Oded Goldreich (Ed.)

+—
| —
o
(<F)
A=
i
(L
T
Q
+—
(ge)
o+
v

Survey

LNCS 6390

Property Testing

Current Research and Surveys

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6390

Oded Goldreich (Ed.)

Property Testing

Current Research and Surveys

@ Springer

Volume Editor

Oded Goldreich

Weizmann Institute of Science

Faculty of Mathematics and Computer Science
76100 Rehovot, Israel

E-mail: oded.goldreich@weizmann.ac.il

Library of Congress Control Number: 2010936638

CR Subject Classification (1998): F.2, 1.2, F.1, 1.3.5, H.3, G.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16366-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16366-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Property testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property testing has been a subject of intensive research in the last couple of
decades, with hundreds of studies conducted in it and in closely related areas.
Indeed, property testing is closely related to probabilistically checkable proofs
(PCPs), and is related to coding theory, combinatorics, statistics, computational
learning theory, computational geometry, and more.

The current volume provides a taste of the area of property testing. It grew
out of a mini-workshop on property testing that took place in January 2010
in the Institute for Computer Science (ITCS) at Tsinghua University (Beijing).
The mini-workshop brought together a couple of dozen leading researchers in
property testing and related areas. At the end of this mini-workshop it was
decided to compile a collection of extended abstracts and surveys that reflects
the program of the mini-workshop.

Property Testing at a Glance

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept func-
tions that have some predetermined property (i.e., reside in some predetermined
set) and reject any function that is “far” from the set of functions having the
property. Distances between functions are defined as the fraction of the domain
on which the functions disagree, and the threshold determining what is consid-
ered far is presented as a proximity parameter, which is explicitly given to the
tester.

An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions
from D,, to R,, where |D,| = n. (Often, one just assumes that D,, = [n] f
{1,2,...,n}.) Thus, in addition to the input oracle, representing a function f :
D,, — R,, the tester is explicitly given two parameters: a size parameter, de-
noted n, and a proximity parameter, denoted e.

Definition: Let II = |, oy I, where II,, contains functions defined
over the domain D,. A tester for a property II is a probabilistic oracle
machine T that satisfies the following two conditions:

VI Preface

1. The tester accepts each f € II with probability at least 2/3; that
is, for every n € N and f € II,, (and every ¢ > 0), it holds that
Pr[T/(n,e)=1] > 2/3.

2. Given € > 0 and oracle access to any f that is e-far from II, the
tester rejects with probability at least 2/3; that is, for every e > 0
and n € N, if f: D, — R, is e-far from II,, then Pr[T/(n,¢) =
0] > 2/3, where f is e-far from II,, if, for every g € II,, it holds that
{e € Dy s f(e) # gle)}] > - 1.

If the tester accepts every function in II with probability 1, then we say
that it has one-sided error; that is, T has one-sided error if for every
f € I and every € > 0, it holds that Pr[T/(n,e) = 1] = 1. A tester
is called non-adaptive if it determines all its queries based solely on its
internal coin tosses (and the parameters n and €); otherwise it is called
adaptive.

This definition does not specify the query complexity of the tester, and indeed
an oracle machine that queries the entire domain of the function qualifies as a
tester (with zero error probability...). Needless to say, we are interested in testers
that have significantly lower query complexity.

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case in which the domain and range are associated with some
algebraic structures (e.g., groups, fields, and vector spaces) and studies alge-
braic properties such as being a polynomial of low degree. In the context of
testing graph properties, the functions represent graphs or rather allow certain
queries to such graphs; for example, in the adjacency matrix model, graphs are
represented by their adjacency relation and queries correspond to pairs of ver-
tices where the answers indicate whether or not the two vertices are adjacent in
the graph. (In an alternative model, known as the incidence-list model, graphs
are represented by functions that assign to the pair (v,7) the ith neighbor of
vertex v.)

Current research in property testing focuses mainly on query (and/or sample)
complexity, while either ignoring time complexity or considering it a secondary
issue. The current focus on these information-theoretic measures is justified by
the fact that even the latter are far from being understood. (Indeed, this stands
in contrast to the situation in, say, PAC learning.)

The representation of problems’ instances is crucial to any study of computa-
tion, since the representation determines the type of information that is explicit
in the input. This issue becomes much more acute when one is only allowed par-
tial access to the input (i.e., making a number of queries that result in answers
that do not fully determine the input). An additional issue, which is unique
to property testing, is that the representation may effect the distance measure
(i.e., the definition of distances between inputs). This is crucial because property
testing problems are defined in terms of this distance measure.

Preface VII

The Contents of This Volume

This volume contains extended abstracts of almost all works presented at the
workshop as well as a large number of surveys. The surveys refer to various sub-
areas of property testing and/or to research directions in property testing. Some
of these surveys correspond to presentations that took place in the workshop,
and others were written for this volume by some of the workshop’s participants.
The list of surveys includes:

— Eli Ben-Sasson: Limiting the Rate of Locally Testable Codes

— FEric Blais: Testing Juntas

— Artur Czumaj and Christian Sohler: Sublinear-Time Algorithms
— Oded Goldreich: A Brief Introduction to Property Testing

— Oded Goldreich: Locally Testing Codes and Proofs

— Oded Goldreich: Testing Graph Properties

— Ilan Newman: Property Testing in the “Massively Parameterized” Model
— Krzysztof Onak: Sublinear Graph Approximation Algorithms

— Sofya Raskhodnikova: Transitive-Closure Spanners

— Rocco Servedio: Testing by Implicit Learning

— Madhu Sudan: Invariance in Property Testing

The list of extended abstracts includes:

— Noga Alon: On Fast Approximation of Graph Parameters

— Victor Chen: Testing Linear-Invariant Non-Linear Properties

— Victor Chen: A Hypergraph Dictatorship Test with Perfect Completeness

— Artur Czumaj: Testing Monotone Continuous Distributions on Real Cubes

— Oded Goldreich: Algorithmic Aspects of Property Testing in the Dense
Graphs Model

— Prahladh Harsha: Composition of Low-Error 2-Query PCPs

— Tali Kaufman: Symmetric LDPC Codes and Local Testing

— Swastik Kopparty: Optimal Testing of Reed-Muller Codes

— Michael Krivelevich: Comparing the Strength of Query Types

— Michael Krivelevich: Hierarchy Theorems for Property Testing

— Kevin Matulef: Testing (Subclasses of) Linear Threshold Functions

— Krzysztof Onak: External Sampling

— Krzysztof Onak: The Query Complexity of Edit Distance

— Ronitt Rubinfeld: Maintaining a Large Matching or a Small Vertex Cover

— Michael Saks: Local Monotonicity Reconstruction

— Shubhangi Saraf: Some Recent Results on Testing of Sparse Linear Codes

— Asaf Shapira: Testing Linear Invariant Properties

— Christian Sohler: Testing Fuclidean Spanners

The surveys and extended abstracts appearing in this volume were not refereed.
The extended abstracts refer to papers that have either appeared or are likely
to appear in peer-reviewed conferences and journals.

VIII Preface

Acknowledgments

I wish to thank all the authors who have contributed to the current volume as
well as all researchers who have contributed to the research being surveyed in it.

July 2010 Oded Goldreich

Table of Contents

Editor’s Introduction

A Brief Introduction to Property Testing...........
Oded Goldreich

The Program of the Mini-Workshop
Oded Goldreich

Surveys

Limitation on the Rate of Families of Locally Testable Codes
Eli Ben-Sasson

Testing Juntas: A Brief Survey i
Eric Blais

Sublinear-time Algorithms
Artur Czumaj and Christian Sohler

Short Locally Testable Codes and Proofs: A Survey in Two Parts
Oded Goldreich

Introduction to Testing Graph Properties
Oded Goldreich

Property Testing of Massively Parametrized Problems — A Survey......
Ilan Newman

Sublinear Graph Approximation Algorithms...................
Krzysztof Onak

Transitive-Closure Spanners: A Survey.......... ...,
Sofya Raskhodnikova

Testing by Implicit Learning: A Brief Survey
Rocco A. Servedio

Invariance in Property Testing
Madhu Sudan

Extended Abstracts

Testing Monotone Continuous Distributions on High-Dimensional Real
CUDES .« ot
Michat Adamaszek, Artur Czumaj, and Christian Sohler

X Table of Contents

On Constant Time Approximation of Parameters of Bounded Degree

Graphs . ..o 234
Noga Alon
Sublinear Algorithms in the External Memory Model 240

Alexandr Andoni, Piotr Indyk, Krzysztof Onak, and Ronitt Rubinfeld

Polylogarithmic Approximation for Edit Distance and the Asymmetric
Query Complexityoo o 244
Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak

Comparing the Strength of Query Types in Property Testing: The Case
of Testing k-Colorability......... i i 253
Ido Ben-Eliezer, Tali Kaufman, Michael Krivelevich, and Dana Ron

Testing Linear-Invariant Non-linear Properties: A Short Report 260
Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie

Optimal Testing of Reed-Muller Codes. 269
Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck,
Madhu Sudan, and David Zuckerman

Query-Efficient Dictatorship Testing with Perfect Completeness. 276
Victor Chen

Composition of Low-Error 2-Query PCPs Using Decodable PCPs 280
Irit Dinur and Prahladh Harsha

Hierarchy Theorems for Property Testing 289
Oded Goldreich, Michael Krivelevich, Ilan Newman, and
Eyal Rozenberg

Algorithmic Aspects of Property Testing in the Dense Graphs Model ... 295
Oded Goldreich and Dana Ron

Testing Fuclidean Spanners, 306
Frank Hellweg, Melanie Schmidt, and Christian Sohler

Symmetric LDPC Codes and Local Testing. 312
Tali Kaufman and Avi Wigderson

Some Recent Results on Local Testing of Sparse Linear Codes 320
Swastik Kopparty and Shubhangi Saraf

Testing (Subclasses of) Halfspaces., 334
Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and
Rocco Servedio

Dynamic Approximate Vertex Cover and Maximum Matching 341
Krzysztof Onak and Ronitt Rubinfeld

Table of Contents XI

Local Property Reconstruction and Monotonicity 346
Michael Saks and C. Seshadhri

Green’s Conjecture and Testing Linear Invariant Properties 355
Asaf Shapira

Author Index 359

A Brief Introduction to Property Testing

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
oded.goldreich@weizmann.ac.il

Abstract. This short article provides a brief description of the main
issues that underly the study of property testing. It is meant to serve as
a general introduction to a collection of surveys and extended abstracts
that cover various specific subareas and research directions in property
testing.

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approx-
imate decision making. These algorithms are given direct access to items of a
huge data set, and determine whether this data set has some predetermined
(global) property or is far from having this property. Remarkably, this approxi-
mate decision is made by accessing a small portion of the data set.

Property Testing has been a subject of intensive research in the last couple of
decades, with hundreds of studies conducted in it and in closely related areas.

Fig. 1. Property Testing — An illustration

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 1 2010.
© Springer-Verlag Berlin Heidelberg 2010

2 O. Goldreich

Indeed, Property Testing is closely related to Probabilistically Checkable Proofs
(PCPs), and is related to Coding Theory, Combinatorics, Statistics, Computa-
tional Learning Theory, Computational Geometry, and more.

This brief introduction to the area of Property Testing is confined to concep-
tual issues; that is, it focuses on the main notions and models being studied,
while hardly mentioning the numerous results obtained in the various models.
This deficiency of the current article is corrected by the various surveys and
extended abstracts presented in the current volume. In addition, we refer the
interested reader to two recent surveys of Ron [I/10].

2 The Issues

Property testing is a relaxation of decision problems and it focuses on algorithms
that can only read parts of the input. Thus, the input is represented as a function
(to which the tester has oracle access) and the tester is required to accept functions
that have some predetermined property (i.e., reside in some predetermined set)
and reject any function that is “far” from the set of functions having the property.
Distances between functions are defined as the fraction of the domain on which
the functions disagree, and the threshold determining what is considered far is
presented as a proximity parameter, which is explicitly given to the tester.

An asymptotic analysis is enabled by considering an infinite sequence of
domains, functions, and properties. That is, for any n, we consider functions

from D,, to R,,, where |D,| = n. (Often, one just assumes that D,, = [n] def
{1,2,...,n}.) Thus, in addition to the input oracle, representing a function f :
D,, — R,, the tester is explicitly given two parameters: a size parameter, de-
noted n, and a proximity parameter, denoted e.

Definition 1. Let IT = J,,c I, where II,, contains functions defined over the
domain D,,. A tester for a property II is a probabilistic oracle machine T that
satisfies the following two conditions:

1. The tester accepts each f € I with probability at least 2/3; that is, for every
n €N and f € IT,, (and every € > 0), it holds that Pr[T7(n,e)=1] > 2/3.

2. Given € > 0 and oracle access to any f that is e-far from II, the tester
rejects with probability at least 2/3; that is, for every e > 0 and n € N, if
f: Dn — Ry, is e-far from II,,, then Pr[Tf(n,e)=0] > 2/3, where f is e-far
from II,, if, for every g € I, it holds that |{e € Dy, : f(e) # g(e)}| > € n.

If the tester accepts every function in II with probability 1, then we say that
it has one-sided error; that is, T has one-sided error if for every f € II and
every € > 0, it holds that Pr[T/(n,e) =1] = 1. A tester is called non-adaptive
if it determines all its queries based solely on its internal coin tosses (and the
parameters n and €); otherwise it is called adaptive.

Definition [Il does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity.

A Brief Introduction to Property Testing 3

Research in property testing is often categorized according to the type of func-
tions and properties being considered. In particular, algebraic property testing
focuses on the case that the domain and range are associated with some algebraic
structures (e.g., groups, fields, and vector spaces) and studies algebraic proper-
ties such as being a polynomial of low degree (see, e.g., [3II]). In the context of
testing graph properties (see, e.g., [4]), the functions represent graphs or rather
allow certain queries to such graphs (e.g., in the adjacency matrix model, graphs
are represented by their adjacency relation and queries correspond to pairs of
vertices where the answers indicate whether or not the two vertices are adjacent
in the graph)

Ramifications. While most research in property testing refers to distances with
respect to the uniform distribution on the function’s domain, other distributions
and even distribution-free models were also considered. That is, for a (known or
unknown) distribution p on the domain, we say that f is e-far from g (w.r.t p) if
Pre,[f(e)#g(e)] > e. Indeed, Definition [l refers to the case that p is uniform
over the domain (i.e., Dy,).

A somewhat related model is one in which the tester obtains random pairs
(e, f(e)), where each sample e is drawn (independently) from the aforementioned
distribution. Such random (f-labeled) example can be either obtained on top of
the queries to f or instead of them. This is also the context of testing distribu-
tions, where the examples are actually unlabeled and the aim is testing properties
of the underlying distribution (rather than properties of the labeling which is
null here).

A third ramification refers to the related notions of tolerant testing and dis-
tance approzimation (cf. [8]). In the latter, the algorithm is required to estimate
the distance of the input (i.e., f) from the predetermined set of instances hav-
ing the property (i.e., IT). Tolerant testing usually means only a crude distance
approximation that guarantees that inputs close to IT (rather than only inputs
in IT) are accepted while inputs that are far from IT are rejected (as usual).

On the current focus on query complexity. Current research in property testing
focuses mainly on query (and/or sample) complexity, while either ignoring time
complexity or considering it a secondary issue. The current focus on these in-
formation theoretic measures is justified by the fact that even the latter are far
from being understood. (Indeed, this stands in contrast to the situation in, say,
PAC learning.)

On the importance of representation. The representation of problems’ instances
is crucial to any study of computation, since the representation determines the
type of information that is explicit in the input. This issue becomes much more
acute when one is only allowed partial access to the input (i.e., making a number
of queries that result in answers that do not fully determine the input). An
additional issue, which is unique to property testing, is that the representation
may effect the distance measure (i.e., the definition of distances between inputs).

! In an alternative model, known as the incidence-list model, graphs are represented
by functions that assign to the pair (v,) the ith neighbor of vertex v.

4 O. Goldreich

This is crucial because property testing problems are defined in terms of this
distance measure.

The importance of representation is forcefully demonstrated in the gap be-
tween the complexity of testing numerous natural graph properties in two natural
representations: the adjacency matrix representation (cf. [4]) and the incidence
lists representation (cf. [B]).

Things get to the extreme in the study of locally testable codes, which may
be viewed as evolving around testing whether the input is “well formed” with
respect to some fixed error correcting code. Interestingly, the general study of
locally testable codes seeks an arbitrary succinct representation (i.e., a code
of good rate) such that well-formed inputs (i.e., codewords) are far apart and
testing well-formness is easy (i.e., there exists a low complexity codeword test).

3 A Brief Historical Perspective

Property testing first appeared as a tool towards program checking (see the
linearity tester of [3]) and the construction of PCPs (see the low-degree tests and
their relation to locally testable codes, as discussed in [I1]). In these settings it
was natural to view the tested object as a function, and this convention continued
also in [4], which defined property testing in relation to PAC learning. More
importantly, in [4] property testing is promoted as a new type of computational
problems, which transcends all its natural applications.

While [BI1] focused on algebraic properties, the focus of [4] was on graph
properties. From this perspective the choice of representation became less obvi-
ous, and oracle access was viewed as allowing local inspection of the graph rather
than being the graph itself The distinction between objects and their repre-
sentations became more clear when an alternative representation of graphs was
studied in [56]. At this point, query complexity that is polynomially related to
the size of the object (e.g., its square root) was no longer considered inhibiting.
This shift in scale is discussed next.

Recall that initially property testing was viewed as referring to functions that
are implicitly defined by some succinct programs (as in the context of program
checking) or by “transcendental” entities (as in the context of PAC learning).
From this perspective the yardstick for efficiency is being polynomial in the
length of the query, which means being polylogarithmic in the size of the object.
However, when viewing property testing as being applied to (huge) objects that
may exist in explicit form in reality, it is evident that any sub-linear complexity
may be beneficial.

The realization that property testing may mean any algorithm that does not
inspect its entire input seems crucial to the study of testing distributions, which
emerged with [2]. In general, property testing became identified as a study of a
special type of sublinear-time algorithms.

2 That is, in this case the starting point is the (unlabeled) graph itself, and its repre-
sentation as a (labeled) graph by either its adjacency matrix or incidence list is an
auxiliary conceptual step.

A Brief Introduction to Property Testing 5

Another consequence of the aforementioned shift in scale is the decoupling of

the representation from the query types. In the context of graph properties, this
culminated in the model of [7].

Nevertheless, the study of testing properties within query complexity that only

depends on the proximity parameter (and is thus totally independent of the size
of the object) remains an appealing and natural direction. A remarkable result in
this direction is the characterization of graph properties that are testable within
such complexity in the adjacency matrix model [IJ.

References

10.

11.

. Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization

of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC, pp.
251-260 (2006)

. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that Distri-

butions are Close. In: 41st FOCS, pp. 259-269 (2000)

. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications

to Numerical Problems. JCSS 47(3), 549-595 (1993); Extended abstract in 22nd
STOC (1990)

. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. Journal of the ACM, 653-750 (July 1998); Extended
abstract in 37th FOCS (1996)

. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-

mica 32(2), 302-343 (2002); Extended abstract in 29th STOC (1997)

. Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree

Graphs. Combinatorica 19(3), 335-373 (1999); Extended abstract in 30th STOC
(1998)

Kaufman, T., Krivelevich, M., Ron, D.: Tight Bounds for Testing Bipartiteness in
General Graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RAN-
DOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341-353. Springer, Heidelberg
(2003)

Parnas, M., Ron, D., Rubinfeld, R.: Tolerant Property Testing and Distance Ap-
proximation. JCSS 72(6), 1012-1042 (2006); Preliminary version in ECCC (2004)
Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and
Trends in Machine Learning 1(3), 307-402 (2008)

Ron, D.: Algorithmic and Analysis Techniques in Property Testing. Foundations
and Trends in TCS 5(2), 73-205 (2010)

Rubinfeld, R., Sudan, M.: Robust Characterization of Polynomials with Applica-
tions to Program Testing. STAM Journal on Computing 25(2), 252-271 (1996)

The Program of the Mini-Workshop

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
oded.goldreich@weizmann.ac.il

Abstract. This article provides an annotated version of the program
of the mini-workshop on propoerty testing that took place in January
2010 in the Institute for Computer Science (ITCS) at Tsinghua Univer-
sity (Beijing). The mini-workshop brought together a couple of dozen of
leading researchers in Property Testing and related areas.

Editor’s note. The original program is annotated by brief comments that repre-
sent the author’s subjective perspective on the various presentation. In order to
emphasize the subjective nature of these comments, their original informal style
was maintained below.

Session 1 (Friday, January 8, 9:00-10:15) [chair: Oded Goldreich]

— Amy Wang: Welcoming comments.
— Rocco Servedio: Testing by Implicit Learning.
— Kevin Matulef: Testing (subclasses of) Linear Threshold Functions.

Kevin was ill, and so Rocco gave both talks. I am fascinated by the implicit
learning paradigm, which is pivoted on emulating learning algorithms for k-
variable functions by using m-bit long samples with k& influential variables. The
emulation proceeds by randomly partitioning the variables to O(k?) sets, iden-
tifying k sets that are likely to each contain a single influential variable, and
converting the n-bit long samples to corresponding k-bit samples. Specifically,
each n-bit sample is converted by determining for each influential set whether
the subset of variables labeled 1 or the subset labeled 0 is influential, and set-
ting the corresponding bit accordingly. Once the learning algorithm outputs a
hypothesis for the k-bit function, it is tested using adequate queries (which are
again emulated correspondingly). The second work shows that, while the class
of all halfspaces is testable in query complexity that is independent of n, testing
some natural subclasses of halfspaces (i.e., “unate reorientations of majority”
where the weights are +1) requires query complexity that depends on n.

Session 2 (Friday, January 8, 10:45-12:00) [chair: Avrim Blum]

— Eric Blais: Testing juntas and function isomorphism.
— Michael Krivelevich: Hierarchy Theorems for Property Testing

0. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 6[12] 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Program of the Mini-Workshop 7

Eric motivated the problem of optimizing the complexity of testing juntas by
referring to the wide applicability of juntas (i.e., functions that depend on few
of their inputs). The algorithm presented in Eric’s work is very appealing, and
has query complexity O(k/e), where € is the proximity parameter. In addition,
Eric advocated a study of the following class of parameterized problems. For a
fixed function g, which is known to the tester, the task is testing whether the
given oracle/function is isomorphic to g (i.e., f equals g under a relabeling of
the indices of the variables). In a sharp shift from the concrete to the general,
Michael presented an overview of results that assert the existence of properties
with arbitrary (reasonable) query complexity bound.

Session 3 (Friday, January 8, 14:00-15:30) [chair: Bernard Chazelle]

— Ilan Newman: A Survey on Property Testing in the “Underlying Graph”
Model or the “Massively Parameterized” Model.

— Sofya Raskhodnikova: Transitive-Closure Spanners with Applications to
Monotonicity Testing.

— Christian Sohler: Testing Euclidean Spanners.

Ilan surveyed works that refer to “massively parameterized” testing problems.
The parameters are huge structures (e.g., graphs) and the problem refers to a
substructure of it (e.g., an assignment to the graph’s edges). In the case of graphs,
the assignment may be viewed as an orientation of the fixed graph or a subgraph
of it. Sofya discussed the notion of transitive-closure spanners (i.e., spanners of
the transitive closure graph), which are implicit in some monotonicity testers.
Christian discussed the notion of geometric graphs, which are graphs embedded
in a Euclidean space R?, and the corresponding notion of spanners (which are
geometric graphs in which the graphical distance between pairs of vertices is
approximated by their Euclidean distance).

Panel 1 (Friday, January 8, 16:00-17:00) On the Connection of Property Test-
ing to Computational Learning Theory and Computational Geometry. Panelists:
Avrim Blum, Bernard Chazelle, and Rocco Servedio.

Bernard advocated an attempt to provide a sublinear time analysis of dynamic
systems, which may consist of selecting few objects and tracing their activity
during time. Avrim emphasized the high cost of queries (rather than random
examples) in typical learning applications, and I suggested to consider a two-
parameter complexity measure that separates the number of random examples
from the number of actual queries. Rocco suggested to try to relate property
testing to agnostic learning (rather than to standard learning), and highlighted
the open problem of tolerant testing of half planes.

Session 4 (Saturday, January 9, 9:00-10:15) [chair: Shafi Goldwasser]

— Madhu Sudan: Invariance in Property Testing.
— Victor Chen: Testing Linear-Invariant Non-Linear Properties.

8 O. Goldreich

Madhu mused on what makes problems easily testable and suggested that closure
under a rich permutation group plays a major role. This seems supported by the
numerous results regarding algebraic functions (which are all invariant under
suitable affine transformations) and graph properties (which, by definition, are
closed under isomorphism). He surveyed a unified approach that refers to the
former, where the affine transformations refer to the identification of the domain
with a vector space. Victor demonstrated that the approach extends also to non-
linear properties, and Noga commented that an alternative demonstration may
be provided by a property that is a union of two disjoint linear spaces.

Session § (Saturday, January 9, 10:45-12:00) [chair: Michael Saks]

Asaf Shapira: Testing Linear Invariant Properties.

Noga Alon: On Constant-Time Approximation of Invariants of Bounded De-
gree Graphs.

Ronitt Rubinfeld: Maintaining a Large Matching or a Small Vertex Cover.
— Krzysztof Onak: External Sampling.

Asaf’s study refers to the paramertized problem of whether a given subset of
[n] is free from containing any solution to a fixed set of linear equations. This
was studied before with respect to a single equation (i.e., x +y = z), and Asaf’s
work treats any linear system. Noga’s study refers to approximating quanti-
ties such as the independence number of bounded-degree graphs. He shows that
constant-time algorithms can almost match the best approximation bounds that
are previously known for PTAS, and that better bounds cannot be achieved in
constant-time. (This is related to Krzysztof’s presentation in Session 6.) Ronitt’s
work demonstrates that techniques employed in the context of distributed algo-
rithms can be applied to the context of dynamic graph algorithms. This augments
prior connections between constant-round distributed algorithms and constant-
time approximation algorithms (discovered by Parnas and Ron [4]). Ronitt asked
whether a direct relation can be shown between dynamic graph algorithms and
constant-time approximation algorithms. Krzysztof advocated applying “exter-
nal memory cost” measures to property testing algorithms. He showed such a
result for the problem of element distinctness, presenting an algorithm that sam-
ples \/nB/e random B-bit blocks.

Session 6 (Saturday, January 9, 14:00-15:30) [chair: Noga Alon]

— Krzysztof Onak: Sublinear Graph Approximation Algorithms.
— Michael Saks: Local Monotonicity Reconstruction.
— Ronitt Rubinfeld: Testing Properties of Distributions (a survey).

A natural setting in which sublinear time algorithms may be useful is in approx-
imating the value of various graph theoretic quantities, especially when these
quantities are hard to determine (e.g., minVC). Parnas, Ron, and Marko [4/3]
focused on maximal matching and minVC, while observing a correspondence
between constant-time approximation algorithms for the size of the maximal in-
dependent set and distributed algorithms that find such sets. Krzysztof surveyed

The Program of the Mini-Workshop 9

further developments along these lines, focusing on the extension of the study to
many other problems (e.g., maximum matching, minimum dominating sets, etc)
and the introduction of new techniques and improved results. The new techniques
are also applicable to various testing problems; see the improvement obtained
over [2] in the context of testing minor-free graphs in the bounded-degree model.
Michael discussed the local reconstruction problem applied to objects for which
there are exponentially many adequate solutions. The problem in this case is
to determine some fixed solution as a function of the corrupted oracle and the
random bits (used in the reconstruction), where in some applications it is desir-
able to use few random bits. Ronitt surveyed the study of testing properties of
distributions, starting with the problem of testing identity to some known distri-
bution (i.e., a parameterized problem), which is solvable by y/n samples when n
is the domain’s size (and the estimate is via collision probabilities). Testing that
two given distributions (i.e., both distributions are “given” by samples) requires
3-way collisions and so n?/3 samples. In contrast, approximating the distance to
the uniform distribution requires an “almost linear” number of samples.

Panel 2 (Saturday, January 9, 16:00-17:00) On the Connection of Property Test-
ing to Coding Theory, Combinatorics, and Statistics. Panelists: Madhu Sudan,
Noga Alon, and Ronitt Rubinfeld.

Noga focused on the “global vs local” nature of property testing that is closely
related to a main theme in combinatorics initiated by Erdos in the 1950’s. He
noted that a tester of k-colorability is implicit in work of the 1980’s, but the
query bound obtained there is a tower of exponents in the proximity parameter.
Answering a question, Noga kind of suggested the challenge of testing triangle-
freeness in 20(1/9)° queries. (Recall that the currently best known bound is a
tower of exponents in poly(1/e€).) Ronitt reported on the awakening of interest
of statisticians in the effect of the size of the domain (of values). (Traditionally,
Statistics is concerned with the effect of the size of the universe (sample space),
whereas we are concerned with the effect of the number of values actually ob-
tained by samples in this space.) Still there are significant cultural differences,
since in Statistics one often makes (implicit) assumptions about the distribution
and/or assumes that the distribution itself is selected at random among some
possibilities (hence “likelihood” is relevant). Ronitt also pointed out possible ap-
plications to areas that use Statistics such as natural language processing and
data bases. Madhu pointed out that sublinear time algorithms arise naturally
in the context of coding theory. Shafi advocated the study of property testing
of algebraic (and number theoretic) problems beyond linearity and low-degree
properties. A concrete example may be testing that a polynomial (given by its
evaluations) is an irreducible polynomial. Can a tester be significantly more
efficient than polynomial interpolation?

Session 7 (Sunday, January 10, 9:00-10:15) [chair: Ronitt Rubinfeld]

— Prahladh Harsha: Composition of Low-Error 2-Query PCPs using Decodable
PCPs.

10 O. Goldreich

— Victor Chen: A Hypergraph Dictatorship Test with Perfect Completeness.
— Michael Krivelevich: Comparing the Strength of Query Types in Property
Testing.

Prahladh started by relating two-query PCPs to (highly) robust PCPs, and pro-
ceeded in terms of the latter. to two-query PCPs. The new composition of robust
PCPs starts by observing that there is no need to keep the outer proof for con-
sistency, since consistency can be tested by comparing two related inner proofs
(which refer to the same position in the outer proof). This, however, changes
nothing because still consistency can be achieved by modifying less than half
of the total length of both scanned parts. The new idea is to check consistency
among d such parts, which may allow to reduce robustness error to approximately
1/d. Indeed, this is doable, and is what the new composition theorem does, while
relying on the fact that the inner PCP is decodable. My view is that the resulting
two-query low-error PCPs are interesting mainly because decreasing the error to
an arbitrarily small constant (and even below) does not result in increasing the
proof length. Moving from PCPs to codeword tests, Victor surveyed the state of
the art regarding the amortized query complexity of dictatorship testing (with
perfect completeness), which currently stands on soundness error of O(q - 279)
per ¢ non-adaptive queries (see [0]). Michael discussed a general framework for
testing graph properties, where distances are normalized by the actual number
of edges and various types of queries are considered. In the work, “group queries”
(akin of “group testing”) are shown to be strictly stronger than the combination
of the standard vertex-pair and neighbor queries.

Session 8 (Sunday, January 10, 10:45-12:00) [chair: Michael Krivelevich]

— Shubhangi Saraf: Some Recent Results on Testing of Sparse Linear Codes.
— Swastik Kopparty: Optimal Testing of Reed-Muller Codes.

Shubhangi advocated viewing locally testable linear codes as a special case of
tolerant testing the Hadamard codewords under some adequate distributions
(specifically, the distribution that is uniform on the corresponding positions of
the Hadamard code). The tolerance condition prevents rejecting a codeword
based on positions that are assigned zero probability. She presented two re-
sults, relating to two notion of tolerant testing (or rather distance approximation
(cf. [B]): the more general result yields a weak notion of approximation and is
obtained under the so-called uniformly correlated condition, whereas a strong no-
tion of approximation requires a stronger correlated condition. A distribution
is called k-uniformly correlated if there is a joint distribution of k-tuples such that
each element (in the k-tuple) is distributed as g but their sum is uniformly dis-
tributed. The stronger condition requires that this holds when these k elements
are independently drawn from pu, which is equivalent to requiring that the code
be sparse and have small Fourier coefficients. Swastik presented an improved
analysis of the AKKLR linearity test (for degree d multi-linear polynomials over
GF(2)) [1], showing that the basic test rejects far away function with constant
probability (rather than with probability £2(2%)).

The Program of the Mini-Workshop 11

Session 9 (Sunday, January 10, 14:00-15:30) [chair: Madhu Sudan]

— Eli Ben-Sasson: Limiting the Rate of Locally Testable Codes.

— Tali Kaufman: Symmetric LDPC Codes and Local Testing.

Artur Czumaj: Testing Monotone Continuous Distributions on High-

Dimensional Real Cubes.

— Krzysztof Onak: The Query Complexity of Edit Distance.

— Sofya Raskhodnikova: Testing and Reconstruction of Lipschitz Functions
with Applications to Privacy.

— Oded Goldreich: Algorithmic Aspects of Property Testing in the Dense
Graphs Model.

Eli surveyed several results that assert that various parameters of LTCs imply
an exponentially vanishing rate. One such result refers to LTCs that are tested
by a small set of constraints (which is only somewhat larger than the dimension
of the dual code). Tali advocated the study of codes that are each characterized
by a short constraint and its orbit under a suitable group. Arthur advocated
the study of testing continuous distributions, focusing on the case that they
are actually discrete (i.e., assume a finite number of possible values). Krzysztof
contrasted the query complexity of testing the edit distance of a given string
(from a fixed string) to the corresponding problem for Ulam distance. Sofya
presented an application of reconstruction procedures (as presented by Michael
Saks in Session 2) to data privacy; specifically, if data privacy is maintained for
functions of a certain type, then we may want to modify the given function to
that class. I tried to call attention to the work “Algorithmic Aspects of Property
Testing in the Dense Graphs Model” (co-authored by Dana), while highlighting
several perspectives and questions that arise.

Panel 3 (Sunday, January 10, 16:00-17:00)

— Prahladh Harsha on decoding in the low-error regime
— Ron Rivest on possible applications of property testing to the security eval-
uation of hashing functions.

Prahladh mused on whether decoding in the low-error regime may find additional
applications in property testing. Ron asked whether property testing techniques
can be employed to the evaluation of the quality of various cryptographic com-
pression functions.

References

1. Alon, N., Krivelevich, M., Kaufman, T., Litsyn, S., Ron, D.: Testing Reed-Muller
codes. IEEE Transactions on Information Theory 51(11), 4032-4038 (2005); An
extended abstract appeared in the proceedings of RANDOM 2003 (under the title
Testing Low-Degree Polynomials over GF(2)

2. Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of Sparse
Graphs is Testable. In: 40th STOC, pp. 393-402 (2008)

12

O. Goldreich

. Marko, S., Ron, D.: Approximating the Distance to Properties in Bounded-Degree

and General Sparse Graphs. ACM Transactions on Algorithms 5(2) (2009); Ex-
tended abstarct in the proceedings of Random (2006)

. Parnas, M., Ron, D.: Approximating the Minimum Vertex Cover in Sublinear Time

and a Connection to Distributed Algorithms. TCS 381(1-3), 183-196 (2007); Pre-
liminary version in ECCC (2005)

. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant Property Testing and Distance Ap-

proximation. JCSS 72(6), 1012-1042 (2006); Preliminary version in ECCC (2004)

. Tamaki, S., Yoshida, Y.: A Query Efficient Non-Adaptive Long Code Test with

Perfect Completeness. In: ECCC, TR09-074 (2009)

Limitation on the Rate of Families of Locally
Testable Codes

Eli Ben-Sasson

Computer Science Department, Technion — Israel Institute of Technology, Haifa,
32000, Israel
eli@cs.technion.ac.il

Abstract. This paper describes recent results which revolve around the
question of the rate attainable by families of error correcting codes that
are locally testable. Emphasis is placed on motivating the problem of
proving upper bounds on the rate of these codes and a number of inter-
esting open questions for future research are suggested.

Keywords: Locally testable codes, error correcting code, probabilisti-
cally checkable proofs.

1 Introduction

A locally testable code (LTC) is an error correcting code for which membership in
the code can be ascertained, to a high degree of confidence, by a random process
that queries a negligible fraction of a purported codeword. Locally testable codes
lie at the core of all known constructions of probabilistically checkable proofs
(PCPs), from [1I2] to [3], their discovery has inspired the study of property
testing [4], and the construction of such codes has been of great interest to
theoretical computer science in the recent past. Several surveys describe the
concepts around which these codes revolve [Bl6], and a number of distinct ways
to obtain such codes are known by now (see Section [[2)). The purpose of this
brief survey, which assumes familiarity with the basic notion of an LTC, is to
explain what is known about the limitations of constructions of such codes, or,
in plain words, what kinds of LTCs are mathematically impossible to obtain.
When studying locally testable codes we are interested in both the classically
studied parameters of error correcting codes, such as rate and relative distance,
as well as in the local-testability parameters of the code, the query complexity or
number of entries read by the testing process, and the completeness and sound-
ness which measure the probability of correctness of this process (these concepts
are defined in the next subsection). We intend to study the interplay between
these two kinds of code-related parameters so let us informally explain what kind
of trade-offs we expect to see. Better local-testability parameters, like smaller
query complexity and larger completeness and soundness parameters should be
expected to negatively affect the classical coding parameters, decreasing the rate
and/or relative distance of the code. We can show that this intuition does indeed

0. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 13 2010.
© Springer-Verlag Berlin Heidelberg 2010

14 E. Ben-Sasson

hold for certain families of codes, as surveyed later on. But for all the effort that
has gone into the study of LTCs, the fundamental question that motivates our
study (Question [Il), regarding the existence of an asymptotically good family of
LTCs, remains wide open. Before we continue we pause to recall the definition
of a locally testable code and the reader familiar with this definition and the
associated notation is encouraged to skip the following subsection.

1.1 Defining Locally Testable Codes

We assume familiarity with the basic definitions of error correcting codes, which
can be found, e.g., in [7]. A code C over alphabet X of blocklength n, message-
length k and minimal distance d will be called an (n, k, d) s;-code. It is a subset of
X" of size at least |X|¥ which satisfies the condition that for any pair of distinct
codewords w,w’ € C their Hamming distance, defined as the number of entries
on which w and w’ disagree, is at least d. We shall reserve the letter w to denote
codewords and 7 to denote “received” words, words which are not known to
belong to C. The i*" entry of r will be denoted by 7;.

Two fundamental parameters of a code are its rate p(C) = k/n which measures
the ratio of message to codeword length and the relative distance §(C) = d/n
which dictates the noise-resilience of the code. We shall be interested in families
of codes {C,, C X™|n € Z}. A family of codes is said to be asymptotically good
if all members of it have positive rate and relative distance, i.e., there exist
constants p,d > 0 such that each C,, satisfies p(C,,) > p and 6(C,,) > 9. Given C
and r € X" let d¢(r) denote the relative (Hamming) distance between r and C,
defined as the minimal fraction of entries of r that need to be changed in order
to obtain a word in C. When dé¢(r) > € we say r is 0-far from C and otherwise
say r we say e-close to it.

When X' is the g-element finite field F, (when the size of F is known or
insignificant we use F to denote it) and C is a linear code, i.e., a k-dimensional
subspace of F", we shall say C is an [n, k, d]p-code. In this case the distance of
the code is equal to the minimal weight of a nonzero codeword, where the weight
of a word r € F™ is the number of nonzero entries in r.

A locally testable code is an error correcting code — we expect it to have large
relative distance — which comes with a randomized algorithm, called a tester,
that samples a small number of entries of a received word r» € X™ and is capable
of distinguishing with nontrivial probability between the “good” case that r is
an uncorrupted codeword, i.e., that r belongs to C (so d¢(r) = 0) and the “bad”
case that r is e-far from C. Since the definition of an LTC is tied to that of a
tester we give both of them together.

Definition 1 (Tester and locally testable code). Let C be an (n,k,d)s-
code. A (q,€,s,c)-tester for C is a randomized algorithm T with oracle access
to a purported codeword r € X™ which operates as follows. The tester T uses
randomness to sample at most q entries of v and outputs a verdict which is either
accept or reject. Denote by T"[R] the output of T on oracle r and random coins
R. We say that T is a g-query tester, or, simply, a g-tester.

Limitation on the Rate of Families of Locally Testable Codes 15

The code C is said to be (q,¢,s,c)-locally testable if it has a g-tester that
satisfies the following completeness and soundness requirements. It the tester
satisfies the (stronger) requirement of strong soundness we say C is a (g, s, c)-
strong locally testable code.

Completeness. Ifr € C then

%r [T"[R] = accept] > c.

Soundness. For every r & C that is e-far from C
l?:ir [T"[R] = reject] > s.

Strong Soundness. For every r € C

1:1’:{1? [T"[R] = reject] > s d¢c(r).

The parameters q, €, s, c are known respectively as the query complexity, distance
threshold, soundness and completeness.

When ¢ = 1 we say the code and tester have perfect completeness and in such
cases will often, for simplicity, omit reference to c.

Remark 1 (Distance threshold and high-error, or list-decoding, LTCs). To get
nontrivial LTCs the distance threshold e should be less than half the relative
distance of the code. Otherwise, it could be the case that there simply are no
words e-far from it, in which case the trivial tester that accepts all words shows
that the code is (0,¢,1,1)-LTC. We shall set the distance threshold to be one
third the minimal distance of the codd] and refer to such a (¢,6(C)/3,s,c)-LTCs
as a LTC for the low-error regime, or, simply, a low-error LTC. The choice of
this name is because if r € X" is accepted by the tester with probability greater
than 1—s, we know that r is §(C)/3-close to C, i.e., it has a low fraction of errors.
Another common name for such a LTC is a unique decoding LTC because in the
case just described there is a unique codeword that is closest to r.

For values of € greater than half the minimal distance of C, we say that C is a
LTC in the high-error, or list-decoding regime. This is because a word accepted
with probability greater than 1 — s, which is known to be e-close to C, can in
fact be e-close to list of codewords. In the setting of high-error LTCs the kind
of questions that are of interest revolve around understanding the connection
between the acceptance probability of a received word and its proximity to the
code. We shall not discuss these questions in this survey, due to scarcity of
relevant results on rate limitations of such codes.

! Some of the LTC rate limitations surveyed here, like [S/9/T0], require the distance
threshold to be less than one third the minimal distance. This is due to technical
reasons arising in the proofs. In any case, all known LTC constructions work for
any sufficiently small distance parameter and the standard assumption in property
testing settings is that the distance threshold is an arbitrarily small nonzero constant.

16 E. Ben-Sasson

Remark 2 (Non-adaptivity and perfect completeness). A tester is said to be non-
adaptive if the codeword-entries queried by it depend only on the value of the
random coins (in particular, they do not depend on answers given to earlier
queries). All known LTC constructions are nonadaptive, i.e., the tester associ-
ated with them is nonadaptive. For a family of LTCs with perfect completeness
and constant query complexity adaptivity can be assumed without loss of gener-
ality, by incurring at most a constant factor reduction in the soundness param-
eter. Furthermore, almost all known LTCs are linear and consequently can be
assumed to be nonadaptive and with perfect completeness (cf. Theorem), the
notable exception to both linearity and perfect completeness is the “long code”
of [I].

Remark 3 (Soundness and completeness). To get a meaningful definition we
must require s to be greater than 1 — c. Otherwise every code can be seen to be a
(0,0, s,¢)-LTC, the tester associated with it rejects all words with probability s,
hence accepts all words, and, in particular, all codewords, with probability > c.

Remark 4 (Running time). Our definition of a tester does not put any limitation
on the running time of the tester. For families of codes with constant query com-
plexity this is not a severe restriction because the tester can always be assumed
to run in (nonuniform) time that is at most polynomial in the blocklength, and
under reasonable assumptions the running time is quasi-linear, i.e., bounded by
npolylogn (cf. [12]). Families of linear codes — almost all known LTCs fall in
this category — can similarly be assumed to require (nonuniform) quasi-linear
running time because they can be tested by “linear testers” (as explained in
Section 2.T)). The main advantage to not putting a running-time constraint on
the tester is that it allows us to focus on the code structure and avoid questions
about computational complexity.

1.2 A Brief Survey of Known LTC Constructions

The purpose of this section is to display the abundance and variance of LTC
constructions which should motivate both the search for a common denominator
to all the different ways LTCs are constructed, as well as the study of limitations
of these codes.

LTCs based on low-degree polynomials. The first family of LTCs, due to [13], is the
family of homomorphisms from a finite group G to a subgroup H of G. Formally,
C(G,H) C H€ has one codeword corresponding to each group-homomorphism
¢ : G — H and this codeword is the evaluation of ¢ on all elements of G. This
family was shown to be a low-error LTC in [I3]. The special case of G being the
additive group F" and H = T for a prime field F was shown in [I4] to be a locally
testable in the high-error, or list-decoding, regime. The codes thus obtained are
called Hadamard codes and correspond to the code of evaluations of n-variate, de-
gree 1, homogenous polynomials. The generalization to arbitrary degree d polyno-
mials was carried out promptly for the case of d < |F|. This family of codes, known
as Reed-Muller codes, was shown to be locally testable in the low-error regime in

Limitation on the Rate of Families of Locally Testable Codes 17

[1512], and in the high-error regime by [I6/17]. Later on the case of d > |F| was an-
alyzed for the low-error regime by [I8/19] and for the high-error regime by [20] for
the special case of d = 2. High-error LTCs based on polynomials of degree d > 3
and d > |F| remains as an interesting open problem.

Group invariant LTCs. An “invariance-based” approach to the construction of
LTCs was implicitly suggested by [I8] and explicitly undertaken, for the special
case of affine-invariant codes, by [2I] (see also [22I23/24]). More on this ap-
proach can be found in Section [§ and in the survey [25]. Roughly speaking, this
approach is based on finding codes that are invariant under a “sufficiently rich”
group of permutations, and additionally contain some local constraints that all
codewords satisfy. The group-invariance of the code then implies a multitude
of local constraints that all codewords satisfy, and this leads the way to prove
local-testability.

Composed LTCs. Another way to construct LTCs, which among other things
leads to the LTCs achieving the best known rate, relies on the use of probabilis-
tically checkable proofs of proximity (PCPPs) [26127] (see also [28]). Another
approach that is also described as “combinatorial”, because it relies neither on
properties of low-degree polynomials, nor on group theory, is based on taking a
repeated tensor-product of codes [29]. It should be pointed out that the codes
arising from these methods are low-error LTCs and it remains to see what kind
of LTCs in the high-error regime can emerge from high-soundness PCP compo-
sition techniques like those of [30J31].

Sparse unbiased LTCs. The final family of LTCs we are aware of consists of
sparse, unbiased binary linear codes, i.e., linear codes over I, for prime p that
have a number of codewords that is only polynomial in the blocklength and for
which all nonzero codewords have relative weight that is very close to 1 — 117

[32033] (see also [34]).

1.3 Why Study Limitations of LTCs?

Before explaining why we think LTC limitations are worth pursuing we post the
fundamental problem underlying our quest.

Question 1 (Do asymptotically good LTCs exist?). Prove or refute the follow-
ing statement: There exists an asymptotically good family of binary error cor-
recting codes {C,, C {0,1}" | n € Z} with relative distance ¢ that is a family of
(¢,9/3, s,¢)-LTC, for some integer ¢ and soundness and completeness parameters
satisfying ¢ + s > 1 (see Remark [3]).

The main reason to study limits of LTCs is because this seems to be the most
meaningful way to understand the limits of basic PCP-related parameters, most
notably the rate of PCP proofs which we define as the ratio between the length
of an NP-witness for an NP-instance ¢ , and the length of a probabilistically
checkable proof for ¢. The problem with the direct approach to bounding the rate
of PCPs is that any nontrivial lower bound on the rate — even one that proves

18 E. Ben-Sasson

that PCP proof length is greater than zero — implies P = NP. Since all proofs
of the PCP theorem make use of LTCs, and moreover the rate of the LTC is an
upper bound on the rate of the PCP constructed from it, giving a negative answer
to Question[Ilwould imply that PCP proofs constructed by current techniques will
not attain constant rate. Anticipating future practical applications use of PCPs in
cryptography and security-related protocols [35/3637], we see that understanding
the rate of PCPs is very important not just for theoretical purposes.

More broadly, the study of limitations of locally testable codes can be viewed
as a branch of the study of classical tradeoffs for error correcting codes. When
new families of codes are discovered (e.g., linear, cyclic, maximal distance separa-
ble, algebraic geometry, turbo, etc.) it is of great importance to understand how
well they match up with known codes in terms of their basic coding-related pa-
rameters. Locally testable codes possess a highly desirable coding-related prop-
erty, namely, the amount of errors in a received word can be estimated by in-
specting only a tiny fraction of the codeword. This leads to the possibility of
saving computation time, and the energy consumption required by the decoding
algorithm, by getting a quick and roughly accurate estimate of the condition of
received words and asking for a “re-transmit” in case the word is estimated to
be corrupted beyond repair.

Finally, the concept of “locality of computation” is a theme of great interest in
numerous settings of theoretical computer science. This is witnessed by the large
body of work on property testing and on locally decodable codes. Understanding
the limits of LTCs also touches upon questions related to locality of computation
in other settings and one may expect to see more connections between LTC rate
bounds and other areas in which “local computation” is studied.

1.4 Summary of Results Appearing in the Survey

In the next section we focus on linear codes and ask what limitations can be ob-
tained from studying the structure of the set of dual codewords of small weight.
We shall start with random low density parity check codes and use the expander-
structure of the constraint graph associated with these codes to argue in The-
orem [2] that they are not locally testable even when the query complexity is
allowed to be fairly large. Then we shall generalize this result in Theorem [3] and
show that all linear LTCs require that their dual code contain many low-weight
words and, in Theorem Ml that these words must be nontrivially related. We
conclude this section by showing in Theorem [l that if an LTC has far too many
redundant small-weight dual words then it has bad rate.

In Section Bl we shall investigate the rate limitations of group invariant codes.
These codes include all known “base-case” LTCs, such as Hadamard and Reed-
Muller codes, which serve as the building blocks in more elaborate LTC con-
structions (such as PCPP-based LTCs). We shall see in Theorem [7] that affine-
invariant codes with small dual weight — the most general class of group-
invariant codes known to be locally testable — has bad rate.

Limitation on the Rate of Families of Locally Testable Codes 19

Results not covered by the survey. Two lines of work on limits of LTCs are not
surveyed here. The first set contains the results of [38] which show that 3-query
LTCs arising from PCPP-based constructions cannot obtain close-to-optimal
soundness in the list decoding regime without suffering a significant decrease in
the code-rate. The second line discusses various kinds of 2-query LTCs — linear
[8], near-perfect completeness [39], “unique” [40] and “affine” [41] — and shows
that there is at most a finite number of (2-query) LTCs of each kind.

2 Limiting Rate of Linear LTCs via the Structure of the
Dual Code

This section focuses on limitations on the rate of families of linear LTCs. We
shall focus on the linear space that is dual to the (linear) code C C F", this space
is also known as the dual code and defined as C* = {u € F" |u L C} where u L C
if and only if u L w for all w € C and u L w denotes the equality Y. ; u;w; =0
(in case of inequality we write u £ w). We shall take particular interest in the
combinatorial structure of the set of dual codewords of small weight. We start by
explaining why focusing on this structure is all that matters for local testability
of linear codes.

2.1 Linear LTCs Are Testable by Linear Testers

A natural way to test whether a word r € F” belongs to an [n, k, d]r linear code
C C F” is to project r onto a set of coordinates I C {1,...,n},|I| < ¢ and
accept r if and only if this projection, denoted by r|;, agrees with a projection
w|r of some codeword w € C. Writing C|; = {w|; | w € C} we can describe this
natural test as the test that accepts r if and only if r|; € C|;. The operator that
projects r € F™ onto [is a linear operator, by which we mean that for every
a,b € F" and «, 8 € F we have (aa + 8b)|1 = a(a|r) + B(b|r) and this implies
that our natural tester is fact a linear test — its acceptance predicate, defined
as the subset of F! of query-answer tuples accepted by the test, is a linear space,
it is the precisely the linear space C|;.

Accordingly, a linear tester for C is given by a distribution D on subsets I of
size at most ¢. The following theorem of [42] says that without loss of generality
linear codes are g-query LTCs if and only if they are testable by a linear tester.

Theorem 1 (Linear LTCs have linear testers). If C C F" is a linear
(g,€,8,¢)-LTC then C is a (¢q,€,s+ (1 — ¢),1)-LTC that can be tested by a linear
tester. (Notice the difference between completeness and soundness is maintained
when moving from an arbitrary tester to a linear one.)

Given this theorem we can go one step further and describe the subsets I C
{1,...,n} which correspond to nontrivial linear tests. If I is such that C|; = F!
then the (linear) test associated with I is meaningless — all words must be
accepted by it. On the other hand if C|; is a subspace strictly contained in F!
we do get a nontrivial test, meaning that some words r € F™ \ C will be rejected

20 E. Ben-Sasson

by it. In this case, the space that is dual to C|;, denoted (C|;)*t, has positive
dimension, so it contains some nonzero words. Any word u € (C|;)* can be
extended to a word in F” that is dual to C and has its nonzero entries contained
in I — set all entries in {1,...,n} \ I to 0 and notice the word thus obtained is
dual to C.

Assuming (C|7)* is nontrivial we can think of another way to test wether r|; €
C|;. Instead of querying all entries in I, pick a uniformly random u € (C|;)+
and accept 7 if and only if w L 7. It is easy to see that this test retains perfect
completeness, and we now argue that soundness goes down by a factor of at most
(1— 1) To see this, suppose r & C|;. The set {u € (C|;)* | r L u} is a strict sub-
space of (C|7)*, hence it contains at most a (1/|F|)-fraction of (C|)*, so a random
u € (C|r)*t will “reject” r (i.e., u £ r) with probability at least (1 — 1/[F|) times
the probability that r|; ¢ C|;. To sum up, if we don’t care too much about the
exact soundness constant then we may assume without loss of generality that a
linear LTC is tested by a tester that is defined by a distribution over Ci-q, the set
of words in the dual code C* that have weight at most q. We record this by the
following corollary of Theorem 2l (cf. [10} Section 2]). In what follows we use u ~ D
to denote that u is sampled according to the distribution D.

Corollary 1 (Linear codes are testable by a distribution over dual
words of small weight). If C C F" is a linear (q, €, s,c)-LTC then there exists
a distribution D over Céq such that for every r that is e-far from C we have
Pry~plu [r] > s+ (1—c)(1—1/|F|)). (Notice the soundness is (1—1/|F|) times
the soundness stated of Theorem[2.)

All this leads us to consider the constraint graph of a tester, a concept that will
play a pivotal role in our analysis. Given U C Céq (U may be a strict subset
of Céq) we define the constraint graph induced by U to be the bipartite graph
G({1,...,n},U, E) with left vertex set {1,...,n}, right vertex set U and an
edge between i and w if and only if u; # 0. Given a distribution D as in the
corollary above let supp(D) = {u € C* | D(u) > 0} denote the support of the
tester, it is the set of dual words, or linear tests, actually used by the tester. The
constraint graph induced by a linear tester associated with D is the constraint
graph induced by supp(D).

2.2 Random Low Density Parity Check Codes

Roughly speaking, a linear code whose dual contains many small-weight words
should be hard to construct as the existence of many small-weight words may
reduce other parameters of the code, like its rate. Thus, a good starting point is
to examine the local testability of the family of random low density parity check
(LDPC) codes which are known to be asymptotically good [43]. We shall show
that testers achieving constant soundness for these codes require linear query
complexity, and along the way we shall try to explain the way how this negative
result about local testability is related to the structure of the constraint graphs
associated with random LDPC codes.

Limitation on the Rate of Families of Locally Testable Codes 21

To define our codes we need to describe the concept of a random regular bi-
partite graph. A bipartite graph is said to be (¢, q)-regular if all vertices on the
left side have degree at most ¢ and all vertices on the right side have degree at
most g. A random (t, q)-reqular graph with n left-hand vertices and m = [tn/q]
right-hand ones is obtained as follows. Start with a four-layered graph, the left-
most layer is V, the second and third have tn vertices each, numbered 1, ..., tn,
and the rightmost layer is U. Connect ¢ € V to the ¢ vertices in the second layer
numbered t(i — 1)+ 1, .. ., ti. Similarly connect vertex number j in U to the ¢ ver-
tices numbered ¢(j — 1) + 1,...,¢j in the third layer. (The m*" vertex may have
less than ¢ neighbors, in case tn/q is not an integer.) To obtain a random graph,
pick a random permutation on tn elements and use it to construct a matching be-
tween the second and third layers. Finally, collapse each 3-edge-long path between
v € V and u € U to obtain a single edge (collapsing parallel edges when needed),
to obtain a random (¢, g)-regular graph with n left vertices.

Definition 2 (Random low density parity check code). The family of
(t, q)-regular random LDPC codes is the distribution on families of linear codes
obtained by picking the n'™ member in the family according to the following
process. For integers t < q let G = (V,U, E) be a random (t,q)-regular bipar-
tite graph over n left vertices and m = [tn/q| right vertices (notice m < n
because t < q). Associate each right-hand side vertex 4 € U with the vector
u=(u1,...,u) € Fy defined by

_J1(,u) ek
%i = 0 otherwise.

The LDPC code based on G is the code C = U+.

The rate of C is at least "™ ~ 1— ; because dim(C+) < m. It is well-known since
the work of [43] that a family of random LDPC codes is, with high probability,
asymptotically good (cf. [44]). At first glance it may seem that such a family
is locally testable. The set of g-query words U characterizes C by which we
mean that w € C if and only if w L U. And the random graph G is with high
probability an expander which implies that for any set S C {1,...,n},|S| =en
— think of S as indicating the minimal size set of bits that need be flipped in r
to obtain a codeword — the set of indices of nonzero entries of a random u € U
hits S with probability proportional to €. In spite of all this C is not g-testable.
This much was conjectured already in [45]. Moreover, C is not even testable with
any sublinear query complexity, i.e., a constant fraction of the received word
must be queried in order to distinguish between completely uncorrupted, and
severely corrupted, words. This is shown by the following theorem of [42].

Theorem 2 (Random LDPC codes require linear query complexity).
For integers t < q and constants 1/2 > € > 0,s > 0 there exists p > 0 such that
for sufficiently large n, a random (t,q)-LDPC code is, with high probability, not
(un, €, s)-locally testable.

22 E. Ben-Sasson

Proof (Sketch). Consider a random LDPC code C based on a random (¢, q)-
regular graph G and assume that the constraints U that define it are linearly
independent, which they are, with high probability. This linear independence
implies that for every u € U there exists a word r(u) € F§ such that

r(u) Lu and r(u) LU\ {u}. (1)

Appealing to the expansion properties of the graph G — which were used in the
first place to argue that C has constant relative distance — we conclude that the
code C_, = (U\ {u})t = {w|w L (U\ {u})} has good distance because the
constraint graph induced by U \ {u} is still a good expander. This implies that
any word r(u) € C_,, \ C is e-far from C for some constant € > 0.

What is the probability with which r(u) is rejected by a ¢’-query tester? Recall
that a linear ¢/-tester T is defined by a distribution D over C;;. Expressing a
potential linear test v € Cj as a linear combination of elements from U and
letting U(v) C U denote the set of elements that have nonzero coefficients in
this expression, we see from Equation () that r(u) £ v if and only if u € U(v).
The answer to our question is then

Pr[T"W[R] = reject] = Pr [v L r(u)] = Pr[ue U@v)].

R v~D v~D
Taking one step further, for the tester defined by the distribution D to reject
each r(u) for u € U, it better be the case that U(v) 3 u for a random v ~ D
and uniformly random w € U. This implies that a constant fraction of tests
in supp(D) are, each, a linear combination of a constant fraction of U. Alas,
with high probability, all words in span(U) that are a linear combination of a
constant fraction of U must have large weight. This should sound reasonable
because U is random, so summing up a constant fraction of its elements should
result in a word with pretty large weight. We conclude that any tester that
achieves constant soundness must be a distribution over words that have weight
2(n), and this completes the proof (sketch).

2.3 LTCs Require Redundant Testers

Our next result rules out the existence of asymptotically good families of LTCs
that lack sufficient redundancy, a concept we define next. This result can be seen
as a generalization of the previous section to the case of codes that have “too
few” dual words of weight g so let us explain how we quantify the number of
such words and define what we mean by “too few” words.

If Ci-q does not span all of C* then C cannot be a g-query strong LTC because
some non-codeword will be accepted with probability 1. This by itself does not
yet mean that C is not locally testable, as it could be the case that all r & C that
are accepted with probability 1 are, say, (¢/2)-close to C. A far more interesting
case is when Ci-q is a basis for Ct but contains no more words. Random (¢, q)-
regular codes give one example of such codes because it can be verified that the
only words of weight at most ¢ are those belonging to the linearly independent

Limitation on the Rate of Families of Locally Testable Codes 23

set U. We have already seen that such codes are not locally testable but perhaps
other codes are? Before we continue let us formally define the redundancy of a
code, which is the way we measure how many dual words are out there.

Definition 3 (Redundancy). Given a set U C " let the redundancy of U
be redun(U) = |U| — dim(span(U)). It is the number of elements of U that can
be removed from U without increasing the linear space that is dual to U (which
we think of as a code C). Notice redun(U) = 0 if and only if U is linearly
independent.

Let C be a [n,k,dp-linear code. For D a distribution over C+ (think of D
as a tester for C) let redun(D) = redun(supp(D)). D is said to be a linearly
independent tester if redun(D) = 0 and if moreover supp(D) spans C*+ we call
D a basis tester for C. Finally, the q-redundancy of C is redung(C) = redun(Ci—q).

The following theorem of [I0] shows that any locally testable code with suffi-
ciently large rate must be tested by redundant testers.

Theorem 3 (Linear LTCs require redundant testers). LetC be an [n, k, d=
don]r-code that is a (q,d0/3,€)-LTC. Then

redun,(C) > eqk; —1.

Moreover, if D, the tester’s distribution, is uniformly distributed over supp(D),

then
e—q/k

dun(D) >
redun(D) > l—e

(n—k).
The first equation above implies that every asymptotically good family of ¢g-query
LTCs must have linear ¢g-redundancy, to see this set k = pn where p is the rate of
the family of codes. The second equation implies that g-query LTCs with super-
constant size that are testable by a uniform tester, i.e., a tester whose distribution
is uniform over a subset of Céq, must have linear redundancy. All algebraic and
affine-invariant codes are testable by uniformly distributed testers, and so are
sparse random unbiased codes but it should be stressed that the LTCs obtained
by using composition techniques, such as PCPP-based and tensor-product ones,
are not necessarily uniform. We point out that both inequalities are known to
be nearly tight (cf. [34]).

It may seem that the limitation placed by Theorem [l on the minimal redun-
dancy of an LTC can be easily overcome. Even if there are precisely n— k linearly
independent words in Ciq (this is what happens, for example, with random (¢, q)-

regular LDPC codes), there are ("Ek) words in Cézq — take the sumset of Céq
— so clearly this set has superlinear redundancy and for all we know C may be
2¢-testable without contradicting our theorem. The following stronger version of
Theorem Blis immune to the “sumset” trick and seems to say something deeper
about the structure of small weight words of the dual code. To state this theorem
we need a more refined definition of redundancy.

24 E. Ben-Sasson

Definition 4 (Expected redundancy). For U C F", B = {b1,...,b:} a lin-
early independent set spanning span(U) (B is not necessarily a subset of U), and
u € U let B(u) be the set of elements of B used to represent w. If u = 2221 Bib;
then this set is

B(u) = {b € B| B # 0}.

For D a distribution on Ci-q (which we view as a q-query tester for C) let its
expected g-redundancy be

Eredun, (D) = mén Eu~p[|B(u)|]

where the minimum is taken over all bases B C C%-q which span C*. (Notice B is
not necessarily a subset of supp(D).) The expected g-redundancy of C, denoted
as Ereduny(C), is the minimal expected q-redundancy of a distribution D on C%q.

The following is the main theorem of [I0].

Theorem 4 (LTCs require testers with large expected redundancy).
Let C be an [n,k,d = don|p-code that is a (q,00/3,s)-LTC. Then

sk

Eredun,(C) > ‘

Returning to the example discussed above, the example which assumed Ci-q is
linearly independent and suggested to use a 2¢-tester distributed over the sumset
of Ci-q, it is not hard to see that its expected redundancy is 2 and to see this set
B = Céq. Theorem [thus rules out this case, as well as that of taking as our
tester any distribution over the £2(k)-wise sum of Ci-q.

Informally, this theorem says is that in order for a linear code to be g-query
testable it must be the case that for any basis B C Céq there exists a linear
number of words in Ci-q \ B that are each a linear combination of a constant
fraction of B. This means that some nontrivial cancelation is going on by which
many small-weight words — a linear number of them — are each a sum of many
words from B.

2.4 Dense LTCs Have Small Rate

In the previous section we saw that linear codes with too few dual words of small
weight are not locally testable. In this section we discuss the opposite extreme,
of codes with too many dual words of small weight. The following definition will
be used to capture the notion of “too many” dual words.

Definition 5 (Dense codes). An [n,k,d|r linear code C is said to be (7, q)-
dense if for every i € {1,...,n} there are at least yn9=2 dual words u of weight
q such that u; # 0.

For instance, the Hadamard code is (%,3)—dense because every selection of j €

{1,...,n} participates in a dual word of weight 3 that touches .

Limitation on the Rate of Families of Locally Testable Codes 25

Remark 5. A different definition for dense codes can be suggested, one that uses
the total number of weight-¢ dual words. For instance, we may decide to call a
code C (v, ¢)-dense’ if |Céq\ > yn9~!. This definition is problematic, as seen by
taking the direct product of the Hadamard code with blocklength n, denoted
H,, with, say, a [n,k = n/polylogn, d]r,-code Cy that is a (3,¢,s)-LTC (codes
with these parameters are known to exist). The resulting code

C=Cyx H,={(c,d)|ceCy € Hp,}

is a linear 3-query LTC of blocklength 2n and can easily be seen to be (1/4, 3)-
dense’ because Hs is (1/2,3)-dense’ but the rate of C is at least k/2n. In other
words, we can artificially increase the density’ of an LTC at the price of decreas-
ing its rate by a constant factor.

It turns out that it is sufficient to consider the density of weight-3 and weight 4
words, due to the following claim because (v, ¢)-density for ¢ > 3 implies either
(3,7)- or (4,')-density for v/ > 0 depending only on 7. The main theorem of
[46] shows that dense codes have small rate:

Theorem 5 (Dense codes have small rate). For every v > 0 and integer
q there exists £ > 0 depending only on v and q such that the following holds. If
C is a linear [n,k,d]p, code that is (v, q)-dense, then the dimension k of C is at
most logZ n.

The proof relies on results from additive combinatorics and we give a sketch of
it next.

Proof (Sketch). Take a generating matrix A € F3** for C, a matrix satisfying
C={Ax |z €F5}. Let A={A;|ic{1,...,n}} CF} denote the set of rows of
the matrix. The density assumption implies

Pr [a+d €A >~.
a,a’€

The Balog-Szemerédi-Gowers theorem [47/48)], together with the Freiman-Ruzsa
theorem [49J50], imply that A contains a subset A’ of size at least 7|.4| that
is an n-fraction of some linear subspace of F§, where n = vpob’(l/”. In other
words, the set of rows A’ can be viewed, after an appropriate change of basis,
as resulting from taking a constant fraction of the rows of a generating matrix
of the Hadamard code, which is known to have very bad rate. Consider the
residual set A” = A\ A’. The assumption that each i € {1,...,n} touches many
weight-3 words is now used to argue that A” is also (v, 3)-dense, for 4/ > 0
that depends only on <, so our argument can be repeated. Continuing in this
manner we reach the conclusion that the generating matrix A can be written,
after a proper change of basis, as a block-diagonal matrix where each block is a
constant fraction of a Hadamard code and Hadamard codes are known to have
bad rate. Consequently, C has small rate and this completes the proof sketch.

26 E. Ben-Sasson

2.5 Question: Narrow the Gap between Redundant and Dense LTC
Limitations

The rate limitations we have showed regarding both redundant, and dense, LTCs,
suggest an interesting avenue for future research — to narrow the gap between
these two cases. For simplicity consider the case of an asymptotically good fam-
ily of smooth 3-query LTCs, i.e., LTCs that have a tester which queries each
codeword entry with the same probability. The results on redundancy show that
each member of the family should have at least a linear number of redundant
weight-3 dual words. The result on dense codes shows that the overall number of
such words is o(n?). Here is a seemingly simpler question that is currently open:

Question 2 (Number of small weight dual words of a linear LTC). Prove or refute
the following conjecture. Suppose {C, C {0,1}" |n € Z} is an asymptotically
good family of linear (3,0/3,s > 0)-LTCs of relative distance at least 6 > 0.
Suppose furthermore that C,, is testable by a tester associated with the uniform
distribution on (C,)%5, the set of weight-3 words in C*. Then |(C,)<5| = w(n).

3 Limitations on Group-Invariant Codes

We have seen in Section 23] that linear LT Cs must have dual codes whose small-
weight words show a large degree of nontrivial redundancy. Constructing codes
that have large rate and such a level of redundancy seems like a hard problem,
and one way to get around it is to use codes that are invariant under a “suffi-
ciently rich” group (a concept we explain next), for which the existence of even a
single small-weight dual word immediately implies a large number of such words.

A code C of blocklength n induces a group of automorphisms aut(C), this is
the group of permutations 7 : {1,...,n} — {1,...,n} under which the code
is invariant, by which we mean that for every w = (wy,...,w,) € C the -
permuted word m(w) = (Wx(1),---,Wr(n)) also belongs to C. It is not hard to
verify that aut(C) is indeed a group and that aut(Ct) = aut(C). Consequently,
if C1 contains a word u of weight ¢ then Ci-q contains {7(u) | m € aut(C)}. Thus,
if aut(C) is sufficiently rich we can hope for Céq to be large and redundant and,
if all stars align properly, C will be a g-query LTC and moreover have large rate
and relative distance.

Two notable families of groups that should be mentioned in this context are
doubly transitive and affine-invariant ones. A group of permutations G over n
elements is said to be doubly transitive, or 2-wise transitive, if for every i # j
and i' # 7' € {1,...,n} there exists # € G such that «(i) = ¢ and «(j) = j'.
A conjecture attributed? to [18] is that all codes which are invariant under a
doubly transitive group (call them doubly transitive codes) are testable with
query complexity ¢’ that depends only on the smallest ¢ for which Ci-q spans

C*. In particular, this query complexity is conjectured to be independent of the

2 We use the term “attributed” because in [18 Section 5] it appears as an open
question.

Limitation on the Rate of Families of Locally Testable Codes 27

blocklength of C. (The requirement that Céq span C*, cannot be replaced by
the weaker assumption that ¢ is the minimal distance of C*. [51] showed that if
one opts for the weaker assumption then the conjecture is false.) It is shown by
[62] that doubly transitive codes with small dual distance are so-called locally
correctable codes. These codes are a stronger analog of locally decodable codes
(cf. [B06]), and this implies a polynomial upper bound on their rate of the form of

n

2
the form p(C) = O <logn (1°g"> o) , as shown in [53]. This raises the following

open problem:

Question 3 (Polynomial rate doubly transitive LTCs). Does there exist a fam-
ily {C,, CF™|n € Z} of doubly transitive (¢,e > 0,s,1)-LTCs that has inverse
polynomial rate, i.e., p(C,) > 1/n°M?

A group is said to be affine-invariant if {1,...,n} can be identified with a vector
space K™ over a finite field K and G is then isomorphic to the group of invertible
affine transformationdd over K™. The family of affine-invariant codes includes
the Hadamard and Reed-Muller codes as well as dual-BCH codes. [2I] showed
that, when |K| is small, every affine-invariant family of codes over K™, whose
dual contains a small-weight word, is locally testable. Since every affine group is
doubly transitive, the work of [21] shows that the double-transitivity conjecture
does hold in certain interesting special cases. Later on we shall see that affine-
invariant codes have small rate, and this answers negatively the question above
for this special case.

A third and final family of group invariant codes considered in the literature
is that of cyclic codes, i.e., codes invariant under a cyclic group. All affine invari-
ant codes (including Hadamard and Reed-Muller) are, in particular, cyclic. [9]
showed that a family of cyclic LTCs cannot be asymptotically good, either its
rate or its distance must be less than 1/+/lognloglogn. A long-standing open
problem in coding theory is whether there exists an asymptotically good family
of cyclic codes (cf. [7, Open Problem 9.2]). The result above shows that when
local testability is thrown in as a requirement, then indeed asymptotically good
codes do not exist.

3.1 Affine Invariant LTCs Have Small Rate

In this section we discuss rate limitations of affine-invariant locally testable
codes. More information on this topic can be found in the survey [25]. Recall that
if C is an [n, k, dJp-code affine-invariant code it means we can identify {1,...,n}
with K™ for some field K which is a finite extensior] of F and such that the

3 The work of [2I] actually talks about the semi-group of all affine transformations,
including the non-invertible ones.

4 The more general case of K being an arbitrary field, not necessarily extending F,
has not been addressed so far. However, it seems reasonable to expect that such
codes should not have good rate, regardless of their local testability properties. This
is because K" -affine invariance and F-linearity do not mix well when K is not an
extension of F.

28 E. Ben-Sasson

automorphism group of C contains the affine (semi-)group over K™. The study of
affine invariant LTCs was initiated by [21], as a first step towards characterizing
the class of “algebraic” properties which are testable. This class is also an inter-
esting special case of the doubly transitive conjecture of [I8]. Indeed, for such
codes [21] showed that local testability exists as long as the field K is sufficiently
small and the dual code has constant distance, as seen from their main theorem:

Theorem 6 (Affine invariant codes over small fields with constant dual
distance are locally testable). For fields F C K let C be an [n = |K™|, k, d|g
affine-invariant code such that Ct contains a word of weight qo. Then C is

q= (UK\Q(JO)“K|2 s= 1 -strongly locally testable
22+ 1) (g + 1)

by which we mean that there exists a q-query linear tester that rejects noncode-

words r & C with probability at least s - d¢c(r).

Now we discuss the rate of such codes. Since affine invariant codes are cyclic,
one could get an inverse logarithmic bound on the rate of affine invariant LTCs
from what is known on cyclic LTCs. A tighter, inverse polynomial, bound on
the rate follows from the result of [52] which says that such codes are locally
decodable (and locally correctable) and the result of [53] which bounds the rate

2
of locally decodable codes by O [logn (log”> ™). The following result of [24]

n

gives a stronger bound, showing that the dimension of affine-invariant codes is
merely polylogarithmic in the blocklength of the code.

Theorem 7 (Affine invariant LTCs have small rate). Let p be a prime and
r,m,m be positive integers and let F be the field of size p” and K be its degree
(-extension, which is of size p™*. Any affine invariant [n = |[K™|, k, d]p-code C
such that C* contains a word of weight ¢ > 0 satisfies

k < (log, n)? 1,

Notice the theorem shows exponential rate even for large fields K, which are
not known to be locally testable. We point out that the theorem as stated in
[24] gives more information on affine-invariant codes with small dual distance,
showing they are subcodes of low-degree polynomials (Reed-Muller codes). We
shall not describe this result, nor shall we go into details of the proof because
quite a lot of algebra is needed to describe it. Instead, we point the interested
reader to the survey [25] and the relevant papers [21124].

We end this section by pointing out the following interesting question which
addresses the rate of a natural family of codes invariant under a linear group (in
particular, Theorem [does not apply to such codes):

Question 4 (Rate of linear invariant codes with small dual distance). Let K be a
finite extension of a finite field F. Let GL(m, K) denote the general linear group
over K, containing all invertible m-dimensional linear transformations over K.

Limitation on the Rate of Families of Locally Testable Codes 29

Let C be an [n = |K|™, k, d]p-linear code that is invariant under GL(m,K) and
suppose C* contains a word of weight ¢ > 0. How large can k be as a function
of the field size |[K| and code distance d?

Acknowledgement

Thanks to Michael Viderman for helpful comments on an earlier draft. The
research leading to some of the results surveyed here has received funding from
the European Community’s Seventh Framework Programme (FP7,/2007-2013)
under grant agreement number 240258 and from the US-Israel Binational Science
Foundation under grant number 2006104.

References

10.

11.

12.

13.

14.

. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.

Journal of the ACM 45(1), 70-122 (1998)

. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. Journal of the ACM 45(3), 501-555 (1998)

. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3),

12:1-12:44 (2007)

. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653-750 (1998)

. Goldreich, O.: Short locally testable codes and proofs (survey). Electronic Collo-

quium on Computational Complexity (ECCC) (014) (2005)

. Trevisan, L.: Some applications of coding theory in computational complexity.

Quaderni di Matematica 13, 347424 (2004)

. MacWilliams, F., Sloane, N.: The theory of error-correcting codes. North-Holland,

Amsterdam (1978)

. Ben-Sasson, E., Goldreich, O., Sudan, M.: Bounds on 2-query codeword testing.

In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and
APPROX 2003. LNCS, vol. 2764, pp. 216-227. Springer, Heidelberg (2003)

. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Trans-

actions on Information Theory 51(8), 2849-2858 (2005)

Ben-Sasson, E., Guruswami, V., Kaufman, T., Sudan, M., Viderman, M.: Locally
testable codes require redundant testers. In: CCC 2009: Proceedings of the 2009
24th Annual IEEE Conference on Computational Complexity, Washington, DC,
USA, pp. 52-61. IEEE Computer Society, Los Alamitos (2009)

Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability—
towards tight results. SIAM Journal on Computing 27(3), 804-915 (1998)

Meir, O.: On the efficiency of non-uniform pcpp verifiers. Electronic Colloquium
on Computational Complexity (ECCC) 15(064) (2008)

Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: STOC, pp. 73-83. ACM, New York (1990)

Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.: Linearity testing
in characteristic two. IEEE Transactions on Information Theory 42(6), 1781-1795
(1996)

30

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

E. Ben-Sasson

Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in polylog-
arithmic time. In: Proceedings of the Twenty-third Annual ACM Symposium on
Theory of Computing, pp. 21-32. ACM, New York (1991)

Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 475-484.
ACM, New York (1997)

Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combina-
torica 23(3), 365-426 (2003)

Alon, N.; Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing reed-muller
codes. IEEE Transactions on Information Theory 51(11), 4032-4039 (2005)
Kaufman, T., Ron, D.: Testing polynomials over general fields. STAM J. Com-
put. 36(3), 779-802 (2006)

Samorodnitsky, A.: Low-degree tests at large distances. In: Johnson, D.S., Feige,
U. (eds.) STOC, pp. 506-515. ACM, New York (2007)

Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In:
Ladner, R.E., Dwork, C. (eds.) STOC, pp. 403-412. ACM, New York (2008)
Grigorescu, E., Kaufman, T., Sudan, M.: 2-transitivity is insufficient for local testa-
bility. In: IEEE Conference on Computational Complexity, pp. 259-267. IEEE
Computer Society, Los Alamitos (2008)

Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with ap-
plications to testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-
RANDOM 2009. LNCS, vol. 5687, pp. 534-547. Springer, Heidelberg (2009)
Ben-Sasson, E., Sudan, M.: Limits on the rate of locally testable affine-invariant
codes. Electronic Colloquium on Computational Complexity (ECCC) (108) (2010)
Sudan, M.: Invariance in Property Testing. ECCC, TR10-051 (2010)

Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889-974 (2006)

Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the
PCP theorem. SIAM J. Comput. 36(4), 975-1024 (2006)

Meir, O.: Combinatorial construction of locally testable codes. SIAM J. Com-
put. 39(2), 491-544 (2009)

Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
Random Struct. Algorithms 28(4), 387-402 (2006)

Moshkovitz, D., Raz, R.: Two-query pcp with subconstant error. J. ACM 57(5)
(2010)

Dinur, I., Harsha, P.: Composition of low-error 2-query pcps using decodable pcps.
In: FOCS, pp. 472-481. IEEE Computer Society, Los Alamitos (2009)

Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and
testable. In: FOCS, pp. 590-600. IEEE Computer Society, Los Alamitos (2007)
Kopparty, S., Saraf, S.: Local list-decoding and testing of random linear codes from
high error. In: Schulman, L.J. (ed.) STOC, pp. 417-426. ACM, New York (2010)
Ben-Sasson, E., Viderman, M.: Low rate is insufficient for local testability. In:
Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation
- RANDOM 2010 (September 2010)

Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC, pp. 723-732. ACM, New York (1992)

Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253-1298
(2000)

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Limitation on the Rate of Families of Locally Testable Codes 31

Barak, B., Goldreich, O.: Universal arguments and their applications. STAM J.
Comput. 38(5), 1661-1694 (2008)

Ben-Sasson, E., Harsha, P., Lachish, O., Matsliah, A.: Sound 3-query PCPPs are
long. In: Aceto, L., Damgard, I., Goldberg, L.A., Halld6rsson, M.M., Ingdlfsdéttir,
A., Walukiewicz, 1. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 686—697.
Springer, Heidelberg (2008)

Guruswami, V.: On 2-query codeword testing with near-perfect completeness. In:
Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 267-276. Springer, Heidelberg
(2006)

Kol, G., Raz, R.: Bounds on 2-Query Locally Testable Codes with Affine Tests.
ECCC Report TR09-138 (2009)

Kol, G., Raz, R.: Locally testable codes analogues to the unique games conjecture
do not exist. ECCC Report TR09-128 (2009)

Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to
test. SITAM J. Comput. 35(1), 1-21 (2005)

Gallager, R.: Low-density parity-check codes. IRE Transactions on Information
Theory 8(1), 21-28 (1962)

Sipser, M., Spielman, D.: Expander codes. IEEE Transactions on Information The-
ory 42(6), 1710-1722 (1996)

Spielman, D.: Computationally efficient error-correcting codes and holographic
proofs. PhD thesis, MIT (1995)

Ben-Sasson, E., Viderman, M.: Dense locally testable codes have bad rate (2010)
(unpublished manuscript)

Balog, A., Szemerédi, E.: A statistical theorem of set addition. Combinator-
ica 14(3), 263-268 (1994)

Gowers, W.T.: A new proof of szemeredi’s theorem for arithmetic progressions of
length four. Geom. Funct. Anal. 8(3), 529-551 (1998)

Freiman, G.A.: Foundations of a structural theory of set addition, vol. 37. American
Mathematical Society, Providence (1973)

Ruzsa, 1.Z.: An analog of freiman’s theorem in groups. Asterique 258, 323-326
(1999)

Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with ap-
plications to testing. In: Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pp. 534-547 (2009)

Kaufman, T., Viderman, M.: Locally testable vs. locally decodable codes. In:
Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation
- RANDOM 2010 (2010)

Woodruff, D.: New lower bounds for general locally decodable codes. Electronic
Colloquium on Computational Complexity (ECCC) 14(006) (2007)

Testing Juntas: A Brief Survey

Eric Blais

School of Computer Science, Carnegie Mellon University,
Pittsburgh PA 15213, USA

eblais@cs.cmu.edu

Abstract. A function on n variables is called a k-junta if it depends
on at most k of its variables. In this survey, we review three recent
algorithms for testing k-juntas with few queries.

1 Introduction

A function f:{0,1}™ — {0,1} is said to be a k-junta if it depends on at most k
variables. Juntas provide a clean model for studying learning in the presence of
many irrelevant features [7J10] and have consequently been of particular interest
to the computational learning theory community [7IS[9IT0I22I2325].

As is typical in the machine learning setting, all learning results on k-juntas
assume that the unknown function is a k-junta. In practice, however, it is often
not known a priori whether a function being learned is a k-junta or not. It is
therefore desirable to have an efficient algorithm for testing whether a function
is a k-junta or “far” from being a k-junta before attempting to run any k-junta
learning algorithm.

We consider the problem of testing k-juntas in the standard property testing
framework originally defined by Rubinfeld and Sudan [27]. In this framework,
we say that a function f is e-far from being a k-junta if for every k-junta g, the
functions f and g disagree on at least an € fraction of all inputs.

An e-tester for k-juntas is an algorithm A that queries an unknown function
f on g inputs of its choosing, and then (1) accepts f with probability at least 2/3
when f is a k-junta, and (2) rejects f with probability at least 2/3 when f is e-far
from being a k-junta. When the algorithm A chooses all its queries in advance
(i.e., before observing the values of the function on any of its previous queries), it
is non-adaptive; otherwise it is adaptive. The main parameter of interest for our
purposes is the number ¢ of queries required by testers for k-juntas. In particular,
the question we study is the following:

What is the minimum number of queries required to e-test k-juntas?

A simple way to test k-juntas is to learn a target hypothesis k-junta using
membership queries, and to then use a separate set of randomly-chosen queries
to test this hypothesis [I8/22]. Such an approach yields a valid tester but requires
O(klogn/e) queries. In the rest of this survey, we will examine three algorithms
that improve dramatically on this bound by requiring a number of queries that
is independent of n.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 32 2010.
© Springer-Verlag Berlin Heidelberg 2010

Testing Juntas: A Brief Survey 33

2 Boolean Functions: Preliminaries

2.1 Basic Definitions

Throughout this survey, f : {0,1}™ — {0,1} represents a (generic) boolean
function. The complement of f is the function f : {0,1}" — {0,1} defined by
@) =1- f(x).

Given z = (z1,...,2,) and y = (y1,...,¥yn) from {0,1}", addition and mul-
tiplication are defined componentwise: x +y = (1 + y1,...,Zn + Yn) and
-y = (T1Y1,...,TnYn). We also define a hybridization operation: for a set
S C [n], the element z = zgys € {0,1}" is formed by setting z; = z; for every
i €S =[n]\S and setting z; = y; for every i € S.

2.2 Notable Boolean Functions

The function that maps all inputs to 0 is the constant zero (or just zero) function;
its complement is the constant one function that maps all inputs to 1. When
there is an index 4 € [n] such that f is defined by f(z) = x;, then we say that f
is a dictator function. A function is an anti-dictator function if its complement
is a dictator function.

For a set S = {i1,i2,...,ix} C [n], the linear function corresponding to S
is the function yg defined by xs(x) = x;, + x4, + -+ + x;,. By convention, we
define xp to be the constant zero function. An alternative characterization of
linear functions is provided by the following proposition.

Proposition 1. A function f : {0,1}™ — {0,1} is linear if and only if for every
z,y €40, 137, fz) + f(y) = flz +y).

For a set S = {i1,42,...,it} C [n], the (monotone) monomial function corre-
sponding to S is the function £g defined by &s(x) = @i, @i, - - - @, . (Le., Es(x) =1
iff #;, =--- =uw;, = 1.) As with linear functions, monomials have a useful alter-

native characterization.

Proposition 2. A non-constant function f :{0,1}" — {0,1} is a monomial if
and only if for every z,y € {0,1}", f(z) - f(y) = f(z-y).

2.3 Influence

For an index i € [n], the influence of the ith variable in the function f is
Inf;(i) = Pr[f(x) # f(zV))],

where the probability is over the uniform distribution on {0, 1}" and the input
() € {0,1}" is obtained by flipping the value of the ith variable of .
The influence of the set S C [n] in the function f is

Inf(S) = 2 Pr(f(2) # f(zsys))

A k-junta is a function f for which there are at most & indices i € [n] such that
Inff(i) > 0. Alternatively, f is a k-junta if there exists a set S C [n] of size

|S] < k such that Inf¢(S) = 0.

34 E. Blais

3 Testing 1-Juntas

We begin with the simplest case: testing 1-juntas. The family of 1-junta func-
tions is small. It contains only the constant functions, the dictator functions,
and the anti-dictator functions. Furthermore, dictator functions have the useful
distinction of being the only non-constant functions that are both linear func-
tions and monomials. This distinction lies at the heart of the 1-junta tester that
we will examine in this section.

3.1 The Algorithm

As suggested above, our main building block for testing 1-juntas is an algorithm
that accepts functions that are both linear and monomials. The characterizations
of linear functions and of monomials from Propositions [I] and [suggest the
following simple algorithm for this task:

LINEAR MONOMIAL TEST(f, €)

1. For O(1/¢) randomly selected pairs z,y € {0,1}",
1.1. Verify that f(z) + f(y) = f(z +y).

1.2. Verify that f(z) - f(y) = f(z - y).
2. Accept iff all verifications pass.

Clearly, the LINEAR MONOMIAL TEST always accepts the zero function and
dictator functions. To accept all 1-juntas, it suffices to test f and its complement
f for the property of being a linear monomial:

1-JUNTA TEST(f, €)

1. Call LINEAR MONOMIAL TEST(f, €).
2. Call LINEAR MONOMIAL TEST(f, €).
3. Accept iff one of the above tests accepts.

The 1-JuNTA TEST algorithm always accepts 1-juntas. To establish that it
is a valid tester for 1-juntas, we need to show that it rejects functions that are
e-far from 1-juntas with high probability. We do so in two steps.

First, we show that the 1-JUNTA TEST rejects functions that are far from
linear with high probability. This statement follows from the robustness of the
linearity characterization in Proposition[I} when a function f is e-far from linear
and z,y are generated uniformly at random, then f(z) + f(y) # f(z + y) with
probability at least e [SUIT].

Lemma 3 (Blum et al. [11], Bellare et al. [3]). Let f be e-far from linear.
Then the 1-JUNTA TEST rejects with probability at least 2/3.

Second, we show that functions that are e-close to a linear function xg for some
set S of size |S| > 2 are rejected by the monomial test in Line 1.2 of the Linear
Monomial Test with high probability. This is indeed the case, as an elementary
counting argument shows.

Testing Juntas: A Brief Survey 35

Lemma 4 (Bellare et al. [4]). Fiz 0 < € < § and let f be e-close to x5 for
some set S C [n] of size |S| > 2. Then the 1-JUNTA TEST rejects with probability
at least 2/3.

Together, Lemmas [and @] show that the 1-JUNTA TEST rejects functions that
are e-far from 1-juntas with probability at least 2/3. This completes the proof
of correctness of the algorithm. We can also easily verify that the tester makes
only O(1/¢) queries to the input function; this is optimal.

3.2 History

The problem of testing dictator functions was first studied by Bellare, Goldre-
ich, and Sudan [4] in the context of testing the Long Code for constructing
probabilistically-checkable proof (PCP) systems. As pointed out in [26], testing
the Long Code is equivalent to testing dictator functions, and their test for dicta-
tor functions is roughly equivalent to the 1-JuNTA TEST algorithm abovel] The
analysis of the dictator test was further generalized and extended by Parnas,
Ron, and Samorodnitsky [26].

Due to the key role of dictator functions in PCP systems, many other variants
of the dictatorship testing problem have been studied — see [13] in this volume
and the references therein for more information on this topic.

4 Testing k-Juntas

We now turn our attention to the general problem of testing k-juntas for any
value of kK > 1. In contrast to the case of 1-juntas, when k& > 2 the class of
k-juntas does not have a simple characterization that directly suggests a testing
algorithm. Nonetheless, as we will see in this section it is still possible to test
k-juntas with a small number of queries.

4.1 The Algorithm

The algorithm for testing k-juntas relies on two basic components: the INDE-
PENDENCE TEST, and the idea of randomly partitioning the coordinates.

The INDEPENDENCE TEST is a simple algorithm for verifying whether a given
function f is independent of a set S C [n] of coordinates:

INDEPENDENCE TEST(f, 5)
1. Generate z,y € {0,1}" uniformly at random.

2. Accept iff f(x) = f(zgys).

! There is one difference: when testing dictator functions, constant functions must be
rejected. In our case we want to accept them; this simplifies the algorithm slightly.

36 E. Blais

By our definition of influence, the probability that the INDEPENDENCE TEST
rejects is exactly ;Inf #(S). In particular, when f is independent of the variables
in S, then Inf;(S) = 0 and the test always accepts.

A nailve way to use the INDEPENDENCE TEST for testing k-juntas is to run the
test (sufficiently many times) on each singleton set S = {1},{2},...,{n} and to
accept iff at most k of the sets are rejected. This proposed algorithm is indeed
a valid tester for k-juntas, but it requires 2(n) queries. A simple trick, however,
can dramatically reduce the number of queries required: take a sufficiently fine
partition of the coordinates [n] and run the INDEPENDENCE TEST on each part.

k-JUNTA TEST(f, €)

1. Randomly partition the coordinates into O(k?) buckets.
2. Run INDEPENDENCE TEST O(k?/€) times.
3. Accept iff at most k buckets fail the independence test.

Clearly, the k-JuNTA TEST always accepts k-juntas: if there are only k indices
i € [n] for which Inf¢(i) > 0, then at most k parts in the random partition
will have influence Inf;(S) > 0. Conversely, when f is e-far from being a k-
junta, Fischer et al. [T7] showed that with high probability over the choice of the
random partition, at least k + 1 parts have large influence.

Lemma 5 (Fischer et al. [17]). Let f : {0,1}™ — {0,1} be e-far from be-
ing a k-junta and s = O(k?). Then with high probability a random partition
S1USoU -+ - US; of [n] will have at least k+1 parts with influence Inf ¢ (S;) > €/k?.

The proof of Lemma [uses Fourier analysis. The rest of the proof of correctness
of the k-JuNTA TEST follows almost immediately. The k-JUNTA TEST uses
O(k*/€) queries. This bound is significant in that it is independent of n; as we
discuss below, however, variants on this algorithm can test k-juntas with fewer
queries.

4.2 History

Fischer, Kindler, Ron, Safra, and Samorodnitsky [17] first studied the problem of
testing juntas and introduced the algorithm presented in this section. They also
designed multiple other testing algorithms that improve on the query complexity
of the k-JUNTA TEST. In particular, by using the INDEPENDENCE TEST on
carefully chosen sets of parts in a random partition, they showed that O(k? /€)
queries are sufficient to test k-juntas.

Fischer et al. [I7] also introduced the first non-trivial lower bound on the
query complexity of junta testing problem: they showed that for k& = o(y/n),
non-adaptive testing algorithms for testing k-juntas must make at least f)(\/ k)
queries. This lower bound implies a lower bound of £2(log k) queries for all adap-
tive k-junta testers as well. The lower bound was improved shortly afterwards
by Chockler and Gutfreund [14], who showed that 2(k) queries are required to
test k-juntas (adaptively or non-adaptively).

Testing Juntas: A Brief Survey 37

The gap between the £2(k) and O(k2/€) bounds on the query complexity of the
junta testing problem remained unchanged until recently, when a new algorithm
was introduced to test k-juntas with O(k'%/€) queries [5]. This was followed by
the introduction of another algorithm for testing k-juntas with O(klogk + k/¢)
queries [6]; we examine this algorithm in the next section.

5 Testing k-Juntas Nearly Optimally

The algorithm we saw in the last section relied on the INDEPENDENCE TEST.
To improve the query complexity, the algorithm we present in this section relies
on a slightly stronger building block.

5.1 The Algorithm

The starting point for the algorithm is an observation due to Blum, Hellerstein,
and Littlestone [9]: if we have two inputs z,y € {0,1}"™ such that f(z) # f(y),
then the set of coordinates i € [n] for which x; # y; contains a coordinate that
is relevant in f. Furthermore, by performing a binary search over the hybrid
inputs formed from x and y, we can identify a relevant coordinate with O(logn)
queries.

Even more interestingly, if we have a partition Z of [n] and we have a pair of
inputs x,y such that f(x) # f(y), we can use the same binary search idea to
identify a part that contains a relevant coordinate with only O(log|Z|) queries.
We use this idea to create an algorithm that attempts to find a part with a
relevant coordinate as follows:

FIND RELEVANT PART(f, Z, 5)

1. Generate z,y € {0,1}" uniformly at random.
2 1 f(z) # f(z5ys) then
2.1. Use a binary search to identify a part I € Z that contains
a relevant variable;
2.2. Return L.
3. Otherwise, Return (.

Note that by the test in Line 2, if the algorithm finds a part with a relevant
variable, that relevant variable is guaranteed to be in S. Also, the probability that
FIND RELEVANT PART succeeds in identifying a relevant part is the probability
that f(z) # f(zgys), which as we have seen previously is exactly jInfy(S).

The algorithm we now consider for testing k-juntas uses the FIND RELEVANT
PART in the obvious way: after taking a random partition of the coordinates,
the algorithm calls this routine a large number of times and rejects the input if
it identifies k + 1 distinct parts that contain relevant coordinates.

38 E. Blais

NEARLY OPTIMAL k-JUNTA TEST(f, €)

1. Randomly partition [n] into a partition Z with poly(k/e)
parts and initialize J « 0.

2. For each of O(k/¢) rounds,
2.1. J « J U FIND RELEVANT PART(f,Z,J).
2.2. If J contains > k parts, quit and Reject.

3. Accept.

As with the algorithms in the previous sections, it is easy to check that this
algorithm always accepts k-juntas. Once again, the non-trivial part of the proof
of correctness involves showing that functions e-far from k-juntas are rejected
with high probability. The key to proving that statement is the following lemma:

Lemma 6 ([6]). Let f:{0,1}" — {0,1} be e-far from being a k-junta, and let
T be a sufficiently fine partition of [n]. Then with high probability every set J
formed by taking the union of at most k parts of I satisfies Inf¢(J) > €/2.

The proof of Lemmalfl can be completed with Fourier analysis. Alternatively, and
more generally, it can also be completed using the Efron-Stein decomposition of
functions [16]. This is the approach taken in [6], and it enables the analysis of
the algorithm to hold even in the more general setting where the algorithm is
testing functions with any finite product domain and any finite ranges for the
property of being k—juntaSE

6 Open Problems and Future Directions

There are many possible directions for future research on testing k-juntas. We
highlight three particularly intriguing open problems.

6.1 Classical vs. Quantum Property Testing

The field of property testing can be extended to allow the tester to use the
quantum oracle model of Beals et al. [2]. The resulting model is called quan-
tum property testing and was first studied by Buhrman, Fortnow, Newman, and
Rohrig [12]. They showed that there are properties that can be tested with sig-
nificantly fewer queries in the quantum model than in the classical model and
that for some other properties, the extra power of the quantum oracle does not
improve the query complexity of the associated testing problem.

The first open problem asks if quantum oracles help when testing juntas: Is there
a gap between the quantum and classical query complexities for testing k-juntas?

Aticr and Servedio [I] studied the problem of testing juntas in the quantum
model. They showed that in this model, O(k/¢) queries are sufficient and £2(v/k)

2 We note that the result in [6] was not the first one to generalize the analysis of a
junta testing algorithm to non-boolean functions; Diakonikolas et al. [I5] did so as
well with a more technically intricate argument.

Testing Juntas: A Brief Survey 39

queries are necessary to e-test k-juntas. At the time that this algorithm was
introduced, it provided a quadratic improvement over the query complexity of
the best classical k-junta tester. Of course, the algorithm presented in Section
reduces the gap to be only logarithmic in k, and in fact our strongest lower
bounds in the classical model are not strong enough to guarantee the existence
of a gap in the query complexities.

6.2 Adaptive vs. Non-Adaptive Testing

Gonen and Ron [2I], and Goldreich and Ron [19] (see also [20] in this volume)
recently began a systematic study of the benefits of adaptivity for testing prop-
erties in the dense-graph model. They showed that for some properties, there
is a gap between the query complexity of the best adaptive and non-adaptive
testing algorithms, while for other properties no such gap exists.

The current gap between query complexity of the best adaptive and non-
adaptive algorithms for testing k-juntas — O(klogk + k/€) and O(k%/?/€), re-
spectively — leaves the following basic problem open: Does adaptivity help when
testing k-juntas?

6.3 Improved Testers for Other Properties

Following the work of Fischer et al. [I7], junta testers have been used as a basic
building block to design testers for many other properties of boolean functions,
including function isomorphism [I7], halfspaces [24], and many concise represen-
tation properties (e.g., being computable by a small decision tree or by a small
circuit, having low Fourier degree) [15] (see also [28] in this volume).

All of the above testing algorithms use one of the k-junta testers presented in
Section 4l The last open problem that we wish to mention is the following: Can
the NEARLY OPTIMAL k-JUNTA TEST be used (or extended) to obtain improved
testing algorithms for function isomorphism, halfspaces, or concise representa-
tion properties?

References

1. Atici, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas.
Quantum Information Processing 6(5), 323-348 (2007)

2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. of the ACM 48(4), 778-797 (2001)

3. Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.: Linearity testing
in characteristic two. IEEE Transactions on Information Theory 42(6), 1781-1795
(1996)

4. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability —
towards tight results. STAM J. Comput. 27(3), 804-915 (1998)

5. Blais, E.: Improved bounds for testing juntas. In: Goel, A., Jansen, K., Rolim,
J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp.
317-330. Springer, Heidelberg (2008)

6. Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Symposium on Theory of
Computing, pp. 151-158 (2009)

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

E. Blais

. Blum, A.: Relevant examples and relevant features: thoughts from computational

learning theory. In: AAAT Fall Symposium on ‘Relevance’ (1994)

. Blum, A.: Learning a function of r relevant variables. In: Proc. 16th Conference on

Computational Learning Theory, pp. 731-733 (2003)

. Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of finitely or

infinitely many irrelevant attributes. J. Comp. Syst. Sci. 50(1), 32-40 (1995)
Blum, A., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial Intelligence 97(2), 245-271 (1997)

Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47(3), 549-595 (1993)

Buhrman, H., Fortnow, L., Newman, I., Rohrig, H.: Quantum property testing. In:
Proc. 14th Symp. on Discrete Algorithms, pp. 480-488 (2003)

Chen, V.. Query-Efficient dictatorship testing with perfect completeness. In:
Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 276-279. Springer,
Heidelberg (2010)

Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Pro-
cessing Letters 90(6), 301-305 (2004)

Diakonikolas, 1., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A.,
Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foun-
dations of Computer Science, pp. 549-558 (2007)

Efron, B., Stein, C.: The jackknife estimate of variance. Ann. of Stat. 9(3), 586-596
1981

](F‘ischgr, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J.
Comput. Syst. Sci. 68(4), 753-787 (2004)

Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. of the ACM 45(4), 653-750 (1998)

Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs
model. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX-RANDOM
2009. LNCS, vol. 5687, pp. 520-533. Springer, Heidelberg (2009)

Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs

model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 295-305.
Springer, Heidelberg (2010)

Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense

graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM
2007 and APPROX 2007. LNCS, vol. 4627, pp. 525-539. Springer, Heidelberg (2007)
Guijarro, D., Tarui, J., Tsukiji, T.: Finding relevant variables in PAC model with
membership queries. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS
(LNAI), vol. 1720, pp. 313-322. Springer, Heidelberg (1999)

Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the Fourier spectrum of

symmetric boolean functions with applications to learning symmetric juntas. In:
Proc. 20th Conference on Computational Complexity, pp. 112-119 (2005)
Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.A.: Testing halfspaces. In:
Proc. 19th Symp. on Discrete Algorithms, pp. 256-264 (2009)

Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-
ables. J. Comput. Syst. Sci. 69(3), 421-434 (2004)

Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. STAM J.
Discret. Math. 16(1), 20-46 (2003)

Rubinfeld, R., Sudan, M.: Self-testing polynomial functions efficiently and over

rational domains. In: Proc. 3rd Symp. on Discrete Algorithms, pp. 23-32 (1992)
Servedio, R.: Testing by implicit learning: a brief survey. In: Goldreich, O. (ed.)
Property Testing. LNCS, vol. 6390, pp. 197-210. Springer, Heidelberg (2010)

Sublinear-time Algorithms*

Artur Czumaj** and Christian Sohler* * *

! Department of Computer Science and Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick
A.Czumaj@warwick.ac.uk
2 Department of Computer Science, TU Dortmund,
christian.sohler@tu-dortmund.de

Abstract. Inthispaper wesurvey recent advancesin the area of sublinear-
time algorithms.

Keywords: Sublinear time algorithms, sublinear approximation algo-
rithms.

1 Introduction

The area of sublinear-time algorithms is a new rapidly emerging area of computer
science. It has its roots in the study of massive data sets that occur more and
more frequently in various applications. Financial transactions with billions of
input data and Internet traffic analyses (Internet traffic logs, clickstreams, web
data) are examples of modern data sets that show unprecedented scale. Managing
and analyzing such data sets forces us to reconsider the traditional notions of
efficient algorithms: processing such massive data sets in more than linear time
is by far too expensive and often even linear time algorithms may be too slow.
Hence, there is the desire to develop algorithms whose running times are not
only polynomial, but in fact are sublinear in n.

Constructing a sublinear time algorithm may seem to be an impossible task
since it allows one to read only a small fraction of the input. However, in recent
years, we have seen development of sublinear time algorithms for optimization
problems arising in such diverse areas as graph theory, geometry, algebraic com-
putations, and computer graphics. Initially, the main research focus has been on
designing efficient algorithms in the framework of property testing (for excellent
surveys, see [28/32I33/43/53]), which is an alternative notion of approximation
for decision problems. But more recently, we have seen some major progress
in sublinear-time algorithms in the classical model of randomized and approxi-
mation algorithms. In this paper, we survey some of the recent advances in this
area. Our main focus is on sublinear-time algorithms for combinatorial problems,
especially for graph problems and optimization problems in metric spaces.

* This survey is a slightly updated version of a survey that appeared in Bulletin of
the EATCS, 89: 23-47, June 2006.
** Research supported by EPSRC award EP/G064679/1 and by the Centre for Dis-
crete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.
*** Supported by DFG grant SO 514/3-1.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 4 010.
© Springer-Verlag Berlin Heidelberg 2010

42 A. Czumaj and C. Sohler

Our goal is to give a flavor of the area of sublinear-time algorithms. We focus
on in our opinion the most representative results in the area and we aim to
illustrate main techniques used to design sublinear-time algorithms. Still, many
of the details of the presented results are omitted and we recommend the readers
to follow the original works. We also do not aim to cover the entire area of
sublinear-time algorithms, and in particular, we do not discuss property testing
algorithms [28I3233|43/53], even though this area is very closely related to the
research presented in this survey.

Organization. We begin with an introduction to the area and then we give some
sublinear-time algorithms for a basic problem in computational geometry [I5].
Next, we present recent sublinear-time algorithms for basic graph problems:
approximating the average degree in a graph [27/37], estimating the cost of a
minimum spanning tree [I6] and approximating the size of a maximum matching
[51056]. Then, we discuss sublinear-time algorithms for optimization problems in
metric spaces. We present the main ideas behind recent algorithms for estimating
the cost of minimum spanning tree [21] and facility location [I0], and then we
discuss the quality of random sampling to obtain sublinear-time algorithms for
clustering problems [22/49]. We finish with some conclusions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms has been known for a very long time,
but initially it has been used to denote “pseudo-sublinear-time” algorithms,
where after an appropriate preprocessing, an algorithm solves the problem in
sublinear-time. For example, if we have a set of n numbers, then after an
O(nlogn) preprocessing (sorting), we can trivially solve a number of problems
involving the input elements. And so, if the after the preprocessing the elements
are put in a sorted array, then in O(1) time we can find the kth smallest element,
in O(logn) time we can test if the input contains a given element x, and also in
O(log n) time we can return the number of elements equal to a given element x.
Even though all these results are folklore, this is not what we call nowadays a
sublinear-time algorithm.

In this survey, our goal is to study algorithms for which the input is taken
to be in any standard representation and with no extra assumptions. Then,
an algorithm does not have to read the entire input but it may determine the
output by checking only a subset of the input elements. It is easy to see that
for many natural problems it is impossible to give any reasonable answer if
not all or almost all input elements are checked. But still, for some number of
problems we can obtain good algorithms that do not have to look at the entire
input. Typically, these algorithms are randomized (because most of the problems
have a trivial linear-time deterministic lower bound) and they return only an
approzimate solution rather than the exact one (because usually, without looking
at the whole input we cannot determine the exact solution). In this survey,
we present recently developed sublinear-time algorithm for some combinatorial
optimization problems.

Sublinear-time Algorithms 43

Searching in a sorted list. It is well-known that if we can store the input in a
sorted array, then we can solve various problems on the input very efficiently.
However, the assumption that the input array is sorted is not natural in typical
applications. Let us now consider a variant of this problem, where our goal is to
search for an element z in a linked sorted list containing n distinct elementd].
Here, we assume that the n elements are stored in a doubly-linked list, each list
element has access to the next and preceding element in the list, and the list
is sorted (that is, if = follows y in the list, then y < z). We also assume that
we have access to all elements in the list, which for example, can correspond to
the situation that all n list elements are stored in an array (but the array is not
sorted and we do not impose any order for the array elements). How can we find
whether a given number z is in our input or is not?

On the first glace, it seems that since we do not have direct access to the
rank of any element in the list, this problem requires £2(n) time. And indeed, if
our goal is to design a deterministic algorithm, then it is impossible to do the
search in o(n) time. However, if we allow randomization, then we can complete
the search in O(y/n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a set S of ©(y/n) elements from the
input. Since we have access to all elements in the list, we can select the set S in
O(y/n) time. Next, we scan all the elements in S and in O(y/n) time we can find
two elements in S, p and ¢, such that p < x < ¢, and there is no element in S that
is between p and ¢q. Observe that since the input consist of n distinct numbers,
p and g are uniquely defined. Next, we traverse the input list containing all the
input elements starting at p until we find either the sought key x or we find
element gq.

Lemma 1. The algorithm above completes the search in expected O(y/n) time.
Moreover, no algorithm can solve this problem in o(y/n) expected time.

Proof. The running time of the algorithm if equal to O(y/n) plus the number
of the input elements between p and ¢. Since S contains @(y/n) elements, the
expected number of input elements between p and ¢ is O(n/|S|) = O(y/n). This
implies that the expected running time of the algorithm is O(y/n).

For a proof of a lower bound of £2(1/n) expected time, see, e.g., [15].

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geometric setting. Given
two convex polygons A and B in R2, each with n vertices, determine if they
intersect, and if so, then find a point in their intersection.

! The assumption that the input elements are distinct is important. If we allow multiple
elements to have the same key, then the search problem requires 2(n) time. To see
this, consider the input in which about a half of the elements has key 1, another half
has key 3, and there is a single element with key 2. Then, searching for 2 requires
2(n) time.

44 A. Czumaj and C. Sohler

Tt is well known that this problem can be solved in O(n) time, for example,
by observing that it can be described as a linear programming instance in two
dimensions, a problem which is known to have a linear-time algorithm (cf. [20]).
In fact, within the same time one can either find a point that is in the intersection
of A and B, or find a line £ that separates A from B (actually, one can even find
a bitangent separating line L, i.e., a line separating A and B which intersects
with each of A and B in exactly one point). The question is whether we can
obtain a better running time.

The complexity of this problem depends on the input representation. In the
most powerful model, if the vertices of both polygons are stored in an array
in cyclic order, Chazelle and Dobkin [14] showed that the intersection of the
polygons can be determined in logarithmic time. However, a standard geometric
representation assumes that the input is not stored in an array but rather A and
B are given by their doubly-linked lists of vertices such that each vertex has as
its successor the next vertex of the polygon in the clockwise order. Can we then
test if A and B intersect?

Chazelle et al. [15] gave an O(y/n)-time algorithm that uses the approach
discussed above for searching in a sorted list. Let us first sample uniformly at
random O(y/n) vertices from each A and B, and let C4 and Cp be the convex
hulls of the sample point sets for the polygons A and B, respectively. Using the
linear-time algorithm mentioned above, in O(y/n) time we can check if C4 and
Cp intersects. If they do, then the algorithm will get us a point that lies in the
intersection of C'4y and Cpg, and hence, this point lies also in the intersection
of A and B. Otherwise, let £ be the bitangent separating line returned by the
algorithm (see Figure[Il (a)).

Let a and b be the points in £ that belong to A and B, respectively. Let a;
and as be the two vertices adjacent to a in A. We will define now a new polygon
P4. If none of a; and a9 is on the side C'4 of £ then we define P4 to be empty.
Otherwise, exactly one of a; and as is on the side C'4 of L; let it be a;. We
define polygon P4 by walking from a to a; and then continue walking along the
boundary of A until we cross £ again (see Figure [l (b)). In a similar way we
define polygon Pp. Observe that the expected size of each of P4 and Pgp is at
most O(v/n).

It is easy to see that A and B intersect if and only if either A intersects Pp
or B intersects P4. We only consider the case of checking if A intersects Pg.

Fig. 1. (a) Bitangent line £ separating C4 and Cg, and (b) the polygon Pa

Sublinear-time Algorithms 45

We first determine if C4 intersects Pg. If yes, then we are done. Otherwise,
let £4 be a bitangent separating line that separates C'4 from Pg. We use the
same construction as above to determine a subpolygon Q4 of A that lies on
the Pp side of L4. Then, A intersects Pp if and only if Q4 intersects Pg.
Since @4 has expected size O(y/n) and so does Pp, testing the intersection of
these two polygons can be done in O(y/n) expected time. Therefore, by our
construction above, we have solved the problem of determining if two polygons
of size n intersect by reducing it to a constant number of problem instances of
determining if two polygons of expected size O(y/n) intersect. This leads to the
following lemma.

Lemma 2. [I5] The problem of determining whether two convex n-gons inter-
sect can be solved in O(y/n) expected time, which is asymptotically optimal.

Chazelle et al. [I5] gave not only this result, but they also showed how to apply a
similar approach to design a number of sublinear-time algorithms for some basic
geometric problems. For example, one can extend the result discussed above to
test the intersection of two convex polyhedra in R? with n vertices in O(y/n)
expected time. One can also approximate the volume of an n-vertex convex
polytope to within a relative error £ > 0 in expected time O(y/n/e). Or even,
for a pair of two points on the boundary of a convex polytope P with n vertices,
one can estimate the length of an optimal shortest path outside P between the
given points in O(y/n) expected time.

In all the results mentioned above, the input objects have been represented
by a linked structure: either every point has access to its adjacent vertices in
the polygon in R?, or the polytope is defined by a doubly-connected edge list,
or so. These input representations are standard in computational geometry, but
a natural question is whether this is necessary to achieve sublinear-time algo-
rithms — what can we do if the input polygon/polytop is represented by a set
of points and no additional structure is provided to the algorithm? In such a
scenario, it is easy to see that no o(n)-time algorithm can solve exactly any of
the problems discussed above. That is, for example, to determine if two poly-
gons with n vertices intersect one needs 2(n) time. However, still, we can obtain
some approximation to this problem, one which is described in the framework
of property testing.

Suppose that we relax our task and instead of determining if two (convex)
polytopes A and B in R intersects, we just want to distinguish between two
cases: either A and B are intersection-free, or one has to “significantly mod-
ify” A and B to make them intersection-free. The definition of the notion of
“significantly modify” may depend on the application at hand, but the most
natural characterization would be to remove at least en points in A and B,
for an appropriate parameter e (see [20] for a discussion about other geomet-
ric characterization). Czumaj et al. [25] gave a simple algorithm that for any
€ > 0, can distinguish between the case when A and B do not intersect, and
the case when at least en points has to be removed from A and B to make
them intersection-free: the algorithm returns the outcome of a test if a random

46 A. Czumaj and C. Sohler

sample of O((d/e) log(d/e)) points from A intersects with a random sample of
O((d/e) log(d/e)) points from B.

Sublinear-time algorithms: perspective. The algorithms presented in this section
should give a flavor of the area and give us the first impression of what do we
mean by sublinear-time and what kind of results one can expect. In the following
sections, we will present more elaborate algorithms for various combinatorial
problems for graphs and for metric spaces.

3 Sublinear Time Algorithms for Graphs Problems

In the previous section, we introduced the concept of sublinear-time algorithms
and we presented two basic sublinear-time algorithms for geometric problems. In
this section, we will discuss sublinear-time algorithms for graph problems. Our
main focus is on sublinear-time algorithms for graphs, with special emphasizes
on sparse graphs represented by adjacency lists where combinatorial algorithms
are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of the vertices of an undirected
connected graph G = (V, E), ie., for any vertex v € V we can query for its
degree. Can we achieve a good approximation of the average degree in G by
looking at a sublinear number of vertices? At first sight, this seems to be an
impossible task. It seems that approximating the average degree is equivalent to
approximating the average of a set of n numbers with values between 1 and n—1,
which is not possible in sublinear time. However, Feige [27] proved that one can
approximate the average degree in O(y/n/e) time within a factor of 2 + €.

The difficulty with approximating the average of a set of n numbers can be
illustrated with the following example. Assume that almost all numbers in the
input set are 1 and a few of them are n — 1. To approximate the average we need
to approximate how many occurrences of n — 1 exist. If there is only a constant
number of them, we can do this only by looking at {2(n) numbers in the set. So,
the problem is that these large numbers can “hide” in the set and we cannot
give a good approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitrary set of numbers,
we have a set of numbers that are the vertex degrees of a graph? For example,
we could still have a few vertices of degree n — 1. The point is that in this case
any edge incident to such a vertex can be seen at another vertex. Thus, even
if we do not sample a vertex with high degree we will see all incident edges at
other vertices in the graph. Hence, vertices with a large degree cannot “hide.”

We will sketch a proof of a slightly weaker result than that originally proven
by Feige [27]. Let d denote the average degree in G = (V, E) and let dg denote the
random variable for the average degree of a set S of s vertices chosen uniformly
at random from V. We will show that if we set s > 1/n/c®() for an appropriate
constant (3, then dg > (é —¢) -d with probability at least 1 —e/64. Additionally,

Sublinear-time Algorithms 47

we observe that Markov inequality immediately implies that dg < (1 +¢) -d
with probability at least 1 — 1/(1+¢€) > /2. Therefore, our algorithm will pick
8/¢e sets S;, each of size s, and output the set with the smallest average degree.
Hence, the probability that all of the sets S; have too high average degree is
at most (1 —/2)¥/8 < 1/8. The probability that one of them has too small
average degree is at most § - oa = 1/8. Hence, the output value will satisfy both
inequalities with probability at least 3/4. By replacing € with €/2, this will yield
a (2 + e)-approximation algorithm.

Now, our goal is to show that with high probability one does not underestimate
the average degree too much. Let H be the set of the /e n vertices with highest
degree in G and let L = V' \ H be the set of the remaining vertices. We first
argue that the sum of the degrees of the vertices in L is at least (é — ¢g) times
the sum of the degrees of all vertices. This can be easily seen by distinguishing
between edges incident to a vertex from L and edges within H. Edges incident
to a vertex from L contribute with at least 1 to the sum of degrees of vertices in
L, which is fine as this is at least 1/2 of their full contribution. So the only edges
that may cause problems are edges within H. However, since |H| = \/en, there
can be at most en such edges, which is small compared to the overall number
of edges (which is at least n — 1, since the graph is connected).

Now, let di be the degree of a vertex with the smallest degree in H. Since
we aim at giving a lower bound on the average degree of the sampled vertices,
we can safely assume that all sampled vertices come from the set L. We know
that each vertex in L has a degree between 1 and dg. Let X;, 1 <i < s, be the
random variable for the degree of the ith vertex from S. Then, it follows from
Hoeffding bounds that

_E[T]_g Xi]-e?

ZX< (1—¢) ZX iy

We know that the average degree is at least dy - |H|/n, because any vertex in
H has at least degree dy. Hence, the average degree of a vertex in L is at least
(3 —€)-dpg - |H|/n. This just means E[X;] > (3 —¢)-dy - |H|/n. By linearity of
expectation we get E[Y"7 | X;] > s- (3 —¢) - d - |H|/n. This implies that, for
our choice of s, with high probability we have dg > (% —€)-d.

Feige showed the following result, which is stronger with respect to the de-
pendence on €.

Theorem 1. [27] Using O(e~! - +/n/dy) queries, one can estimate the average
degree of a graph within a ratio of (2 + €), provided that d > dy.

Feige also proved that £2(e \/ n/d) queries are required, where d is the average
degree in the input graph Finally, any algorithm that uses only degree queries
and estimates the average degree within a ratio 2— ¢ for some constant d requires
2(n) queries.

Interestingly, if one can also use nelghborhood queries, then it is possible to
approximate the average degree using (9(\/ n/e®M) queries with a ratio of (1+¢),
as shown by Goldreich and Ron [37]. The model for neighborhood queries is as

48 A. Czumaj and C. Sohler

follows. We assume we are given a graph and we can query for the ith neighbor
of vertex v. If v has at least ¢ neighbors we get the corresponding neighbor;
otherwise we are told that v has less than i neighbors. We remark that one
can simulate degree queries in this model with O(logn) queries. Therefore, the
algorithm from [37] uses only neighbor queries.

For a sketch of a proof, let us assume that we know the set H. Then we can use
the following approach. We only consider vertices from L. If our sample contains
a vertex from H we ignore it. By our analysis above, we know that there are
only few edges within H and that we make only a small error in estimating the
number of edges within L. We loose the factor of two, because we “see” edges
from L to H only from one side. The idea behind the algorithm from [37] is to
approximate the fraction of edges from L to H and add it to the final estimate.
This has the effect that we count any edge between L and H twice, canceling the
effect that we see it only from one side. This is done as follows. For each vertex v
we sample from L we take a random set of incident edges to estimate the fraction
A(v) of its neighbors that is in H. Let A(v) denote the estimate we obtain. Then
our estimate for the average degree will be > o, (1 + A)) - d(v)/|S N L,
where d(v) denotes the degree of v. If for all vertices we estimate A(v) within
an additive error of e, the overall error induced by the A will be small. This
can be achieved with high probability querying O(logn/?) random neighbors.
Then the output value will be a (14 ¢)-approximation of the average degree. The
assumption that we know H can be dropped by taking a set of O(\/n/s) vertices
and setting H to be the set of vertices with larger degree than all vertices in this
set (breaking ties by the vertex number).

(We remark that the outline of a proof given above is different from the proof
in [37].)

Theorem 2. [37] Given the ability to make neighbor queries to the input graph
G, there exists an algorithm that makes O(\/n/do e~ 9M)) queries and approz-
imates the average degree in G to within a ratio of (1 + ¢).

In their paper Goldreich and Ron also discuss the more general question of ap-
proximating average parameters in graphs. They point out that an algorithm’s
ability to approximate a graph parameter is closely related to the type of query
the algorithm may ask. This raises the question, which types of queries are natu-
ral and which graph parameters can be approximated with such natural queries.
Besides the result on the average degree discussed, they also prove that one can
approximate the average distance in an unweighted graph with O(y/n/e?(M)
time, which can be further improved as a function of the average degree. Their
algorithm is allowed to perform distance queries that output the distance be-
tween any two query vertices in constant time. Their model can be viewed as a
special case of the distance oracle model for metric spaces (see Section M) as it
considers shortest path metrics of undirected graphs. This restriction allows to
achieve query times sublinear in n, which is impossible for most problems in the
more general model.

Sublinear-time Algorithms 49

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute a minimum spanning
tree. Since the minimum spanning tree is of size linear in the number of vertices,
no sublinear algorithm for sparse graphs can exists. It is also know that no
constant factor approximation algorithm with o(n?) query complexity in dense
graphs (even in metric spaces) exists [40]. Given these facts, it is somewhat
surprising that it is possible to approximate the cost of a minimum spanning
tree in sparse graphs [16] as well as in metric spaces [2I] to within a factor of
(1+e).

In the following we will explain the algorithm for sparse graphs by Chazelle
et al. [16]. We will prove a slightly weaker result than in [16]. Let G = (V, E) be an
undirected connected weighted graph with maximum degree D and integer edge
weights from {1,...,W}. We assume that the graph is given in adjacency list
representation, i.e., for every vertex v there is a list of its at most D neighbors,
which can be accessed from v. Furthermore, we assume that the vertices are
stored in an array such that it is possible to select a vertex uniformly at random.
We assume also that the values of D and W are known to the algorithm.

The main idea behind the algorithm is to express the cost of a minimum span-
ning tree as the number of connected components in certain auxiliary subgraphs
of G. Then, one runs a randomized algorithm to estimate the number of con-
nected components in each of these subgraphs. The algorithm to estimate the
number of connected components is based on a property tester for connectivity
in the bounded degree graph model by Goldreich and Ron [35].

To start with basic intuitions, let us assume that W = 2, i.e., the graph
has only edges of weight 1 or 2. Let G = (V, EM) denote the subgraph that
contains all edges of weight (at most) 1 and let ¢!") be the number of connected
components in G, It is easy to see that the minimum spanning tree has to
link these connected components by edges of weight 2. Since any connected
component in G can be spanned by edges of weight 1, any minimum spanning
tree of G has ¢ — 1 edges of weight 2 and n — 1 — (c¢(®) — 1) edges of weight 1.
Thus, the weight of a minimum spanning tree is

n—1—(M-1)+2.-(cW-1)=n-24+cV = n-w+c .

Next, let us consider an arbitrary integer value for W. Defining G = (V, E(®),
where E(9) is the set of edges in G with weight at most 7, one can generalize the
formula above to obtain that the cost MST of a minimum spanning tree can be
expressed as

W—1)
MST =n—W+ Y W .

i=1

This gives the following simple algorithm.

50 A. Czumaj and C. Sohler

ApPPROXMSTWEIGHT(G, €)
fort=1to W —1
Compute estimator ¢ for ¢(*)
output MST =n — W-i—ZW e

Thus, the key question that remains is how to estimate the number of con-
nected components. This is done by the following algorithm.

ApPPROXCONNECTEDCOMPS(G, s)
{ Input: an arbitrary undirected graph G }
{ Output: é: an estimation of the number of connected components of G }
choose s vertices ui, ..., us uniformly at random
for i =1to s do
choose X according to Pr[X > k| =1/k
run breadth-fist-search (BFS) starting at w; until either
(1) the whole connected component containing u;
has been explored, or
(2) X vertices have been explored
if BF'S stopped in case (1) then b; =1
else b, =0
output ¢="3%" ., b;

To analyze this algorithm let us fix an arbitrary connected component C' and
let |C| denote the number of vertices in the connected component. Let ¢ denote
the number of connected components in G. We can write

Ebl= S Prwec]-Prxzc]= Y O‘|é|:; .

connected component C' connected component C

By linearity of expectation we obtain E[¢] = c.
To show that ¢ is concentrated around its expectation, we apply Chebyshev
inequality. Since b; is an indicator random variable, we have

Var[b;] = E[b?] — E[b;)> < E[b?] = E[b;] =¢/n .

The b; are mutually independent and so we have

n? < n-c
Var|¢| Var Zb o2 -ZVar[bi] < s
i=1

With this bound for Var|[¢], we can use Chebyshev inequality to obtain

. n-c 1
Pril¢ —E[¢| > An] < e 2.2 < N2.g

From this it follows that one can approximate the number of connected com-
ponents within additive error of An in a graph with maximum degree D in

Sublinear-time Algorithms 51

o” ;f.gg ™) time and with probability 1 — g. The following somewhat stronger
result has been obtained in [I6]. Notice that the obtained running time is inde-

pendent of the input size n.

Theorem 3. [16] The number of connected components in a graph with
mazximum degree D can be approximated with additive error at most £An in

O(3% log(D/X)) time and with probability 3/4.

Now, we can use this procedure with parameters A = ¢/(2W) and o = 4‘1/1,

in algorithm APPROXMSTWEIGHT. The probability that at least one call to
APPROXCONNECTEDCOMPS is not within an additive error £An is at most 1/4.
The overall additive error is at most +en/2. Since the cost of the minimum
spanning tree is at least n — 1 > n/2, it follows that the algorithms computes in
O(D - W3 -logn/e?) time a (14 ¢)-approximation of the weight of the minimum
spanning tree with probability at least 3/4. In [16], Chazelle et al. proved a
slightly stronger result which has running time independent of the input size.

Theorem 4. [16] Algorithm APPROXMSTWEIGHT computes a value MST
that with probability at least 3/4 satisfies

(1—¢)- MST < MST < (1 +¢)- MST .
The algorithm runs in O(D - W/e2) time.

The same result also holds when D is only the average degree of the graph
(rather than the maximum degree) and the edge weights are reals from the
interval [1, W] (rather than integers) [16]. Observe that, in particular, for sparse
graphs for which the ratio between the maximum and the minimum weight is
constant, the algorithm from [I6] runs in constant time!

It was also proved in [16] that any algorithm estimating MST requires 2(D -
W/e?) time.

3.3 Constant Time Approximation Algorithms for Maximum
Matching

The next result we will explain here is an elegant technique to construct constant
time approximation algorithms for graphs with bounded degree, as introduced
by Nguyen and Onak [51].

Let G = (V,E) be an undirected graph with maximum degree D. Define
a randomized (a, 3)-approximation algorithm to be an algorithm that returns
with probability at least 2/3 a solution with cost at most aOpt + On, where n
is the size of the input and Opt denotes the cost of an optimal solution. For a
graph we will define the input size to be the cardinality of its vertex set. We
will consider the problem of computing the size of mazimum matching, i.e., the
size of a maximum size set M C FE such that no two edges are incident to the
same vertex of G. It is known that the following simple greedy algorithm (that
returns a mazimal matching) provides a 2-approximation to this problem.

52 A. Czumaj and C. Sohler

GREEDYMATCHING(G)
{ Input: an undirected graph G = (V, E) }
{ Output: a matching M C E }
M~
for each edge (u,v) € F do
Let V(M) be the set of vertices of edges in M
if u,v ¢ V(M) then M «— M U {e}
return M

An important property of GREEDYMATCHING is that in the for-loop of the
algorithm the edges are considered in an arbitrary ordering. We further observe
that at any stage of the algorithm, the set M is a subset of the edges that have
already been processed. Furthermore, if we consider an edge e then we know
that neighboring edges can only be in M if they appear in the ordering before
e. Now assume that the edges are inserted in a random order and let us try to
determine for some fixed edge e whether it is contained in the constructed greedy
matching. We could, of course, simply run the algorithm to do so by exploring
the entire graph. However, our goal is to solve it using local computations that
consider only the subgraph of the input graph close to e. In order to determine
whether e is in the matching it suffices to determine for all its neighboring edges
whether they are in M at the time e is considered by the algorithm. If e appears
earlier than all of its neighbors in the random ordering, then we know that e
is in the matching. Otherwise, we have to recursively solve the problem for all
neighbors of e that appear before e in the random ordering. It may seem in the
first place that this reasoning does not help because we now have to determine
for a bigger set of edges whether they are in the matching. However, we also
gained something: all edges we have to consider recursively are known to appear
before e in the random ordering. This makes it less likely that some of their
neighbors again appear even earlier in the sequence, which in turn means that
we have to recurse for fewer of their neighbors. Thus, typically, this process stops
after a constant number of steps.

Let us now try to formalize our findings. We obtain a random ordering of the
edges by picking a priority p(e) for each edge uniformly at random from [0, 1].
The random order we consider is now defined by increasing priorities. The benefit
of this approach is that we do not have to compute a random ordering for the
whole vertex set to run the local algorithm. Instead we can draw p(e) at random
whenever we consider an edge e for the first time. If we now want to determine
whether an edge e is in the matching we only have to recurse with edges having
a smaller priority than e. Thus, we have to follow all paths of decreasing priority
starting at the endpoints of e.

For a fixed path of length k in the graph, the probability that the priorities
along the path are decreasing is 1/k! (this can be seen by the fact that for any
sequence of k distinct priorities just one of them is decreasing; the case that
probabilities are equal occurs with probability 0). Since the input graph has
maximum degree D, the number of paths of length k starting from a vertex v is

Sublinear-time Algorithms 53

at most D*. Hence, there are at most 2D* paths starting at the endpoints of an
edge e. For a large enough constant ¢ this implies that for k¥ > 2¢P, with (large)
constant probability there is no path of length £ starting from an endpoint of e
that has decreasing priorities. This implies that we can determine whether e is
in the matching by looking at all vertices with distance at most 2° from the
endpoints of e.

Once we have an oracle to determine whether e € M, we can sample edges to
determine whether a given edge e is in M or not. Using a sample of size ©(D/e?)
we can approximate the number of edges in the matching up to additive error en.
This gives a constant-time (2, €)-approximation algorithm for estimating the size
of maximum matching, assuming D and ¢ are constant. The algorithm can be
further improved to an (1, ¢)-approximation using a more complicated approxi-
mation algorithm that greedily improves the matching using short augmenting
paths. The query complexity of the improved algorithm is 2 o,

A further improvement has been done in a subsequent work by Yoshida et
al. [56]. In that paper, the authors reduce the query complexity to DOW/e) 4
O(1/£)°1/2) time. The source of improvement is here the idea to consider the
edge with lowest priority first. If this edge turns out to be in the matching then
we are already done and do not have to perform the remaining recursive calls.
Theorem 5. [51)56] For any integer 1 < k < 7, there is a (1 + ,,en)-
approzimation algorithm with query complexity DOk ;O (k) .—2 for the size of
the maximum matching for graphs with n vertices and degree bound D.

3.4 Other Sublinear-time Results for Graphs

In this section, our main focus was on combinatorial algorithms for sparse graphs.
In particular, we did not discuss a large body of algorithms for dense graphs rep-
resented in the adjacency matrix model. Still, we mention the results of approx-
imating the size of the maximum cut in constant time for dense graphs [30J34],
and the more general results about approximating all dense problems in Max-
SNP in constant time [2/8)30]. Similarly, we also would like to mention about
the existence of a large body of property testing algorithms for graphs, which
in many situations can lead to sublinear-time algorithms for graph problems.
To give representative references, in addition to the excellent survey expositions
[2813213314353], we would like to mention the recent results on testability of
graph properties, as described, e.g., in [3J4E6ITTIT2/T9/23]36/46].

4 Sublinear Time Approximation Algorithms for
Problems in Metric Spaces

One of the most widely considered models in the area of sublinear time approxi-
mation algorithms is the distance oracle model for metric spaces. In this model,
the input of an algorithm is a set P of n points in a metric space (P,d). We
assume that it is possible to compute the distance d(p, ¢q) between any pair of

54 A. Czumaj and C. Sohler

points p, ¢ in constant time. Equivalently, one could assume that the algorithm
is given access to the n x n distance matrix of the metric space, i.e., we have
oracle access to the matrix of a weighted undirected complete graph. Since the
full description size of this matrix is ©(n?), we will call any algorithm with o(n?)
running time a sublinear algorithm.

Which problems can and cannot be approximated in sublinear time in the
distance oracle model? One of the most basic problems is to find (an approxi-
mation) of the shortest or the longest pairwise distance in the metric space. It
turns out that the shortest distance cannot be approximated. The counterexam-
ple is a uniform metric (all distances are 1) with one distance being set to some
very small value . Obviously, it requires §2(n?) time to find this single short
distance. Hence, no sublinear time approximation algorithm for the shortest dis-
tance problem exists. What about the longest distance? In this case, there is a
very simple %—approximation algorithm, which was first observed by Indyk [40].
The algorithm chooses an arbitrary point p and returns its furthest neighbor q.
Let r, s be the furthest pair in the metric space. We claim that d(p, ¢) > % d(r, s).
By the triangle inequality, we have d(r,p) 4+ d(p, s) > d(r, s). This immediately
implies that either d(p,r) > Jd(r,s) or d(p,s) > } d(r,s). This shows the ap-
proximation guarantee.

In the following, we present some recent sublinear-time algorithms for a few
optimization problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete graph G. A natural question
is whether we can find out anything about the minimum spanning tree of that
graph. As already mentioned in the previous section, it is not possible to find in
o(n?) time a spanning tree in the distance oracle model that approximates the
minimum spanning tree within a constant factor [40]. However, it is possible to
approximate the weight of a minimum spanning tree within a factor of (1+¢) in
O(n/eCW) time [21].

The algorithm builds upon the ideas used to approximate the weight of the
minimum spanning tree in graphs described in Section [16]. Let us first
observe that for the metric space problem we can assume that the maximum
distance is O(n/¢e) and the shortest distance is 1. This can be achieved by first
approximating the longest distance in O(n) time and then scaling the problem
appropriately. Since by the triangle inequality the longest distance also pro-
vides a lower bound on the minimum spanning tree, we can round up to 1 all
edge weights that are smaller than 1. Clearly, this does not significantly change
the weight of the minimum spanning tree. Now we could apply the algorithm
APPROXMSTWEIGHT from Section B2} but this would not give us an o(n?)
algorithm. The reason is that in the metric case we have a complete graph, i.e.,
the average degree is D = n — 1, and the edge weights are in the interval [1, W],
where W = O(n/e). So, we need a different approach. In the following we will
outline an idea how to achieve a randomized o(n?) algorithm. To get a near
linear time algorithm as in [2I] further ideas have to be applied.

Sublinear-time Algorithms 55

The first difference to the algorithm from Section [3.2is that when we develop
a formula for the minimum spanning tree weight, we use geometric progression
instead of arithmetic progression. Assuming that all edge weights are powers of
(1+¢), we define G to be the subgraph of G that contains all edges of length
at most (14 ¢)*. We denote by c() the number of connected components in G*).
Then we can write

r—1
MST =n—W+e-Y (1+e) -, (1)
=0

where r = log, , W — 1.

Once we have (), our approach will be to approximate the number of con-
nected components ¢ and use formula () as an estimator. Although geomet-
ric progression has the advantage that we only need to estimate the connected
components in 7 = O(logn/e) subgraphs, the problem is that the estimator is
multiplied by (1+¢)%. Hence, if we use the procedure from Section B2 we would
get an additive error of e n- (14 ¢)?, which, in general, may be much larger than
the weight of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. We will use a
different graph traversal than BFS. Our graph traversal runs only on a subset of
the vertices, which are called representative vertices. Every pair of representative
vertices are at distance at least ¢ - (1 +¢)? from each other. Now, assume there
are m representative vertices and consider the graph induced by these vertices
(there is a problem with this assumption, which will be discussed later). Running
algorithm APPROXCONNECTEDCOMPS on this induced graph makes an error of
+Am, which must be multiplied by (1 + ¢)? resulting in an additive error of
+A - (1 +€)’ - m. Since the m representative vertices have pairwise distance
£+ (14 €)%, we have a lower bound MST > m - - (1 + ¢)*. Choosing A = &2/r
would result in a (1 + ¢)-approximation algorithm.

Unfortunately, this simple approach does not work. One problem is that we
cannot choose a random representative point. This is because we have no a priori
knowledge of the set of representative points. In fact, in the algorithm the points
are chosen greedily during the graph traversal. As a consequence, the decision
whether a vertex is a representative vertex or not, depends on the starting point
of the graph traversal. This may also mean that the number of representative
vertices in a connected component also depends on the starting point of the
graph traversal. However, it is still possible to cope with these problems and use
the approach outlined above to get the following result.

Theorem 6. [21] The weight of a minimum spanning tree of an n-point metric
space can be approzimated in O(n/e®M) time to within a (1+¢) factor and with
confidence probability at least 2.

Extensions: Sublinear-time (2 + €)-approximation of metric TSP and
Steiner trees. Let us remark here one direct corollary of Theorem [6l By the
well known relationship (see, e.g., [55]) between minimum spanning trees, trav-
elling salesman tours, and minimum Steiner trees, the algorithm for estimating

56 A. Czumaj and C. Sohler

the weight of the minimum spanning tree from Theorem [l immediately yields
O(n/e®M) time (2 + ¢)-approximation algorithms for two other classical prob-
lems in metric spaces (or in graphs satisfying the triangle inequality): estimating
the weight of the travelling salesman tour and the minimum Steiner tree.

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one can estimate the cost
of the metric uniform facility location problem in O(n/c®M)) time [10]. This
problem is defined as follows. We are given an n-point metric space (P,d). We
want to find a subset F' C P of open facilities such that

|F|+) d(p,F)

peEP

is minimized. Here, d(p, F) denotes the distance from p to the nearest point in
F. It is known that one cannot find a solution that approximates the optimal
solution within a constant factor in o(n?) time [54]. However, it is possible to
approximate the cost of an optimal solution within a constant factor.

The main idea is as follows. Let us denote by B(p,) the set of points from P
with distance at most r from p. For each p € P let r, be the unique value that

satisfies
Z (rp —d(p,q) =1 .

g€B(p,rp)

Then one can show that
Lemma 3. [10]
1
4-Opt < er < 6-Opt ,

peP
where Opt denotes the cost of an optimal solution to the metric uniform facility
location problem.

Now, the algorithm is based on a randomized algorithm that for a given point
p, estimates r, to within a constant factor in time O(rp - n - logn) (recall that

» < 1). Thus, the smaller r,, the faster the algorithm. Now, let p be chosen
uniformly at random from P. Then the expected running time to estimate r, is
O(nlogn -3 _prp/n) = O(nlogn - Elry]). We pick a random sample set S of
s = 1001og n/E[rp] points uniformly at random from P. (The fact that we do not
know E[ry] can be dealt with by using a logarithmic number of guesses.) Then
we use our algorithm to compute for each p € S a value 7, that approximates
rp within a constant factor. Our algorithm outputs ' - >° o7 as an estimate
for the cost of the facility location problem. Using Hoeffding bounds it is easy to
prove that -3 _ <7, approximates Zpe p p = Opt within a constant factor and
with high probability. Clearly, the same statement is true, when we replace the
rp values by their constant approximations 7. Finally, we observe that expected
running time of our algorithm will be O(n/e®M). This allows us to conclude
with the following.

Sublinear-time Algorithms 57

Theorem 7. [I0] There exists an algorithm that computes a constant factor
approzimation to the cost of the metric uniform facility location problem in
O(nlog?n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsets (clusters) of similar char-
acteristics are one of the most fundamental problems in computer science, oper-
ations research, and related fields. Clustering problems arise naturally in various
massive datasets applications, including data mining, bioinformatics, pattern
classification, etc. In this section, we will discuss uniform random sampling for
clustering problems in metric spaces, as analyzed in two recent papers [22/49).

(c) ‘

Fig. 2. (a) A set of points in a metric space, (b) its 3-clustering (white points correspond
to the center points), and (c) the distances used in the cost for the 3-median

Let us consider a classical clustering problem known as the k-median problem.
Given a finite metric space (P,d), the goal is to find a set C' C P of k centers
(points in P) that minimizes) . p d(p,C), where d(p, C) denotes the distance
from p to the nearest point in C'. The k-median problem has been studied in
numerous research papers. It is known to be A’P-hard and there exist constant-
factor approximation algorithms running in O(n k) time. In two recent papers
[22/49], the authors asked the question about the quality of the uniformly random
sampling approach to k-median, that is, what is the quality of the following
generic scheme:

(1) choose a multiset S C P of size s i.u.r. (with repetitions),

(2) run an a-approximation algorithm A, on input S to compute a
solution C*, and

(3) return set C* (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size sample set S will suffice to
obtain a good approximation guarantee. Furthermore, as observed in [49] (see
also [48]), in order to have any approximation guarantee, one has to consider
the quality of approximation as a function of the diameter of the metric space.
Therefore, we consider a model with the diameter of the metric space A given,
that is, with d : P x P — [0, A].

58 A. Czumaj and C. Sohler

Using techniques from statistics and computational learning theory, Mishra
et al. [49] proved that if we sample a set S of s = O (("EA)z (kInn+ 1n(1/5))>

points from P i.u.r. (independently and uniformly at random) and run a-approxi-
mation algorithm A, to find an approximation of the k-median for S, then with
probability at least 1 — §, the output set of k centers has average distance to the
nearest center of at most 2-«-med(P, k) +e, where med(P, k) denotes the average

distance to the k-median C, that is, med(P, k) = Z’”Epnd(v’c) . We will now briefly
sketch the analysis due to Czumaj and Sohler [22] of a similar approximation
guarantee but with a smaller bound for s.

Let Cyp denote an optimal set of centers for P and let cost(X,C) be the
average cost of the clustering of set X with center set C, that is, cost(X,C) =

ZmeTXd‘(””C), Notice that cost(P, Copt) = med(P, k). The analysis of Czumaj and
Sohler [22] is performed in two steps.

(i) We first show that there is a set of k centers C' C S such that cost(S, C) is
a good approximation of med(P, k) with high probability.

(ii) Next we show that with high probability, every solution C for P with cost
much bigger than med(P, k) is either not a feasible solution for S (i.e., C € S)
or cost(S,C) > o - med(P, k) (that is, the cost of C for the sample set S is
large with high probability).

Since S contains a solution with cost at most ¢ - med(P, k) for some small ¢, A,
will compute a solution C* with cost at most « - ¢ - med(P, k). Now we have to
prove that no solution C' for P with cost much bigger than med(P, k) will be
returned, or in other words, that if C' is feasible for S then its cost is larger than
a - c¢-med(P, k). But this is implied by (ii). Therefore, the algorithm will not
return a solution with too large cost, and the sampling is a (¢- a)-approximation
algorithm.

Theorem 8. [22] Let0 <5 <1, a>1,0< <1 ande > 0 be approzi-

mation parameters. If s = 5 - (k; + E_Aﬁ . (a -In(1/8)+ k- In (’ng‘))) for an
appropriate constant c, then for the solution set of centers C*, with probability

at least 1 — § it holds the following
cost(V,C*) < 2(a+) -med(P,k) +¢ .

To give the flavor of the analysis, we will sketch (a simpler) part (i) of the
analysis:

. > 3Aa(l4+a/B)In(1/95) *) < . >
Lemma 4. [fs> somed (P then Pr[cost(S,C*) < 2 (a+/3)-med(P, k)] >
1-94.

Proof. We first show that if we consider the clustering of S with the optimal set
of centers Cyp for P, then cost(S, Cope) is a good approximation of med(P, k).
The problem with this bound is that in general, we cannot expect C,p: to be
contained in the sample set S. Therefore, we have to show also that the optimal
set of centers for S cannot have cost much worse than cost(S, Copt).

Sublinear-time Algorithms 59

Let X; be the random variable for the distance of the ith point in S to the
nearest center of Cyp,. Then, cost(S, Copt) =1 Zlgigs X, and, since E[X;] =
med(P, k), we also have med(P, k) = [ZX |. Hence,

Pr[cost(S, Copt) > (14 7) - med(P, k)] =Pr[} X;>(1+2)E[) X

1<i<s 1<i<s

Observe that each X; satisfies 0 < X; < A. Therefore, by Chernoff-Hoeffding
bound we obtain:

Pl 3 Xo> (14 5ja) B[Y] £ e IGO0

1<i<s 1<i<s
(2)

This gives us a good bound for the cost of cost(S, Copt) and now our goal is to
get a similar bound for the cost of the optimal set of centers for S. Let C' be the
set of k centers in S obtained by replacing each ¢ € C,,; by its nearest neighbor
in S. By the triangle inequality, cost(S, C)) < 2- cost(S, Copt). Hence, multiset S
contains a set of k centers whose cost is at most 2 - (1 + 8/«) - med(P, k) with
probability at least 1 — §. Therefore, the lemma follows because A, returns an
a-approximation C* of the k-median for S.

Next, we only state the other lemma that describes part (ii) of the analysis of
Theorem B

Lemma 5. Let s > ' - (k+ 546 . (a In(1/6) + k- ln(kAO‘))) for an ap-
propriate constant c. Let C be the set of all sets of k centers C of P with
cost(P,C) > (2a+ 6 3) - med(P, k). Then,

Pr[3C, € C: C, € S and cost(S,Cy) < 2(a+ B)med(P,k)] < 6. O

Observe that comparing the result from [49] to the result in Theorem 8 Theo-
rem [§] improves the sample complexity by a factor of A -logn/e while obtain-
ing a slightly worse approximation ratio of 2 (a + () med(P, k) + ¢, instead of
2amed(P, k) + ¢ as in [49]. However, since the polynomial-time algorithm with
the best known approximation guarantee has a =3 + L for the running time of
O(n°) time [9], this significantly improves the running time of [49] for all realistic
choices of the input parameters while achieving the same approximation guar-
antee. As a highlight, Theorem [} yields a sublinear-time algorithm that in time
(’)((- (k +1log(1/6)))?) — fully independent of n — returns a set of k centers
for which the average distance to the nearest median is at most O(med(P, k))+¢
with probability at least 1 — §.

Extensions. The result in Theorem [§ can be significantly improved if we as-
sume the input points are in Fuclidean space R®. In this case the approximation
guarantee can be improved to (a+) med(P, k) + € at the cost of increasing the
sample size to O(- (kd+1og(1/9))).

Furthermore, a snnllar approach as that sketched above can be applied to study
similar generic sample schemes for other clustering problems. As it is shown in [22],

60 A. Czumaj and C. Sohler

almost identical analysis lead to sublinear (independent on n) sample complexity
for the classical k-means problem. Also, a more complex analysis can be applied
to study the sample complexity for the min-sum k-clustering problem [22].

4.4 Other Results

Indyk [40] was the first who observed that some optimization problems in metric
spaces can be solved in sublinear-time, that is, in o(n?) time. He presented
(; — ¢)-approximation algorithms for MaxTSP and the maximum spanning tree
problems that run in O(n/e) time [40]. He also gave a (2 + ¢)-approximation
algorithm for the minimum routing cost spanning tree problem and a (1 +)
approximation algorithm for the average distance problem; both algorithms run
in O(n/e°M) time.

There is also a number of sublinear-time algorithms for various clustering
problems in either Euclidean spaces or metric spaces, when the number of clus-
ters is small. For radius (k-center) and diameter clustering in Euclidean spaces,
sublinear-time property testing algorithms [TJ23] and tolerant testing algorithms
[52] have been developed. The first sublinear algorithm for the k-median prob-
lem was a bicriteria approximation algorithm [40]. This algorithm computes in
O(nk) time a set of O(k) centers that are a constant factor approximation to
the k-median objective function. Later, standard constant factor approximation
algorithms were given that run in time O(n k) (see, e.g., [47I54]). These sublinear-
time results have been extended in many different ways, e.g., to efficient data
streaming algorithms and very fast algorithms for Euclidean k-median and also
to k-means, see, e.g., [I3IT729/38)39/4445/48]. For another clustering problem,
the min-sum k-clustering problem (which is complement to the Max-k-Cut), for
the basic case of k = 2, Indyk [42] (see also [41]) gave a (1 + &)-approximation
algorithm that runs in time 0(21/60(1) n (logn)®M), which is sublinear in the
full input description size. No such results are known for k > 3, but recently, [24]
gave a constant-factor approximation algorithm for min-sum k-clustering that
runs in time O(n k (k log n)®®)) and a polylogarithmic approximation algorithm
running in time O(n k°W).

4.5 Limitations: What Cannot Be Done in Sublinear-Time

The algorithms discussed in the previous sections may suggest that many opti-
mization problems in metric spaces have sublinear-time algorithms. However, it
turns out that the problems listed in the previous sections are more like excep-
tions than a norm. Indeed, most of the problems have a trivial lower bound that
exclude sublinear-time algorithms. We have already mentioned in Section [that
the problem of approximating the cost of the lightest edge in a finite metric space
(P, d) requires 2(n?), even if randomization is allowed. The other problems for
which no sublinear-time algorithms are possible include estimation of the cost of
minimum-cost matching, the cost of minimum-cost bi-chromatic matching, the
cost of minimum non-uniform facility location, the cost of k-median for k = n/2;
all these problems require §2(n?) (randomized) time to estimate the cost of their
optimal solution to within any constant factor [10].

Sublinear-time Algorithms 61

01—0 01—0
.1—. .1—.
.1—. .1—.
de)=1 d(e)=B
01—0 01—0
.1—. .1—.
(a) L R (b) L R

Fig. 3. Two instance of the metric matching which are indistinguishable in o(n?) time
and whose cost differ by a factor greater than A. The perfect matching connecting L
with R is selected at random and the edge e is selected as a random edge from the
matching. We set B = n (A — 1) + 2. The distances not shown are all equal to n® \.

To illustrate the lower bounds, we give two instances of the metric spaces
which are indistinguishable by any o(n?)-time algorithm for which the cost of
the minimum-cost matching in one instance is greater than A times the one in
the other instance (see Figure). Consider a metric space (P, d) with 2n points,
n points in L and n points in R. Take a random perfect matching M between
the points in L and R, and then choose an edge e € M at random. Next, define
the distance in (P, d) as follows:

— d(e) is either 1 or B, where we set B=n(A—1) + 2,

— for any e*M \ {e} set d(e*) =1, and

— for any other pair of points p,q € P not connected by an edge from M,
d(p,q) =n’ .

Tt is easy to see that both instances define properly a metric space (P, d). For such
problem instances, the cost of the minimum-cost matching problem will depend
on the choice of d(e): if d(e) = B then the cost will be n — 1+ B > n A, and if
d(e) = 1, then the cost will be n. Hence, any A-factor approximation algorithm
for the matching problem must distinguish between these two problem instances.
However, this requires to find if there is an edge of length B, and this is known
to require time 2(n?), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of the large body of research
known in the area of sublinear-time algorithms in such a short paper. In this
survey, our main goal was to give some flavor of the area and of the types of
the results achieved and the techniques used. For more details, we refer to the
original works listed in the references.

We did not discuss two important areas that are closely related to sublinear-
time algorithms: property testing and data streaming algorithms. For interested
readers, we recommend the surveys in [7I28/32J33143/53] and [50], respectively.

62 A. Czumaj and C. Sohler
References
1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. STAM Journal on

10.

11.

12.

13.

14.

15.

16.

17.

18.

Discrete Mathematics 16(3), 393-417 (2003)

Alon, N., Fernandez de la Vega, W., Kannan, R., Karpinski, M.: Random sampling
and approximation of MAX-CSPs. Journal of Computer and System Sciences 67(2),
212-243 (2003)

Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.
Combinatorica 20(4), 451-476 (2000)

Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization
of the testable graph properties: it’s all about regularity. SIAM Journal on Com-
puting 39(1), 143-167 (2009)

Alon, N., Shapira, A.: Every monotone graph property is testable. STAM Journal
on Computing 38(2), 505-522 (2008)

Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable
with one-sided error. STAM Journal on Computing 37(6), 17031727 (2008)

. Alon, N., Shapira, A.: Homomorphisms in graph property testing - A survey. In:

Klazar, M., Kratochvil, J., Loebl, M., Matousek, J., Thomas, R., Valtr, P. (eds.)
Topics in Discrete Mathematics, dedicated to Jarik Nesetril on the occasion of his
60th Birthday, pp. 281-313

Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes
for dense instances of NP-hard problems. Journal of Computer and System Sci-
ences 58(1), 193-210 (1999)

Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. STAM Journal on
Computing 33(3), 544-562 (2004)

Badoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 866-877. Springer, Heidelberg (2005)

Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse
graphs is testable. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC), pp. 393—402 (2008)

Borgs, C., Chayes, J., Lovasz, L., Sos, V.T., Szegedy, B., Vesztergombi, K.: Graph
limits and parameter testing. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing (STOC) (2006)

Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clus-
tering problems. In: Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pp. 30-39 (2003)

Chazelle, B., Dobkin, D.P.: Intersection of convex objects in two and three dimen-
sions. Journal of the ACM 34(1), 1-27 (1987)

Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. STAM Journal
on Computing 35(3), 627-646 (2006)

Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. STAM Journal on Computing 34(6), 1370-1379 (2005)
Chen, K.: On k-median clustering in high dimensions. In: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1177-1185
(2006)

Czumaj, A., Ergiin, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,
C.: Sublinear-time approximation of Euclidean minimum spanning tree. STAM
Journal on Computing 35(1), 91-109 (2005)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sublinear-time Algorithms 63

Czumayj, A., Shapira, A., Sohler, C.: Testing hereditary properties of non-expanding
bounded-degree graphs. SIAM Journal on Computing 38(6), 2499-2510 (2009)
Czumaj, A., Sohler, C.: Property testing with geometric queries. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 266-277. Springer, Heidelberg
(2001)

Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear-time. STAM Journal on Computing 39(3), 904-922 (2009)

Czumaj, A., Sohler, C.: Sublinear-time approximation for clustering via random
sampling. Random Structures and Algorithms 30(1-2), 226-256 (2007)

Czumaj, A., Sohler, C.: Abstract com