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Abstract—We consider the peak age-of-information (PAoI)
in an M/M/1 queueing system with packet delivery error,
i.e., update packets can get lost during transmissions to their
destination. We focus on two types of policies, one is to adopt
Last-Come-First-Served (LCFS) scheduling, and the other is to
utilize retransmissions, i.e., keep transmitting the most recent
packet. Both policies can effectively avoid the queueing delay
of a busy channel and ensure a small PAoI. Exact PAoI
expressions under both policies with different error probabilities
are derived, including First-Come-First-Served (FCFS), LCFS
with preemptive priority, LCFS with non-preemptive priority,
Retransmission with preemptive priority, and Retransmission
with non-preemptive priority. Numerical results obtained from
analysis and simulation are presented to validate our results.

I. INTRODUCTION
Many information systems work in such a mode that status

updates are first collected from a time-varying environment,
and then control decisions are made based on these infor-
mation. Examples include sensor networks for large-scale
monitoring [1], vehicular networks where vehicle position
and velocity information are disseminated to assist safe and
intelligent transportation [2], and wireless networks where
scheduling is carried out based on channel state information
[3]. A key to these systems is to ensure timely delivery of status
updates, since out-of-date information can lead to incorrect
system status estimation and result in severe performance loss.

Age-of-information (AoI), first proposed in [4], provides a
measure for the “freshness” of the current status information,
and is an important metric for measuring quality-of-service
(QoS) of a system. Different from typical performance metrics
such as delay or throughput, AoI jointly captures the latency in
transmitting updates and the rate at which they are delivered.

There have been various recent works on understanding
AoI. [4] analyzes AoI for queueing models including M/M/1,
M/D/1 and D/M/1. A more complicated case with multiple
update sources is analyzed in [5]. [6] studies AoI in a Last-
Come-First-Served (LCFS) M/M/1 queueing system with
or without preemption. The case when the destination may
receive out-of-order packets is considered in [7]. In [8], the
authors introduce a notion peak age-of-information (PAoI) and
consider systems with packet management, i.e., the queue can
choose to only keep a subset of update packets. AoI in a
multi-class M/G/1 queueing system is studied in [9]. In [10],
the authors study optimal update scheduling in a discrete-time
multi-source system. The optimal update generating policy is
explored in [11].

We notice that one common assumption made in most
aforementioned works is that update packet delivery is always

perfect, and AoI has been investigated mostly under the First-
Come-First-Served (FCFS) principle. An exception is [6],
which studies AoI under the LCFS principle, but also assumes
perfect packet delivery. However, in practical systems, packet
transmissions often contain errors and losses, e.g., due to
interference or buffer overflow at intermediate routers in a
multi-hop network. To study the impact of such delivery errors
on AoI, in this paper, we focus on an M/M/1 queueing model
where each packet, upon service completion, arrives at the
destination with a nonzero probability. Our model captures (i)
the queueing effect, which approximates the process where
update packets are sent over a channel or a network and
can cause congestion (This is different from [10], which also
considers transmission errors), and (ii) the error component,
which models the fact that update packets can get lost during
the delivery process.

We first focus on the LCFS service principle and derive
the exact PAoI for both the systems with preemptive priority
and non-preemptive priority. Intuitively, LCFS is good for two
reasons. (i) Compared to packet management schemes, e.g,
[8], LCFS similarly avoids delaying new update packets with
queueing by letting them go first. This results in significant
reduction of AoI compared to FCFS, especially when the
channel utilization is high. (ii) When there are errors in packet
transmissions, packet management schemes can suffer severely
due to the lack of updates to deliver, while LCFS still ensures
a good delivery rate and does not affect AoI significantly.

Next we analyze the PAoI under retransmission schemes.
Here we do not assume feedback, since retransmissions based
on feedback may suffer from waste of time waiting for
feedback, or interference between update packets and feedback
information. Thus, the Retransmission policies refer to keep
transmitting the most recent packet repeatedly until a new
packet arrives. Compared to LCFS, retransmission policies
have an advantage of always transmitting the most recent
updates, at the cost of additional packet state management.
We also derive the exact PAoI expressions for retransmission
with or without preemption.

In this work LCFS and Retransmission policies are both
studied to cover various scenarios. Although utilizing retrans-
missions is expected to contribute to a small AoI, it does not
apply to scenarios where transmissions are not guaranteed,
e.g., UDP and some wireless sensor networks. The rest of the
paper is organized as follows. In Section II we introduce the
model. In Sections III, IV and V we present our analysis for
the FCFS, LCFS preemptive and LCFS non-preemptive cases,
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while in Section VI we give the results of the Retransmission
preemptive and Retransmission non-preemptive cases. In Sec-
tion VII we present numerical results. We conclude the paper
in Section VIII. Due to space limit, some details are omitted
in this paper. Readers can refer to [12] for more details.

II. SYSTEM MODEL
We consider a system where a source transmits updates

(packets) to a remote destination through a queue. The source
generates packets according to a Poisson process with rate λ.
The service time for each packet is exponentially distributed
with service rate µ. For simplicity, we define

ρ = λ/µ, ρλ = λ/(λ+ µ), ρµ = µ/(λ+ µ).

Different from previous works, we assume that upon service
completion, each packet arrives at the destination indepen-
dently with probability p ∈ [0, 1]. Such a system is modeled
by an M/M/1 queueing system with packet loss, as shown in
Fig. 1. The packet loss model captures real-world situations
where update packets can get lost during delivery to their
destination, e.g., interference or buffer overflow, and has not
yet been studied.

source destination
p

queue
1-p

Fig. 1. The packet delivery process in a queueing system with packet loss.

We study the peak age-of-information (PAoI) in this system,
which is defined as follows. Suppose each update packet has
a time-stamp, marking its generation time. Denote the time-
stamp of the most recently received update at time t as δ(t).
Then, the status age is defined as [4]:

∆(t) , t− δ(t),
and the set of peak ages is defined as:
{∆(ti)|∃ε > 0 s.t. ∀t ∈ (ti − ε) ∪ (ti + ε),∆(t) < ∆(ti)}.

Then, PAoI [8] is defined to be:

AP , lim
I→∞

1

I

I∑
i=1

∆i = E{∆i},

where ∆i = ∆(ti) is the i-th peak of ∆(t) (See Fig. 2). The
last equality follows from the ergodicity of ∆i. As shown in
[9], PAoI is closely related to the average AoI, but is much
more tractable.

We first introduce some useful definitions. Denote N the set
of all packets, according to the order in which they arrive. For
a packet n, denote a(n) its arrival time , d(n) its departure time
and u(n) the time it starts to receive service. Let Φ denote the
set of all successfully transmitted packets. Under the LCFS
service discipline, a successfully transmitted packet may be
outdated when arriving at the destination. Thus, we further
define the set of informative packets Ψ as:

Ψ , {n ∈ Φ | d(n)− a(n) < ∆(d(n))}.
That is, Ψ = {n1, n2, . . . , ni, . . . } contains the packets which
offer new information (so the system age decreases) when they
reach the destination.

Regarding the evolution of the system, we define the fol-
lowing random variables:
Xn , a(n+ 1)− a(n),Wn ,u(n)− a(n), Sn , d(n)− u(n),

�(t)

a(1) d(1) a(2) d(2)d(3)a(3)

X1 Ŝ3

S1 Ŷ1

t

�1

�2

d(4)a(4)

�3

(a) Preemptive

�(t)

�1

�2

a(1) a(2) a(3) d(1) d(3) d(2)

t

Ẑ1

W2

d(4)a(4)

Ẑ2

�3

(b) Non-preemptive
Fig. 2. Evolution of status age in the LCFS M/M/1 system. PAoI is divided
in different ways under the preemptive and non-preemptive cases.

i.e., Xn is the inter-arrival time between n and n+ 1; Wn is
the waiting time of n; Sn is the “service time” of n. Note that
in the LCFS with preemptive priority case, Sn may include
service time of later packets if n is preempted by other packets.

III. PAOI UNDER FCFS
For the basic First-Come-First-Served (FCFS) case with

packet loss, PAoI can be easily obtained. Since under FCFS
Φ = Ψ, PAoI is composed of the (expected) inter-arrival time
of two successfully transmitted packets and the time a packet
spends in the system. The former is 1

pλ and the latter is 1
µ−λ ,

resulting in a PAoI of (For rigorous derivation, see [12]):

AFCFSP =
1

pλ
+

1

µ− λ
. (1)

However, the FCFS policy, as discussed above, can suffer from
traffic congestion, under which each packet will take a long
time to get through the queue and the PAoI can be poor. Thus,
in this work, we focus on the Last-Come-First-Served (LCFS)
as well as Retransmission policies and consider the following
two scheduling schemes.

1) Preemptive priority: If a new packet arrives while the
server is busy, it preempts the current packet and starts
being served immediately.

2) Non-preemptive priority: The server always completes
the current packet and then starts serving the most recent
packet in the queue.

IV. PAOI UNDER LCFS WITH PREEMPTIVE PRIORITY

We begin with LCFS with preemptive priority. Note that
in this case, u(n) = a(n),∀n, and {Ŝn}n are statistically the
same. As shown in Fig. 2(a), PAoI is the elapsed time from the
moment when a packet ni ∈ Ψ arrives, until the moment when
ni+1 ∈ Ψ departs (recall that Ψ denotes the set of informative
packets). Define the first informative packet which arrives no
earlier that n as

α(n) , min{ni|ni ∈ Ψ, a(ni) ≥ a(n)},
and define Ŝn as the time duration from the moment n starts
to receive service to the moment α(n) departs, i.e.,

Ŝn , d(α(n))− u(n).

Note that if n ∈ Ψ, we have α(n) = n and Ŝn = Sn.
Moreover, define the first informative packet which arrives
after n’s departure as

β(n) , min{ni|ni ∈ Ψ, a(ni) > d(n)},
and the inter-departure time between n and β(n):

Ŷn , d(β(n))− d(n).
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Since the packets arriving after a(ni) but before d(ni) preempt
ni and get lost upon departure (because ni ∈ Ψ), we have (see
Fig. 2(a)):

ALCFS,preP = E{Sni
+ Ŷni

|ni ∈ Ψ}. (2)
A. Analyzing a Service Process

We use Sn to also denote the process of serving a packet n.
For simplicity, we define the following symbols (notice that in
other sections these symbols may have different definitions):
p̃ , P(Ŝn ≤ Sn), t̃ , E{Ŝn|Ŝn ≤ Sn}, s̃ , E{Sn|Ŝn > Sn},
i.e., p̃ is the probability that there exists a packet that reaches
the destination successfully during Sn (including n and the
packets arriving after a(n) but before d(n)) .

We first have the following lemma, based on which we will
derive t̃ and s̃.
Lemma 1. For a nonnegative random variable X , an event
E and a sequence of events E1, E2, . . . , EK which satisfies
Ei ∩ Ej = ∅,∀i 6= j and E = ∪Kk=1Ek, we have

P(E)E{X|E} =
K∑
k=1

P(Ek)E{X|Ek}.

Proof. Omitted due to space limit. Please see [12].
The probability that Xn ≤ Sn is λ

λ+µ = ρλ. If that happens,
the system will first serve packet n + 1 (during which new
packets may come and depart before n+1), then continue the
service of n. Based on this observation, we have

p̃ =ρµp+ ρλ[P(Ŝn+1 ≤ Sn+1) + P(Ŝn+1 > Sn+1)

× P(Ŝn ≤ Sn|Xn ≤ Sn, Ŝn+1 > Sn+1)]

=ρµp+ ρλ[p̃+ (1− p̃)p̃], (3)
p̃t̃ =ρµpE{Sn|Xn > Sn, n ∈ Φ}+ ρλ

[
p̃E{Xn+

Ŝn+1|Xn ≤ Sn, Ŝn+1 ≤ Sn+1}+ (1− p̃)p̃
× E{Ŝn|Xn ≤ Sn, Ŝn+1 > Sn+1, Ŝn ≤ Sn}

]
=ρµp

1

λ+ µ
+ ρλ

[
p̃(

1

λ+ µ
+ t̃)

+ (1− p̃)p̃( 1

λ+ µ
+ s̃+ t̃)

]
, (4)

(1− p̃)s̃ =ρµ(1− p)E{Sn|Xn > Sn, n /∈ Φ}+ ρλ(1− p̃)2

× E{Sn|Xn ≤ Sn, Ŝn+1 > Sn+1, Ŝn > Sn}

=ρµ(1− p) 1

λ+ µ
+ ρλ(1− p̃)2(

1

λ+ µ
+ 2s̃). (5)

We get from (3) that:
λp̃2 + (µ− λ)p̃− µp = 0, (6)

which leads to:

p̃ =
−(µ− λ) +

√
(µ− λ)2 + 4λµp

2λ
. (7)

Solving (4) and (5), and using (6) give us:

(1− p̃)s̃ =
1− p̃

µ− λ+ 2λp̃
, (8)

p̃t̃ =
p̃+ µ

µ−λ+2λp̃ (p̃− p)
µ− λ+ λp̃

. (9)

On the other hand, n ∈ Ψ means that only n reaches the
destination successfully during Sn, or Ŝn = Sn. Using the
same method as above (see [12] for details), we can get

E{Sn|n ∈ Ψ} =
1

µ− λ+ 2λp̃
.

B. Computing PAoI
Now consider E{Ŷni

|ni ∈ Ψ} = E{Ŷni
}. Suppose the first

packet which arrives after d(ni) is ñi. Since the exponential
distribution is memoryless, the expected time from d(ni) to
a(ñi) is 1

λ . If Ŝñi ≤ Sñi , then the (expected) remaining time
of Ŷni

from a(ñi) is t̃. Otherwise the remaining time is s̃ +
E{Ŷñi

}. Based on the above analysis,

E{Ŷni
} =

1

λ
+ p̃t̃+ (1− p̃)(s̃+ E{Ŷñi

}).
Substituting (8) and (9) into the above gives us:

E{Ŷni} =
µ(µ− λ) + 2λµp+ λ(λ+ µ)p̃

λµp(µ− λ+ 2λp̃)
.

As a result,

ALCFS,preP =
1

µ− λ+ 2λp̃
+
µ(µ− λ) + 2λµp+ λ(λ+ µ)p̃

λµp(µ− λ+ 2λp̃)

=
µ(µ− λ) + 3λµp+ λ(λ+ µ)p̃

λµp(µ− λ+ 2λp̃)
, (10)

where p̃ is given in (7). In the case when p = 1, the above
result becomes PAoI = 1

λ+µ + 1
λ + 1

µ .
V. PAOI UNDER LCFS WITH NON-PREEMPTIVE PRIORITY

In this case, if a new packet arrives while the server is busy,
it cannot interrupt the current service. From Fig. 2(b), we see
that PAoI is similarly the elapsed time from the moment when
a packet ni ∈ Ψ arrives, to the moment when ni+1 departs.
Define the first informative packet which arrives after n starts
to receive service as

γ(n) , min{ni|ni ∈ Ψ, a(ni) > u(n)}.
and the time duration from the moment n starts to receive
service to the moment γ(n) departs as

Ẑn , d(γ(n))− u(n).

Since the packets arriving after a(ni) but before u(ni) are
served before ni and get lost upon departure (because ni ∈ Ψ),
we have (see Fig. 2(b)):

ALCFS,nonP = E{Wni
+ Ẑni

|ni ∈ Ψ}. (11)
A. Analyzing a Service Process

We first define S̄n as the process since u(n) till the first time
the server becomes free or starts to serve a packet that arrives
no later than u(n) (excluding n). Since S̄n is determined by the
services and arrivals after u(n) and independent of the system
state at u(n) and the history before u(n), the S̄n processes
induced by different packets n are identically distributed, so
are the Ẑn processes if Ẑn ≤ S̄n. We re-define the following
symbols:
p̃ , P(Ẑn ≤ S̄n), t̃ , E{Ẑn|Ẑn ≤ S̄n}, s̃ , E{S̄n|Ẑn > S̄n},
i.e., p̃ is the probability that there exists a packet which arrives
after u(n) and reaches the destination successfully during S̄n.

Consider S̄n. Suppose the number of packets arriving during
Sn is σ(Sn). We have ∀k ≥ 0,

p(σ(Sn) = k) = (ρλ)kρµ, E{Sn|σ(Sn) = k} = k+1
λ+µ .

If σ(Sn) = k > 0 (which is needed for Ẑn ≤ S̄n), when n
completes service, the system will serve the (n+k)-th packet
and enter S̄n+k. If n+k ∈ Φ then Ẑn ≤ S̄n and the remaining
time of Ẑn from d(n) is E{Sn+k|σ(Sn) = k, n+k ∈ Φ} = 1

µ .
If n + k /∈ Φ, then if Ẑn+k ≤ S̄n+k, we have Ẑn ≤ S̄n
and the remaining time of Ẑn from d(n) is E{Ẑn+k|σ(Sn) =
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k, n+k /∈ Φ, Ẑn+k ≤ S̄n+k} = E{Ẑn+k|Ẑn+k ≤ S̄n+k} = t̃.
Similar analyses apply to the (n+k−1)-th, the (n+k−2)-th,
· · · , and the (n+ 1)-th packet. Thus with Lemma 1,

p̃ =
∞∑
k=1

ρµ(ρλ)k
{
p+ (1− p)p̃

+(1− p)(1− p̃)[p+ (1− p)p̃] + · · ·
+(1− p)k−1(1− p̃)k−1[p+ (1− p)p̃]

}
, (12)

p̃t̃ =
∞∑
k=1

ρµ(ρλ)k
{
p(
k + 1

λ+ µ
+

1

µ
)

+(1− p)p̃( k + 1

λ+ µ
+ t̃) + (1− p)(1− p̃)

×
[
p(
k + 1

λ+ µ
+ s̃+

1

µ
) + (1− p)p̃( k + 1

λ+ µ

+s̃+ t̃)
]

+ · · ·+ (1− p)k−1(1− p̃)k−1

×
[
p(
k + 1

λ+ µ
+ ks̃− s̃+

1

µ
)

+(1− p)p̃( k + 1

λ+ µ
+ ks̃− s̃+ t̃)

]}
, (13)

and

(1− p̃)s̃ =
∞∑
k=0

ρµ(ρλ)k(1− p)k(1− p̃)k(
k + 1

λ+ µ
+ ks̃). (14)

From (12), we get:
λ(1− p)p̃2 + (µ− λ+ 2λp)p̃− λp = 0, (15)

which leads to

p̃ =

−(µ−λ+2λp)+
√

(λ+µ)2−4λµ(1−p)
2λ(1−p) , 0 < p < 1

λ
λ+µ , p = 1

. (16)

Solving (13) and (14), and using (15) give us

(1− p̃)s̃ =
1− p̃

λ+ µ− 2λ(1− p)(1− p̃)
, (17)

p̃t̃ =
λp+ 2λp2 + (λ− 2λp2 − µ+ µp)p̃

µp[λ+ µ− 2λ(1− p)(1− p̃)]
. (18)

B. Computing PAoI
Now we compute PAoI shown in Fig. 2(b). Define π(t)

as the number of packets in the system (including the packet
being served) at time t. So π(t) = 0 means the system is free
at time t. Different from the preemptive case, here π(a(ni))
and π(u(ni)) will respectively affect Wni

and Ẑni
, in that

they affect the degree to which new packets need to wait for
service completion.

We first compute the number of packets an arrival in Ψ sees
when it arrives. Since Ψ is a special set of packets, they do
not see exactly as what an ordinary packet will see. To this
end, we define for each k

pk , P[π(a(n)) = k|n ∈ Ψ] =
P[π(a(n)) = k, n ∈ Ψ]

P(n ∈ Ψ)
. (19)

Consider the waiting time Wn of packet n. If π(a(n)) = 0
then Wn = 0. Otherwise n needs to wait for the completion
of the current service and the services of packets which arrive
during the current service, till the server starts to serve a packet
arriving no later that a(n). Since the exponential distribution is
memoryless, for π(a(n)) > 0, Wn is the same as the process
S̄n̄ of a virtual packet n̄ with u(n̄) = a(n), and n ∈ Ψ is

equivalent to (Ẑn̄ > S̄n̄)∩(n ∈ Φ). For a steady-state M/M/1
queue, we know that P[π(t) = k] = (1− ρ)(ρ)k. Thus,

p0 =
(1− ρ)p

P[n ∈ Ψ]
, pk =

(1− ρ)(ρ)k(1− p̃)p
P[n ∈ Ψ]

, k ≥ 1.

Moreover,
∑∞
k=0 pk=1. Therefore,

p0 =
µ− λ
µ− λp̃

, pk =
µ− λ
µ− λp̃

(1− p̃)(ρ)k, k ≥ 1.

Hence, the waiting time can be computed as:
E{Wni

|ni ∈ Ψ} = p0 · 0 + (1− p0)s̃

=
λ(1− p̃)

(µ− λp̃)[λ+ µ− 2λ(1− p)(1− p̃)]
.

For E{Ẑni |ni ∈ Ψ}, define
zk , E{Ẑn|π(u(n)) = k, n ∈ Ψ} = E{Ẑn|π(u(n)) = k}.

For E{Ẑn|π(u(n)) = k}, if a packet nj arrives during S(n)
(with probability λ

λ+µ = ρλ), it will wait Wnj
= S̄n̄j

before
being served, with n̄j a virtual packet defined as before. Since
π(u(nj)) = k, if Ẑn̄j > S̄n̄j and nj /∈ Φ, the (expected)
remaining time of Ẑn from u(nj) is still zk. Otherwise no
packet arrives during S(n), giving us π(d(n)) = k−1. Based
on the above analysis, we get:

z1 = ρµ
[ 1

λ+ µ
+

1

λ
+ p

1

µ
+ (1− p)z1

]
+ ρλ

[ 1

λ+ µ
(20)

+p̃t̃+ (1− p̃)p(s̃+
1

µ
) + (1− p̃)(1− p)(s̃+ z1)

]
,

and that for general k,

zk = ρµ(
1

λ+ µ
+ zk−1) + ρλ

[ 1

λ+ µ
(21)

+p̃t̃+ (1− p̃)p(s̃+
1

µ
) + (1− p̃)(1− p)(s̃+ zk)

]
.

Solving (20) gives us

z1 =
µ+ λ+ λp+ λ2τ

λ[λ+ µp− λ(1− p)(1− p̃)]
, (22)

where

τ =
(λ+ µ)p+ (λ+ µ)p2 + [λ+ (µ− λ)p2 − µ]p̃

µp[λ+ µ− 2λ(1− p)(1− p̃)]
. (23)

From (21), we can get

zk −
(1− p̃)(1 + λτ)

µp̃
= (1− p̃)[zk−1 −

(1− p̃)(1 + λτ)

µp̃
].

The evolution of the LCFS queueing system shows that if a
packet n sees no more than one packet when it arrives, then
there will be only one packet in the system (packet n itself)
when it starts to receive service. Thus,

P[π(u(n)) = 1|n ∈ Ψ] = p0 + p1, (24)
P[π(u(n)) = k|n ∈ Ψ] = pk, k ≥ 2. (25)

Hence,

E{Ẑni
|ni ∈ Ψ} = (p0 + p1)z1 +

∞∑
k=2

pkzk

= p0z1 +
∞∑
k=1

pk(1− p̃)k−1[z1 −
(1− p̃)(1 + λτ)

µp̃
]

+
∞∑
k=1

pk
(1− p̃)(1 + λτ)

µp̃

Substituting (22), PAoI can be computed as:

ALCFS,nonP =
λ(1− p̃)

(µ− λp̃)[λ+ µ− 2λ(1− p)(1− p̃)]
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+
µ(µ− λ)(µ+ λ+ λp+ λ2τ)

λ(µ− λp̃)[µ− λ(1− p̃)][λ+ µp− λ(1− p)(1− p̃)]

+
λ2(1− p̃)2(1 + λτ)

µ(µ− λp̃)[µ− λ(1− p̃)]
, (26)

where τ is given in (23) and p̃ is given in (16).

VI. PAOI UNDER RETRANSMISSION WITH PREEMPTIVE
PRIORITY OR NON-PREEMPTIVE PRIORITY

The results are (For rigorous derivation, please see [12]):

ART,preP =
1

λ+ pµ
+

1

λ
+

1

pµ
; (27)

ART,nonP =
1

µ
+

1

λ+ pµ
+

1

λ
+

1

pµ
. (28)

Remark: It turns out that result (27) corresponds to the result
under the LCFS with preemptive priority policy with a service
rate pµ and a success probability 1. This is intuitive since in
the LCFS with preemptive priority case with p = 1, each
packet is either transmitted successfully or preempted, while
in this case each packet is still either transmitted successfully
or preempted, with a mean service time 1

pµ .

VII. NUMERICAL RESULTS

We present numerical evaluations of PAoI under differ-
ent scheduling policies, including FCFS, FCFS with packet
management (the M/M/1/2∗ scheme in [8]), LCFS with
preemptive priority, LCFS with non-preemptive priority, Re-
transmission with preemptive priority and Retransmission with
non-preemptive priority. Note that the M/M/1/2∗ scheme in
[8] is equivalent to the LCFS with non-preemptive priority
policy that discards all stale packets. The service rate is set to
µ = 1 while the arrival rate is varied to show performances
under different channel utilizations ρ = λ

µ . The cases p = 0.1,
p = 0.5 and p = 1 are selected to represent different delivery
error regimes. We present not only the results computed
from our formulas (1), (10), (26), (27) and (28), but also
those obtained by simulating real queueing systems with the
corresponding settings.

From Fig. 3, we see that the simulation results match our
theoretical results very well. We can see that when channel

utilization is high, the PAoI under FCFS becomes very large
due to large queueing delay, while other policies effectively
avoid this problem. On the other hand, when packet loss
rate is high, FCFS with packet management suffers from
the lack of packet deliveries but LCFS again ensures a low
PAoI, matching our intuition about the benefits of LCFS.
Moreover, retransmission policies have significant reductions
on PAoI compared to other policies when packet loss rate
is high. But when packet loss rate is low, Retransmission
with non-preemptive priority suffers a performance loss since
retransmissions can also block later packets.

VIII. CONCLUSION
We consider the peak age-of-information (PAoI) in an

M/M/1 queueing system with packet delivery failure, a set-
ting that models real-world situations with transmission errors.
We derive exact PAoI expressions under different schedul-
ing policies, including FCFS, LCFS with preemptive prior-
ity, LCFS with non-preemptive priority, Retransmission with
preemptive priority, and Retransmission with non-preemptive
priority. Our analytical and simulation results show that the
LCFS principle as well as retransmissions can successfully
avoid increments in PAoI resulting from large queueing delay
and packet loss.
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