations
to a totally ordered set such that F (c) < F (c′) for any two configurations c and c′ where
c′ is the result of a better-response move (or a best-response move) of some player at
configuration c. We call F a potential function. Note that a better-response potential
game is also a best-response potential game, but a best-response potential game may
not be a better-response potential game. If Ω is finite, it is easy to see that any better-
response or best-response potential game has at least one Nash equilibrium. Henceforth,
we use the shorthand “potential games” to refer to better-response potential games.

3 Nearest-Neighbor and Total-Distance Isolation Games

In this section, we focus on the isolation games with weight vectors (1, 0, . . . , 0) and
(1, 1, . . . , 1). We show that both are potential games when Ω is symmetric, but when Ω
is asymmetric and finite, it is NP-complete to decide whether those games have Nash
equilibria.

Theorem 1. The symmetric nearest-neighbor and total-distance isolation games are
potential games.

The following lemma shows that the asymmetric isolation game may not have any
Nash equilibrium for any nonzero weight vector. Thus, it also implies that asymmet-
ric nearest-neighbor and total-distance isolation games may not have Nash equilibria.

Lemma 1. Consider an asymmetric space Ω = {v1, v2, . . . , v�+1} with the distance
function given by the following matrix with t ≥ � + 1. Suppose that for every player i
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her weight vector wi has at least one nonzero entry. Then, for any 2 ≤ k ≤ �, there is
no Nash equilibrium in the k-player isolation game.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δ v1 v2 v3 . . . v� v�+1

v1 0 t − 1 t − 2 . . . t − � + 1 t − �
v2 t − � 0 t − 1 . . . t − � + 2 t − � + 1
...

...
. . .

...
v� t − 2 t − 3 t − 4 . . . 0 t − 1

v�+1 t − 1 t − 2 t − 3 . . . t − � 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Theorem 2. It is NP-complete to decide whether a finite, asymmetric nearest-neighbor
or total-distance isolation game has a Nash equilibrium.

Proof. We first prove the case of nearest-neighbor isolation game.
Suppose that the size of Ω is n. Then the distance function Δ has n2 entries. The

decision problem is clearly in NP. The NP-hardness can be proved by a reduction from
the Set Packing problem. An instance of the Set Packing problem includes a set I =
{e1, e2, . . . , em} of m elements, a set S = {S1, . . . , Sn} of n subsets of I , and a
positive integer k. The decision problem is to decide whether there are k disjoint subsets
in S. We now give the reduction.

The space Ω has n + k + 1 points, divided into a left set L = {v1, v2, . . . , vn} and a
right set R = {u1, u2, . . . , uk+1}. For any two different points vi, vj ∈ L, Δ(vi, vj) =
2n if Si ∩ Sj = ∅, and Δ(vi, vj) = 1/2 otherwise. The distance function on R is given
by the distance matrix in Lemma 1 with � = k and t = k+1. For any v ∈ L and u ∈ R,
Δ(v, u) = Δ(u, v) = 2n. Finally, the isolation game has k + 1 players.

We now show that there exists a Nash equilibrium for the nearest-neighbor isolation
game on Ω iff there are k disjoint subsets in the Set Packing instance.

First, suppose that there is a solution to the Set Packing instance. Without loss of
generality, assume that the k disjoint subsets are S1, S2, . . . , Sk. Then we claim that
configuration c = (v1, v2, . . . , vk, u1) is a Nash equilibrium. In this configuration, it
is easy to verify that every player’s utility is 2n, the largest possible pairwise distance.
Therefore, c is a Nash equilibrium.

Conversely, suppose that there is a Nash equilibrium in the nearest-neighbor isolation
game. Consider the set R. If there is a Nash equilibrium c, then the number of players
positioned in R is either k + 1 or at most 1 because of Lemma 1. If there are k + 1
players in R, then every player has utility 1, and thus every one of them would want to
move to points in L to obtain a utility of 2n. Therefore, there cannot be k + 1 players
positioned in R, which means that there are at least k players positioned in L.

Without loss of generality, assume that these k players occupy points v1, v2, . . . , vk

(which may have duplicates). We claim that subsets S1, S2, . . . , Sk form a solution
to the Set Packing problem. Suppose, for a contradiction, that this is not true, which
means there exist Si and Sj among these k subsets that intersect with each other. By
our construction, we have Δ(vi, vj) = 0 or 1/2. In this case, players at point vi and
vj would want to move to some free points in R, since that will give them utilities
of at least 1. This contradicts the assumption that c is a Nash equilibrium. Therefore,
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we found a solution for the Set Packing problem given a Nash equilibrium c of the
nearest-neighbor isolation game.

The proof for the case of total-distance isolation game is essentially the same, with
only changes in players’ utility values. �

4 Isolation Games with Other Weight Vectors

In this section, we study several general classes of isolation games. We consider sym-
metric space (Ω, Δ) in this section.

4.1 Single-Selection Isolation Games

Theorem 3. A Nash equilibrium always exists in any single-selection symmetric game.

Although Nash equilibria always exist in the single-selection isolation games, the fol-
lowing lemma shows that they are not potential games.

Lemma 2. Let Ω = {A, B, C, D, E, F} contain six points on a one-dimensional cir-
cular space with Δ(A, B) = 15, Δ(B, C) = 11, Δ(C, D) = 14, Δ(D, E) = 16,
Δ(E, F ) = 13, and Δ(F, A) = 12. The five-player single-selection game with the
weight vector (0, 1, 0, 0) on Ω is not potential.

Proof. Let the five players stand at A, B, C, D, and E respectively in the initial config-
uration. Their better response dynamics can iterate forever as shown in Figure 1. Hence
this game is not a potential game. �

Fig. 1. An example of a better-response sequence that loops forever for a five-player isolation
game with weight vector (0, 1, 0, 0) in a one dimensional circular space with six points

Surprisingly, the following theorem complements the previous lemma.

Theorem 4. If Ω is finite, then for any single-selection game on Ω and any starting
configuration c, there is a better-response sequence in the game that leads to a Nash
equilibrium.
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Proof. Suppose that the nonzero weight entry is the mth entry in the k-player single-
selection isolation game with m > 1 (the case of m = 1 is already covered in
nearest-neighbor isolation game). For any configuration c = (p1, . . . , pk), the utility
of player i is the distance between player i and her mth nearest neighbor. Let vector
u(c) = (u1, u2, . . . , uk) be the vector of the utility values of all players in c sorted in
nondecreasing order, i.e., u1 ≤ u2 ≤ . . . ≤ uk. We claim that for any configuration
c, if c is not a Nash equilibrium, there must exist a finite sequence of configurations
c = c0, c1, c2, . . . , ct = c′, such that ci+1 is the result of a better-response move of
some player in ci for i = 0, 1, . . . , t − 1 and u(c) < u(c′) in lexicographic order.

We now prove this claim. Since the starting configuration c0 = c is not a Nash
equilibrium, there exists a player i that can make a better response move to position p,
resulting in configuration c1. We have ut i(c0) < ut i(c1). Let Si be the set of player
i’s m − 1 nearest neighbors in configuration c1. We now repeat the following steps
to find configurations c2, . . . , ct. When in configuration cj , we select a player aj such
that utaj (cj) < ut i(c1) and move aj to position p, the same position where player i
locates. This gives configuration cj+1. This is certainly a better-response move for aj

because utaj (cj+1) = ut i(cj+1) = ut i(c1) > utaj (cj), where the second equality
holds because we only move the m − 1 nearest neighbors of player i in c1 to the same
position as i, so it does not affect the distance from i to her mth nearest neighbor. The
repeating step ends when there is no more such player aj in configuration cj , in which
case cj = ct = c′.

We now show that u(c) < u(c′) in lexicographic order. We first consider any player
j �∈ Si, either her utility does not change (utj(c) = utj(c′)), or her utility change must
be due to the changes of her distances to player i and players a1, a2, . . . , at−1, who have
moved to position p. Suppose that player j is at position q. Then Δ(p, q) ≥ ut i(c1)
because j �∈ Si. This means that if j’s utility changes, her new utility utj(c′) must be
at least Δ(p, q) ≥ ut i(c1). For a player j ∈ Si, if she is one of {a1, . . . , at−1}, then
her new utility utj(c′) = ut i(c′) = ut i(c1); if she is not one of {a1, . . . , at−1}, then
by definition utj(c′) ≥ ut i(c1). Therefore, comparing the utilities of every player in
c and c′, we know that either her utility does not change, or her new utility is at least
ut i(c′) = ut i(c1) > ut i(c), and at least player i herself strictly increases her utility
from ut i(c) to ut i(c′). With this result, it is straightforward to verify that u(c) < u(c′).
Thus, our claim holds.

We may call the better-response sequence found in the above claim an epoch. We
can apply the above claim to concatenate new epochs such that at the end of each epoch
the vector u strictly increases in lexicographic order. Since the space Ω is finite, the
vector u has an upper bound. Therefore, after a finite number of epochs, we must be
able to find a Nash equilibrium, and all these epochs concatenated together form the
better-response sequence that leads to the Nash equilibrium. This is clearly true when
starting from any initial configuration. �

4.2 Monotonically-Increasing Games

For monotonically-increasing games, we provide the following general condition that
guarantees the existence of a Nash equilibrium. We say that a pair of points u, v ∈ Ω
is a pair of polar points if for any point w ∈ Ω, the inequality Δ(u, w) + Δ(w, v) ≤
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Δ(u, v) holds. Spaces with polar points include one-dimensional circular space, two-
dimensional sphere, n-dimensional grid with L1 norm as its distance function, etc.

Theorem 5. If Ω has a pair of polar points, then any monotonically-increasing isola-
tion game on Ω has a Nash equilibrium.

4.3 Monotonically-Decreasing Games

Monotonically-decreasing games are more difficult to analyze than the previous vari-
ants of isolation games, and general results are not yet available. In this section, we
first present a positive result for monotonically-decreasing games on a continuous one-
dimensional circular space. We then present some hardness result for a simple type of
weight vectors in general symmetric spaces.

The following theorem is a general result with monotonically-decreasing games as
its special cases.

Theorem 6. In a continuous one-dimensional circular space Ω, the isolation game
on Ω with weight vector w = (w1, w2, . . . , wk−1) always has a Nash equilibrium if
∑k−1

t=1 (−1)twt ≤ 0.

A monotonically-decreasing isolation game with weight vector w =
(w1, w2, . . . , wk−1) automatically satisfies the condition

∑k−1
t=1 (−1)twt ≤ 0.

Hence we have the following corollary.

Corollary 1. In a continuous one-dimensional circular space Ω, any monotonically-
decreasing isolation game on Ω has a Nash equilibrium.

We now consider a simple class of monotonically-decreasing games with weight vector
w = (1, 1, 0, . . . , 0) and characterize the Nash equilibria of the isolation game in a con-
tinuous one-dimensional circular space Ω. Although the game has a Nash equilibrium
in a continuous one-dimensional circular space according to the above corollary, it is
not potential, as shown by the following lemma.

Lemma 3. Consider Ω = {A, B, C, D, E, F} that contains six points in a one-
dimensional circular space with Δ(A, B) = 13, Δ(B, C) = 5, Δ(C, D) = 10,
Δ(D, E) = 10, Δ(E, F ) = 11, and Δ(F, A) = 8. The five-player monotonically-
decreasing game on Ω with weight vector w = (1, 1, 0, 0) is not best-response poten-
tial (so not better-response potential either). This implies that the game on a continuous
one-dimensional circular space is not better-response potential.

If we extend from the one-dimensional circular space to a general symmetric space,
there may be no Nash equilibrium for isolation games with weight vector w =
(1, 1, 0, . . . , 0) at all, as shown in the following lemma.

Lemma 4. There is no Nash equilibrium for the four-player isolation game with weight
vector w = (1, 1, 0) in the space with five points {A, B, C, D, E} and the following
distance matrix, where N > 21 (note that this distance function also satisfies triangle
inequality).
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Δ A B C D E
A 0 N − 6 N − 11 N − 1 N − 6
B N − 6 0 N − 8 N − 10 N − 1
C N − 11 N − 8 0 N − 1 N − 6
D N − 1 N − 10 N − 1 0 N − 10
E N − 6 N − 1 N − 6 N − 10 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Using the above lemma as a basis, we further show that it is NP-complete to decide
whether an isolation game with weight vector (1, 1, 0, . . . , 0) on a general symmetric
space has a Nash equilibrium. The proof is by a reduction from 3-Dimensional Match-
ing problem.

Theorem 7. In a finite symmetric space (Ω, Δ), it is NP-complete to decide the exis-
tence of Nash equilibrium for isolation game with weight vector w = (1, 1, 0, . . . , 0).

5 Computation of Best Responses in High Dimensional Spaces

We now turn to the problem of computing the best response of a player in a configu-
ration. A brute-force search on all points in the space can be done in O(k log k

√
D),

where D is the size of the distance matrix. This is fine if the distance matrix is explic-
itly given as input. However, it could become exponential if the space has a compact
representation, such as an n-dimensional grid with the L1 norm as the distance func-
tion. In this section, we present results on an n-dimensional hypercube {0, 1}n with the
Hamming distance, a special case of n-dimensional grids with the L1 norm.

Theorem 8. In a 2n-dimensional hypercube {0, 1}2n, it is NP-complete to decide
whether a player could move to a point so that her utility is at least n − 1 in the k-
player nearest-neighbor isolation game with k bounded by poly(n).

The above theorem leads to the following hardness result in computing best responses
for a general class of isolations games, with nearest-neighbor game as a special case.

Corollary 2. It is NP-hard to compute a best response for an isolation game in the
space {0, 1}2n with weight vector w = (∗, . . . , ∗, 1

︸ ︷︷ ︸
c

, 0, . . . , 0) where c is a constant and

∗ is either 0 or 1.

Contrasting to the above corollary, if the weight vector has only nonzero entries towards
the end of the vector, it is easy to compute the best response, as shown in the following
theorem.

Theorem 9. A best response for a k-player isolation game in the space {0, 1}n with
w = (0, . . . , 0, 1, ∗, . . . , ∗

︸ ︷︷ ︸
c

) can be computed in polynomial time where c is a constant,

k is bounded by poly(n) and ∗ is either 0 or 1.
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6 Final Remarks

The isolation game is very simple by its definition. However, as shown in this paper, the
behaviors of its Nash equilibria and best response dynamics are quite rich and complex.
This paper presents the first set of results on the isolation game and lays the ground
work for the understanding of the impact of the farness measures and the underlying
space to some basic game-theoretic questions about the isolation game. It remains an
open question to fully characterize the isolation game. In particular, we would like
to understand for what weight vectors, the isolation game on simple spaces, such as
d-dimensional grids, hypercubes, and torus grid graphs, has potential functions, has
Nash equilibria, or has converging best (better) response sequences. What is the impact
of distance functions, such as L1-norm or L2-norm to these questions? We would like
to know whether it is NP-hard to determine if Nash equilibria exist in these special
spaces when the input is the weight vector. What can we say about other continuous
spaces such as squares, cubes, balls, and spheres? For example, is there a sequence of
better response dynamics that converge to a Nash equilibrium in the isolation game
on the sphere with w = (1, 1, 1, 0, . . . , 0)? What can we say about approximate Nash
equilibria?

More concretely, In Lemma 2 we show an example in which a single-selection game
with weight vector (0, 1, 0, . . . , 0) is not better-response potential in one dimensional
circular space. However, we verify that the game is best-response potential. This phe-
nomenon of being best-response potential but not better-response potential is rarely
seen in other type of games. Moreover, our experiments lead us to conjecture that all
games on continuous one dimensional circular space with weight vector (0, 1, 0, . . . , 0)
is best-response potential. So far, we are only able to prove that in such games start-
ing from any configuration there is always an acyclic sequence of best responses that
either converge to a Nash equilibrium or is infinitely long. If the conjecture is true, we
will find a large class of games that are best-response potential but not better-response
potential (latter is implied by Lemma 2 for the continuous one dimensional space), an
interesting phenomenon not known in other common games.

Another line of research is to understand the connection between the isolation game
and the Voronoi game.
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