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ABSTRACT
In this demonstration, we present a guided-evolvement frame-
work for load balancing in wireless multi-hop networks, which
leads to stability and globally optimal load-balancing by
solely distributed computing using local information. In
wireless multi-hop networks, nodes conduct distributed com-
puting and rely on message reception to get awareness of
neighborhood information. Globally optimal performances
are commonly hard to pursue due to instability or local op-
timum problems. We propose that the key for distributed
load balancing to overcome premature and local optimum is
seeking for a qualitative guidance to guide the distributed
nodes to evolve towards convergence and global optimum.
“Homo-level sensors should be equal in load”is devised as the
qualitative guidance and a distributed transmission proba-
bility evolving framework is designed and developed. The
multi-hop network’s evolutional progress from arbitrary load
distribution to optimal load balancing is demonstrated. The
demo contains two versions, a web-based version for inter-
active demonstration of large-scale networks; and a sensor
network hardware version to show how the framework works
on the MAC and routing layers.

1. INTRODUCTION
With the ongoing trends of wireless network of extremely

large scale and smarter nodes, it becomes more and more
important, necessary and feasible to pursue globally opti-
mal performances from distributed approach. It inspires
this guided-evolving framework which executes the idea of
“think globally, act locally”. In this framework, we inves-
tigate how global load-balancing can be achieved by fully
distributed traffic assignment algorithms, and devise that
finding a qualitative guidance to lead the distributed nodes
to optimal status is the key to guarantee network conver-
gence to global optimum.
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We consider multi-hop wireless networks for data collec-
tion, where wireless nodes with equal initial energy are ran-
domly deployed in 2D space and form multi-level topology
based on their hop-distances to the sink. Nodes in the net-
work collect data periodically and transmit data hop-by-hop
towards a remote sink. There is a “load accumulation” phe-
nomenon in such networks, where children’s loads will be
forwarded to parents and increase the parents’ loads. Load
balancing is to control routing and traffic assignments to ap-
proach even load distribution for homo-level nodes, which is
critical and crucial for multi-hop networks to be longevity
and less congested. Because homo-level nodes have identical
initial energy, if they are forced to consume energy at dif-
ferent rates due to load unbalance, some early dead nodes
with the most descendants will bring the biggest damage to
the network’s functionalities.

However, load balancing is a very challenging prob-
lem in multi-hop data collection networks. Previous
approaches conducted research from both centralized and
distributed ways. The centralized algorithms mainly ap-
proached from load-balanced routing tree construction us-
ing whole information of the network. However, such ap-
proaches were proved NP-Complete by Buragohain[1] and
Liang [2][3] independently. Distributed algorithms pursued
homo-level load balancing by solely distributed computing
and local information[5][4], which is more practical. How-
ever, instability and local optimum are the main challenges.
To the best of our knowledge, existing distributed load bal-
ancing algorithms cannot provide guaranteed stability and
optimality.

2. BASIC IDEA AND NOVELTY
We address load-balancing problem by distributed trans-

mission probability evolvement based on the innovation of
“a qualitative guidance”. The constraints and goal for dis-
tributed load balancing problem are as following :

2.1 Constraints and Goal
The constraints are:
1. Computing using local information; any node adjusts

transmission probability using only following information:
1) current loads of parent candidates ; 2) its own current
load; and 3) the current transmission probabilities from it
to its parent candidates.

2.Limited communication range, i.e., the number of parent



candidates is limited, which are neighbors in up-streaming
level and within communication range.

3. Concurrency unawareness, i.e., nodes are unknown of
sibling’s concurrent probability modifications.

4. Limited knowledge, i.e., nodes are unknown of other
nodes’ load information except the parent candidates.

The goal is “Optimal load balancing in all levels”. This op-
timality goal is regarding the best probability assignments
by all nodes in all levels, which maximizes the Chebysev Sum
Equality based load balancing metric[6]. The optimal sta-
tus is not always that all homo-level nodes have even loads.
The even-load case is called “perfect load balancing”, which
is sometimes not reachable by solely transmission probabil-
ity adjustment. The sufficient and necessary condition for
converging to“perfect load balancing” is proved in [7], which
needs joint adaptation of transmission probability and trans-
mission power for some special topology networks.

With above constraints and goal, we investigated existing
distributed load balancing algorithms. The phenomena at
surface which prevents the convergence to global optimum
are observed to be “load oscillation” and “local convergence”
phenomena. The profound reasons are found as 1) nodes’
unawareness to siblings’ (sensors in the same level) concur-
rent operations, 2) lack of a guidance to inform nodes about
the optimal status. So nodes overreact to local observations.
Further, we found similar challenges exist in our daily life
in society. In daily life, people make distributed decisions
and commonly make bad choice due to limited knowledge.
But due to social intelligence, knowledge-limited people can
rely on a guidance from a knowledge-rich leader or a prophet
to be informed what to do. The guidance is some rule de-
signed from global view, which directs a right way for the
distributed actions. This commonly leads to global optimum
by fully distributed and independent actions. It is notice-
able that the guidance must be qualitative without using any
global computing or additional information, otherwise, the
distributed computing problem will be changed by breaking
the constraints.

Therefore, we devise that the key for distributed
load balancing to overcome instability and local op-
timal solution is seeking for a qualitative guidance
to guide the distributed evolving towards the global
optimum. Based on this idea, a guided-evolving algorithm
is proposed. The expected balanced load of the kth level
(denoted by E(Lk)) works as the guidance for the children
in level k + 1 to update their transmission probabilities. In
every time step, using E(Lk) as the guidance, the children
in level k + 1 adjust its transmission probabilities to turn
its parent candidates’ loads towards E(Lk). Particularly,
for a node j in level k + 1 and one of its parent candi-
dates i in level k, j adjusts transmission probability to i

by P t+1
j,i = P t

j,i
E(Lk)

Lt
k,i

/M , where M =
nj∑

m=1

P t
j,m

E(Lk)

Lt
k,m

is a

normalizer to keep the sum of the transmission probabilities
from j equal to 1; Lt

k,i is the load of node i at time t. By

substituting M into P t+1
j,i , we can see E(Lk) is counteracted,

and actually doesn’t appear in the algorithm. So the value
of E(Lk) is actually not needed. Only a qualitative guid-
ance that “The homo-level nodes should have equal load”
is required. The fact is that the total loads and the num-
ber of nodes are fixed in level k, when such a qualitative
guidance is reached by nodes in level k, the balanced load
E(Lk) is autonomously reached by the nodes. Using this

guidance, we designed and developed the distributed trans-
mission probability evolving framework and formally proved
its convergence and global optimality [7].

To our best knowledge, this is the first time that the load-
balancing problem is solved by an easily implemented dis-
tributed algorithm with guaranteed convergence and opti-
mality. It can directly benefit many applications for its sim-
plicity and fully distributed feature. It is noticeable that
when the transmission probabilities reach stable, the net-
work’s topology is a weighted graph(not a tree; weights on
the links are transmission probabilities), which is different
from previous NP-complete tree based approach. Whether
weighted graph approach is NP or not is still an open prob-
lem. But from our experiment results, we saw the conver-
gence speed was quite fast[7]. Only dozens of periods are
needed for networks of hundreds nodes to converge.

So particularly in this demo, we demonstrate the real-time
guided-evolving process to visually present how the guaran-
teed stability and global optimum are reached gradually by
nodes’ local transmission probability evolvement.

3. DEMONSTRATION
We will take two versions of demos to present guided-

evolving from different aspects.

3.1 Interactive Scalable Demo
The first demo is a web-based tool, having a GUI,

which is used for interactive and scalable demonstra-
tion for guided-evolving. The advantages of a web-based
demo are: users can interactively set the network size, the
communication range of nodes, etc. , and can generate and
see guided-evolving in random large-scale networks. The
load balancing performances can be easily plotted, and can
be easily compared with the performances of other algo-
rithms. This web-based demo focuses more on conception
than implementation details. It assumes ideal MAC proto-
col and routing protocol supporting to the data collection
and the load-balancing algorithm.

To help user better understand the convergence process,
guided-evolving is demonstrated in a stepwise manner. In
each step, the loads of nodes, the transmission probabilities
of links and the Chebyshev Sum Inequality based load bal-
ancing performance for a selected level will be rendered. So
that, the guided-evolving process from arbitrary load dis-
tribution to optimal load balancing can be easily tracked.
In addition, user can select other distributed algorithms to
compare the load balancing performances, from which the
“load oscillation” problem and “local optimum”problem can
be intuitively rendered.

3.2 Hardware Demo
The second demo uses wireless sensor network hard-

ware (off-shelf IRIS node developed by Xbow[8]) ,
which demonstrates guided-evolving’s implementa-
tion and its performances in real wireless networks.
The IRIS sensor has 2.4GHz radio, a 7M CPU, AD/DA
components and is powered by two AA batteries. One of
the IRIS node is sink and the others are data collectors.

The hardware demo is more complex than the web-based
demo. The distributed load balancing algorithm is imple-
mented on the wireless sensors in TinyOS environment based
on the supports of a “stair scheduling” algorithm[7] in rout-
ing layer and a TDMA based MAC protocol. Global time



synchronization is the foundation of above algorithms.
After deployment, the sensors will experience two phases.
1. Initializing phase, during which, 1) sensors carry out

global time synchronization to prepare synchronized clocks
for periodical data collection; 2) sensors are organized into
leveled structure based on their hop-distances to the sink;
3) sensors survey neighbors and find the parent candidates.

2. Runtime phase, sensors turn to online guided-evolving.
The nodes sleep for most of time to conserve energy, and
wake up periodically to collect data and carry out distributed
transmission probability computing.

The waking up times are scheduled based on the
nodes’ level index, called “stair scheduling” [7], as
shown in Fig1. In stair scheduling, a node’s active period
is separated into “R-Slot”, “T-Slot” and “Syn-Slot”. The “T-
slot”of nodes in level n is aligned to the“R-Slot”of the nodes
in level n−1, and is aligned to the“Syn-Slot”of the nodes in
level n+1. So that, in “R-Slot”a node receives data from its
children; in “T-Slot” it transmits data to parents; in “Syn-
Slot” the node overhears parents’ broadcasting to do online
time synchronization to maintain time synchrony. A slot
is further composed by serval small slices. Transmissions of
homo-level nodes are scheduled by TDMA to select different
slice for collision avoidance.
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Figure 1: Stair scheduling to support level-based
data aggregation and distributed load-balancing.

The work-flow of a node in an active period includes
In R-Slot, it collects local data; receives message from

children and performs data aggregation.
In T-Slot, it reevaluates its current load based on the

aggregation result, and recalculates the transmission prob-
abilities to its parent candidates using the load balancing
algorithm. Then it transmits the aggregated data to the
parent candidates following the newly updated transmission
probabilities.

In Syn-Slot, it hears broadcasting of parent nodes to do
online time synchronization, and turns to sleep mode at the
end of the active period.

In the hardware demo, for friendly rendering of guided-
evolving, the load of sensors and the transmission proba-
bility information are added to the data message and are
transmitted to the sink. The sink forwards the message to
a laptop, and the laptop renders the real-time link weights
and node loads on a graphical interface. The working status
of sensors can also be seen from the three Led lights on the
sensors.

4. REQUIREMENTS
We will bring a booth, two laptops and 10-20 IRIS nodes

based on the availability of space. The booth is 60cm×160cm,
which can be put besides a table. It is used to explain al-
gorithm to audience if they are interested. The web-based
interactive demo needs only a laptop with access to the inter-
net. If one large LCD-screen (20” - 40”) could be provided by
organizers to show GUI, this would increase the user friend-
liness, otherwise we will use laptop screen. In the second
demo, IRIS nodes will be deployed on a table. We will take
out the antenna to form a multi-hop network while mini-
mizing the required space. 20-40 AA batteries are needed
to power up the sensors, but we think we can buy them
from nearby convenience store. Another laptop is used in
the second demo to show the network’s topology, and real-
time loads of the sensors. A power extension cord and two
plug converters are needed for the two laptops. The total
required area for the two demos is 1.5m×3m. The setup
time of the demos is about two hours.

4.1 Other Info
This demo is eligible for the student demo competition.

The lead student will be Xiao Qi. He is now a master
student in Institute for Theoretical Computer Science, Ts-
inghua University. His email is qix08@mails.tsinghua.edu.cn.
The practical development of the demonstration is based in
large part his work.
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