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Abstract—Indoor localization using Time-of-Arrival (TOA)
of ultrasound is accurate, but remarkable errors may occur
occasionally due to effects by indoor environment issues, such as
when ultrasound propagates in Non-Line-Of-Sight (NLOS) paths,
or synchronization signal is interfered by background signals.
This paper presents an algorithmic and systematic approach
to address these issues to improve robustness of ultrasound
TOA positioning. We firstly show from an optimization point
of view that NLOS detection problem is NP-hard. We propose
a novel clustering and filtering (COFFEE) algorithm to conduct
density-based clustering iteratively on a bipartite graph model,
which enables accurate, robust positioning and efficient NLOS
outlier detection. Then, we develop a systematic method to
address the robust time synchronization problem, which is called
first-falling-edge time synchronization. It guarantees robust time
synchronization even in severe interference environments. Both
the COFFEE algorithm and the robust synchronization scheme
are developed and implemented in a ultrasound positioning pro-
totype called Dragon. Extensively simulations and experiments
in Dragon show that the proposed methodologies outperform
the robustness performances of the state-of-the-art methods,
which demonstrate great improvements in various interference
scenarios.

I. INTRODUCTION

Fine-grained location-based services (LBS) has leaded to
various designs and implementations of accurate indoor lo-
calization systems. Different kinds of signals and techniques
have been explored in literatures, including infrared, radio
frequency (RF), ultrasound (US), UWB, audible sound, and
techniques such as Time-of-Arrival (TOA), Angle-of-Arrival
(AOA), Time Difference Of Arrival (TDOA), which are thor-
oughly surveyed in [5] [11]. When comparing to other signals
and techniques, ranging by TOA of ultrasound is a very
competitive technique due to its high accuracy, low cost, safety
and user-imperceptibility. Since the positioning accuracy of
ultrasound TOA positioning can be generally in centimeter
level even in 3D space, it is very fascinating in may indoor
positioning systems, such as Bat [14], Cricket [12], LOSNUS
[13] etc.

By measuring TOA of ultrasound to locate an active target
(sender) by a set of receivers (reference points), three steps
are generally required: 1) The sender broadcast RF and
Ultrasound signals simultaneously; 2) the receivers measure
Time-of-Arrival of ultrasound to estimate their distances to the
sender; 3) the position of the sender is inferred by positioning
algorithm such as Least Square estimation (LSQ), or Multilit-
eration [5]. Although this process generally provides accurate

localization to the target, the steps of time synchronization
and TOA measurement are highly sensitive to indoor envi-
ronments issues, which may cause serious positioning errors
occasionally:

1) In indoor environments, same band radio signals are
hard to prevent, such as radio from micro-wave oven or
WiFi. They may collide the synchronization RF signal,
causing errors of TOA measurements;

2) Indoor objects such as furnitures, doors or people may
block the direct paths from sender to receivers, which
cause ultrasound propagate in the none-line-of-sight
(NLOS) paths (reflection or refraction paths), resulting
in large errors of TOA measurement because the re-
ceivers cannot justify the NLOS paths.

These inevitable impacts cause serious positioning error, but
are hard to deal with. Previous studies mainly addressed the
NLOS detection problem by geometric filters [15] [8] and sta-
tistical methods [1] [9]. But geometric NLOS filters are coarse-
grained when noises of line-of-sight distances are considered;
statistical methods need high computation costs and are not
robust to the number of NLOS outliers. This paper presents a
systematic approach to address not only the NLOS detection
problem but also the robust synchronization problem. Different
to existing approaches, it treats the NLOS outlier detection
problem as an optimization problem. The objective is to find
a set of normal (line-of-sight) distances, which minimizes
the residue error of the estimated position. We prove this
optimization problem is NP-hard and develop an efficient
clustering and filtering algorithm (COFFEE), which conducts
clustering and filtering iteratively on a bipartite graph model
of this problem, until convergence of position estimation. We
show COFFEE is efficient, locates target accurately, converges
quickly, can successfully identify NLOS outliers, and is robust
to the number of NLOS outliers. It outperforms the state-of-
the-art algorithms.

In addition to COFFEE, robust time synchronization is
addressed by a systematic method. A first-falling-edge time
synchronization technique is developed by connecting re-
ceivers using sync-line, so that only if one receiver detects the
Sync signal, all receivers will be synchronized. Above design
methodologies leads to a robust positioning system, called
Dragon, which implements COFFEE and robust time synchro-
nization techniques. Dragon demonstrates great improvements
of robustness than existing systems. Extensive simulations and
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experiments validate not only the sole properties of COFFEE
but also the overall performances of Dragon system.

The rest part of the paper is organized as follows. In
section 2, we investigate the hardness of robust ultrasound
positioning. In Section 3, we introduce COFFEE algorithm.
Section 4 introduces First-Falling-Edge-Synchronization and
the design of Dragon system. Experiments and performance
evaluation results are presented in Section 5. Related works
are introduced in Section 6, and the paper is concluded in
Section 7.

II. CHALLENGES OF ROBUST ULTRASOUND TOA-BASED
POSITIONING

We consider a snapshot of locating a target by a distance
set measured from N receivers. Suppose m < N/2 outliers
are hiding in the distance set, which maybe caused by NLOS
effects of ultrasound or synchronization failures. An outlier
distance has obvious large ranging error. Let’s suppose the
other N − m measurements are normal (normal) distances,
whose ranging errors are small. We denote the whole distance
set by D = {di, i = 1, ..., N}, and denote the coordinates of
the reference points by X={~x1, ~x2, · · · , ~xN}.

Consider a generic localization function F , which calculates
target position by θ = F (Ds, Xs). Ds is a subset of distances
selected from D, and Xs is the coordinates of the selected
reference points. The generic function F can be arbitrary, such
as least square estimation (LSQ) or multilateration algorithms.
The problem of robust positioning with outlier detection is to
select Ds appropriately so that all the outliers are excluded
from Ds to avoid generating big positioning error.

A. Hardness of Robust Positioning with Outlier Detection

It is nontrivial to exactly select the normal distances. Exist-
ing methods generally apply geometrical filters onto distance
set to identify outliers before position calculation, which
include triangle inequality filter [15] and graph embeddability
filter [8]. But these geometric filters are rough when the rang-
ing noises of the normal distances are considered. As shown
in Fig.1, d3 is an outlier distance. But d3 satisfies the triangle
inequality conditions whether in triangle X1X3θ, X2X3θ or
in X3X4θ, which cannot be detected by triangle inequality
filter. Using rigid graph embeddability method, since d3 is
embeddable in a rigid graph component {X3X4X2θ}, it will
not be detected as an outlier. Therefore, geometric methods
provide coarse-grained outlier detection. Some outliers may
escape the filters due to non-rigidity caused by the ranging
noises of normal distances.
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Fig. 1. Impacts of outlier in positioning algorithms

Other approaches detect outliers by checking the residue
error of positioning result [9]. The residue error evaluates the
difference between the selected distances and their correspond-
ing posterior distances inferred by the estimated position of
target.

R (θ) =
1

|Ds|

|Ds|∑
i=1

(Ds(i)− ‖θ −Xs(i)‖)2 (1)

|Ds| is the size of set Ds. The function ‖θ −Xs(i)‖ returns
the distance from the estimated position θ to the position of
reference point Xs(i). If Ds contains outlier distances, the
residue error will generally be large. Therefore, residue error
is used as a metric to evaluate whether the selected set of
distances contain outliers. The optimal positioning result is
the position estimation which has the minimal residue error:

θ∗ = argmin
θ

R(θ) (2)

But the residue error function only tell which selected distance
set may contain outliers, without the capability to directly
identify outliers. To vote the distance set with the minimum
residual error, enumeration over all distance combinations is
needed, causing high computation cost when N is large.

Theorem 1 (Problem Hardness). In d dimensional space with
one target and N distance measurements, it is NP-hard to
enumerate all combinations of distance measurements to find
the set of distances which has the minimum residue error.

Proof: In d-demential space, a position can be calculated
by using at least d + 1 non-collinear measurements. Each
position estimation is called a potential position. Therefore,

N distance measurements can generate at most
N∑

i=d+1

CiN

potential positions by enumerating all combinations of the

measurements. Since
N∑

i=d+1

CiN is in the magnitude of O(2N ),

we cannot find a polynomial time algorithm to find the position
point with the minimum residue error. Therefore, finding the
position with the minimum residue error is NP-hard.

B. Feasibility of Efficient Approach

Can we design efficient algorithms to address the optimal
positioning problem while detecting the outliers? An efficient
algorithm is proposed by reducing the size of the potential po-
sition set while keeping satisfactory positioning performances.
Let’s generate potential positions by selecting exactly d+1 (d
is the dimension of space) measurements. Then N distances
will generate at most Cd+1

N potential position points. We
denote this set by {θd+1} and denote:
• {θnd+1}: normal potential positions, calculated by only

normal distances;
• {θod+1}: potential positions affected by distance outliers.

We show that the optimal position θ∗ must be within the
bounding region that covers {θnd+1}. We present the theorem
in 2-D space, i.e., d = 2, which can be easily generalized into
3D space where d = 3.
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Theorem 2. let A be the bounding region covering the points
in {θnd+1}, then θ∗ which is the optimal positioning result that
has the minimum residue error must also be covered by A.

Proof: Without losing of generality, let’s suppose the
ranging errors of normal distances are upper bounded by r,
where r is determined by the accuracy of ranging techniques,
and so that the distance from the ground truth position to a
reference point i is bounded by [di − r, di + r], which means
that the target must locate in a circular ring centered at the
reference point i, with inner radius di − r and outer radius
di + r. Since θ∗ has the minimum residue error, it must be
calculated by a set, i.e., n ≥ d+1 normal distances, therefore
θ∗ must be in the intersected area of n ≥ d + 1 circular
rings. We denote such an intersected region of n circular rings
by A∗. Because normal positions are calculated by normal
distances, each point i in {θnd+1} must be in the intersected
region of d + 1 circular rings, which are denoted by regions
Ai. Since n ≥ d + 1, if the n distance selected to calculate
θ∗ contains the d + 1 distances selected for calculating point
i, A∗ must be within the region Ai. Therefore, let A =

⋃
Ai

be the bounding region covering {θnd+1}; then A∗ must be
within A.

III. COFFEE: CLUSTERING AND FILTERING FOR
OUTLIER DETECTION

Theorem 2 indicates that we can give a rather accurate
estimation to θ∗ if we can distinguish the point set {θnd+1}
from {θd+1}. Since the number of normal distances is much
more than the number of outliers, the normal positions, i.e.,
{θnd+1} tend to form a dense cluster and the potential positions
affected by outliers tend to be apart from the core cluster.
Using such an idea, we present an efficient clustering and
filtering algorithm (COFFEE) to distinguish the core cluster
of {θnd+1} from the potential positions, so as to accurately
locate the target while identifying the outliers.

Inputs to COFFEE algorithm are: i) the distance set D;
ii) the coordinates of the reference points X. Its outputs
are i) the position estimation of target i.e., θ; ii) the set of
detected distance outliers. The COFFEE algorithm contains
an initializing phase and an online phase. In initialization
phase, the potential positions {θd+1} are generated to form a
Bipartite graph model to link the distance set to the potential
positions. The online phase contains iterations of clustering,
voting and outlier filtering.

A. Bipartite Graph Construction

In initialization phase, if feasible, each d + 1 distances
are used to calculated a potential position. The relationship
between the distances and potential positions is modeled by a
bipartite graph G = {D,P,E}. D represents the distance set;
P is the potential position set; and E denote the edges. ei,j = 1
if the ith distance is used in calculating the jth potential
position, otherwise ei,j = 0. So that each potential position
is linked to exactly d + 1 distances. The potential position

generation process can be further optimized by selecting
better geometries of d+ 1 reference points, such as selecting
reference points with good geometric dilution of precision
(GDOP) [16]. But we show by experiments that COFFEE is
robust to the generation of potential positions. Even if the
reference points with bad GDOP are selected to generate the
potential positions, such potential positions will be filtered out
during iterations of COFFEE and only pose little effect to the
final positioning result.

B. Iterative Clustering, Voting and Filtering

The online phase of COFFEE conducts clustering, voting
and filtering iteratively on the Bipartite graph.

Algorithm 1 COFFEE Algorithm
Require: G = (D,P,L), X0={~x1, ~x2, · · · , ~xN};
Ensure: Valid distance set Dv , Robust Position Estimation

θ = F (Dv,Xv)
1: ————Clustering and Weighting ————–
2: Dv = D
3: while (sizeof(Dv) > Nmin) do
4: [Pin,Pout]=DBSCAN(P,MinPts,Eps);
5: for (j = 1; j ≤ sizeof(Pout); j ++) do
6: y = the index of Pout[j] in P;
7: for (k = 1; k ≤ N ; k ++) do
8: if (L(k, y)) == 1) then
9: W(dk) =W(dk)+ω; //add doubting weight to dk.

10: end if
11: end for
12: end for
13: —————-Filtering ————–
14: imax=argmax {W(i), i ⊂ [1, N ]};
15: if (W[imax] > Threshold) then
16: Dv = Dv \ dimax , Xv = Xv \ ~ximax ;
17: for (j = 1; j ≤ sizeof(P); j ++) do
18: if (L(imax, j)==1) then
19: P = P \ P[j] ;
20: end if
21: end for
22: else
23: break; //The loop stops to output Dv and p.
24: end if
25: end while
26: —————Output Results——————–
27: Output Dv;
28: Output θ = F (Dv,Xv);

1) Density-based clustering by DBSCAN
Initially all the distances and potential positions are labeled
valid. Then in each iteration, COFFEE clusters the potential
positions by a density-based clustering algorithm DBSCAN
[4] with two user defined parameters: Eps and MinPts. Eps
is a radius that delimitate the neighbourhood area of a point
(Eps-neighbourhood). MinPts is the minimum number of
points required to be in the Eps-neighborhood to delimitate
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the density requirement for clustering. By DBSCAN, poten-
tial positions with neighborhood density satisfying Eps and
MinPts will be classified into one cluster. The largest cluster
is called core cluster and is denoted by Pin. The points outside
the core cluster are denoted by Pout which are called position
outliers.

2) Voting by Doubting Weights
After DBSCAN, COFFEE traverses all the points in Pout.
For each point in Pout, COFFEE assigned doubting weights
to the distance linked to this point in the bipartite graph. If a
distance has links to k position outliers, its doubting weight
will be assigned k.

3) Filtering Distance and Position Outliers
After doubting weight assignment in each iteration, the dis-
tance with the maximum doubting weight will be detected as
distance outlier and is removed from the valid distance set Dv .
The potential positions which are linked to the distance outlier
in the bipartite graph are also removed from the valid position
set. Note that although only 1 distance is removed in each
iteration, all the potential positions connected to this outlier
distance will be removed. The number of potential positions
removed in one iteration can be up to CdN−1, which guarantees
the fast convergence of the algorithm.

4) End Condition and Output
The iteration ends if all remained valid distances have doubting
weight smaller than a Threshold. Then, the valid distance set
Dv will be output to calculate the position of the target by
applying F to the valid distance set θ = F (Dv,Xv) . The
pseudocode of COFFEE is shown in Algorithm 1.

C. Parameter Setting and Algorithm Properties

In COFFEE, Eps, MinPts and Threshold are key
parameters, which affect the algorithm performances. MinPts
can be set to C(N/2, d + 1), which is the minimum number
of valid positions, because the number of distance outliers are
generally much smaller than N/2. Eps is set by learning the
statistical variance of the ranging errors, so that it guaranteed
that the normal positions form a core cluster w.r.t MinPts and
Eps. Another parameter Threshold indicates the tolerance
to the doubting weights, which is set to 1 in COFFEE to
restrictedly exclude the effects of all the position outliers.

Using above parameter settings, COFFEE is guaranteed to
converge in m iterations only if the normal potential positions
can form the largest core cluster. This is generally true because
the number of outliers is smaller than the number of normal
distances. In each iteration, the computing complexity of
COFFEE is O(N4logN), because DBSCAN is the most com-
putational intensive step in an iteration of COFFEE. DBSCAN
has complexity O(nlog(n)) [4], where n = C(N, 4) in our
problem. Therefore DBSCAN has complexity O(N4)log(N)
in COFFEE. After DBSCAN, each position outlier will be
checked to assign doubting weights to the linked distances,
which needs at most 4∗C(N, 4) computations. Therefore, the
overall complexity of COFFEE algorithm is O(N4)log(N)
in each iteration, which has polynomial time complexity.
COFFEE is also robust to the number of outliers, which will

Receiver

OC OC

Sync-in Sync-out

Sync-line

Fig. 2. Design of the Sync-line and receiver

be introduced in the evaluation section.

IV. ROBUST SYNCHRONIZATION AND DRAGON SYSTEM

Except the NLOS outliers, failure of time synchronization is
another reason which may affect the positioning robustness. If
the RF signal from sender is not received by some receivers,
the receivers will not be correctly synchronized and cannot
provide correct TOA measurements. Interferences are the
main reason of synchronization failures. In some location
systems, such as in Cricket [12] and AUITS [15] systems,
the RF channel is used not only for time synchronization
but also for transmitting data, the synchronization signal may
collide with these data traffic signals. Interferences by same-
band background signals are also inevitable, such as WiFi,
microwave oven.

A. First-Falling-Edge Time Synchronization

Since the interference are generally inevitable, we propose
to use sync-line to connect the US receivers to enable a robust,
first-falling edge time synchronization technique as shown in
Fig.2.

1) Sync-line and synchronizing logic: In each receiver, two
IO ports of MCU are connected to the sync-line. The output
port for setting electric level of sync-line is called “sync-out”,
while the input port for capturing falling edge is called “sync-
in”. Between MCU and sync-line, optocouplers for electric
isolation are set as in Fig.2.

Assuming I is the state of sync-in port and Oi is the state
of sync-out port of the ith receiver, the logical relationship for
first falling edge time synchronization is in (3).

I = O1 ∩O2 ∩O3 ∩ · · · ∩ON (3)

where N is the number of receivers. The states of sync-in pins
of all receivers are always same and the states of sync-out pins
of receivers are independent. When a receiver hears the sync
packet from a tag, it sets its sync-out to 0 immediately and
resume it to 1 after a fixed interval. As a result, the sync-in
port of all the receivers is set to 0 when the first receiver hears
sync packet.

B. Development of Dragon System

Based on above methodologies, a ultrasound TOA-based
locating system called Dragon is developed which is composed
by following components.
• Tag: each Tag is an active transmitter attaching on the

mobile devices. It is composed of MCU, ultrasound drive
circuit, wireless communication chip and battery.
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• Receivers have ultrasound detection circuit, sync-line
driving & detecting module and RF module. They are
connected together with a cable to form a chain structure,
therefore, we call the system “Dragon”. Each receiver
can also work in independent mode by plugging off the
syncline. In independent mode, it is synchronized and
communicate using own RF, which is used as counterpart
for performance comparison in our study.

• Host contains powerful processor and Ethernet inter-
face, which carries out time-slot scheduling for tracking
multiple tag and runs COFFEE algorithm for position
calculation. Fig.3 shows the pictures of the prototype of
Dragon components.

C. Collision Avoidance for Multiple Target Localization

In Dragon, collision avoidance is a critical requirement for
localizing multiple targets because single frequency ultrasound
is used. Within the communication range of ultrasound, only
one tag is allowed to send ultrasound for successful TOA
measurement. We developed a time-slot scheduling scheme
in Dragon for tracking multiple targets which is carried out
by the host. The host broadcasts slot allocation by a mask
packet of N bits, where N is the maximum number of Tags.
The mask packet is denoted as Bmap. Each bit in it stands for
a Tag. If the mth bit is “1”, tag m is allowed to send RF+US
in time-slot sm, where

sm =

m∑
i=1

(Bmap >> (i− 1)) & 1 (4)

For example, Bmap 10001101 means that Tag1 sends at at slot
1; Tag3 sends at slot 2; Tag4 sends at slot 3; and Tag8 sends
at slot 4. The other tags have to keep silent in this cycle.
Therefore, Tags transmit RF+US in successive slots, which
not only avoids collision of ultrasound, but also improves the
position updating rate than simple TDMA scheme [15].

D. Dragon Prototype

Based on above methodologies, we developed a prototype
of Dragon, which is composed by a number of Tags and fifteen
receivers. Each receiver can work independently without sync-
line or connected by a sync-line. In sync-line connected
mode, receivers will be synchronized by first-falling-edge-
synchronization technique. In independent mode, receivers are
synchronized and transmit data by RF module on the node. A
host component using an ARM9 core at 400MHz is developed
to collect TOA measurement from receivers. It calculate target
positions by COFFEE algorithms. The specification of the
Dragon prototype is shown in Table I. The photos of the
prototypes are shown in Fig. 3.

V. NUMERICAL EVALUATIONS

Extensive evaluations were carried out to evaluate COFFEE
algorithms and the positioning performance of the Dragon
prototype. We firstly evaluate COFFEE by simulation. Then
report the experimental results in a Dragon prototype.

TABLE I
SPECIFICATION OF DRAGON PROTOTYPE

MCU Communication Unit Sensor
Tag Atmel Mega 128 CC1000 as RF unit. Ultrasound transmitter at

40Khz
Receiver Atmel Mega 128 CC1000 as RF unit.

MCP2515 as CanBus unit.
40Khz Ultrasound trans-
ducer. Digital thermal sen-
sor.

Host Samsung S3C3440 with
ARM9 core running at
400Mhz

MCP2515 as CanBus unit.
802.11 a/b WiFi unit.

NULL.

Fig. 3. Prototype of Dragon Components

A. Simulation-based Evaluations of COFFEE

1) Simulation Settings: In simulation, we assume N re-
ceivers are randomly distributed on the roof of a room of
height 600cm, and size 1000cm × 1000cm. At each po-
sitioning instance, a mobile tag appears at a random place
inside this room. We assume N distance measurements are
generated, among which, m of them are distance outliers.
We assume the distance outliers have large ranging errors
which are uniformly distributed in [30cm, 200cm]. The other
N−m normal distances have smaller ranging errors, which are
uniformly distributed in [−10cm, 10cm]. The positioning error
is evaluated by the Euclidean distance from the positioning
result to the real position of the target.

2) Convergence Properties of COFFEE: We firstly evaluate
the convergence property of COFFEE to verify how the
positioning outliers are filtered in each iteration. An example
is visually shown in Fig.4, which shows the outlier detection
and rejection process of COFFEE when N = 15 and m = 3.
The three NLOS outlier distances are detected and removed
successfully in three iterations. In the figures, points indicate
potential positions; circles indicate position outliers. The sub-

0

200

400

600
0

200
400

600

0

50

100

150

200

250

True position

(a) Initial state: 15 valid distances,
1365 potential positions

0
200

400
600 0

200
400

600

0

50

100

150

200

250

True position

(b) Round 1: 14 valid distances,
1001 potential positions

0

500
0

200400
600

0

50

100

150

200

250

True position

(c) Round 2: 13 valid distances, 715
potential positions

0
200

400
600

0

200

400

600
0

50

100

150

200

250

True position

(d) Round 3: 12 valid distances, 495
potential positions
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titles of the figures show the number of valid distances and
the number of potential positions in each iteration.

In all simulations, we found COFFEE converge quickly,
which needs m iterations to output the robust position es-
timation. In comparison, if the position outliers are only
filtered by DBSCAN, the convergence speed will be slow and
cannot be guaranteed. In DBSCAN, although a core cluster
can be found in the first iteration, it is hard for DBSCAN to
further refine the core cluster in the next iteration. COFFEE
uses voting scheme to remove the most doubted distance
and correspondingpotential positions in each iteration, which
makes the algorithm converge very quickly.

3) Positioning Accuracy and Robustness Performances:
The positioning accuracy and robustness performances are
evaluated and are compared with three existing positioning
and outlier filtering algorithms:

1) LSQ, No Filter, which calculates the target position by
Least Sqare Estimation without filtering outliers.

2) Triangle Inequality filter [15], which iteratively applies
triangle inequality conditions to filter outliers. The target
position is calculated by LSQ using the valid distances.

3) Least Trimmed Squares (LTS) [9], which finds N − m
distances that minimizes the sum of the square residuals.

The cumulative distributions of the 3D positioning errors
of different positioning algorithms are shown in Fig. 5. In the
simulations, we set N = 15 and set the number of distance
outliers m = 3. 100 identical experiments were run for each
algorithm and the CDFs of the 3D positioning errors of these
algorithms are compared. The results show that LSQ-based
positioning without outlier filtering has large positioning errors
in case of distance outliers. Triangle Inequality based outlier
filtering performs much better than No Filter, but is not as
good as the other two filtering algorithms. COFFEE and LTS
both improve the positioning accuracy remarkably. Under the
simulation settings, their positioning errors all have almost
100% probabilities to be less than 10cm. Among these three
algorithms, COFFEE performs the best, which is a little better
than LTS. Since COFFEE need less computation costs than
LTS, it outperforms the state-of-the-art in terms of positioning
accuracy, robustness and efficiency.

4) Robustness to the Number of outliers: Another important
issue is the sensitivity of positioning accuracy to the number
(portion) of outliers. We conduct simulations to evaluate how
the positing accuracies are affected by the number of the
distance outliers. For N = 15, we increase the number
of distance outliers, i.e., m from 1 to 11. The positioning

accuracy performances of No Filter, LTS, and COFFEE are
simulated and compared in Fig. 6. In the figure, every point
is calculated by the average positioning errors of 100 random
experiments. From the simulation results, we find the robust
feature of the COFFEE algorithms.
• In COFFEE, the positioning error keeps small when
m < N/2. Since the number of distance outliers is gen-
erally much smaller than the number of normal distances,
the result indicates COFFEE is robust to the number of
outliers in most application scenarios.

• For Triangle Inequality and LTS based outlier filtering al-
gorithms, the positioning error increases with the number
of distance outliers, which is not robust but sensitive to
the number of outliers.

B. Practical Experiments using Dragon Prototype

Above simulation results have shown the good accuracy
and robustness of the proposed Densest-Ball algorithms. We
have also conducted hardware experiments in a prototype of
Dragon system to test the real positioning performances in real
environments.

1) Deployment of Dragon Prototype: A prototype of
Dragon system is deployed in an indoor environment to
evaluate the proposed COFFEE and Dentiest-ball algorithms
and the robust time synchronization scheme. The deployed
Dragon prototype contains 15 RF+US receivers which are
connected by cables and are arranged in the roof of a room.
The photos of the deployment scenario is shown in Fig.11.
The positions of 15 receivers are manually calibrated and their
positions on the room ceiling are shown in Fig.7, which forms
a receiver array.

The room where the Dragon prototype is deployed is
a meeting room of our laboratory , whose dimension is
600cm× 400cm× 260cm. During experiments, 100 positions
in the room are chosen as test points. The positions of these
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Fig. 11. Deployment of Dragon prototype on the ceiling of a meeting room

points and 15 receivers are measured with EDMD (Electronic
Distance Measuring Device) as ground truth. These test points
are shown in Fig.8.

2) Performances of First-Falling-Edge Synchronization:
We firstly conducted experiments to evaluate the performance
of first-falling-edge synchronization. In the first setting, the
cable between the receivers are plugged off. Receivers become
independent. In the second setting, the receivers are connected
by sync-line to be synchronized by first-falling-edge scheme.
In these experiments, a Tag is localized for 30 times at each
test point. In each time, if less than 4 distances are measured,
a localization failure is counted. For each test point, its
failure probability is evaluated by dividing its failure count by
times of experiments (30). The positioning failure possibilities
with and without sync-line are shown in Fig.9, Fig.10. The
diameter of the circle is proportional to the failure probability.
The results show that the First-Falling-Edge synchronization
efficiently reduces the positioning failure probability.

3) Positioning accuracy in real-experiments: Experiments
were carried out to evaluate the positioning accuracy perfor-
mances using the Dragon prototype. In the experiments, a
student puts a Tag at each point to wait about 10 seconds. Since
the host allocates 100 ms time slot for each positioning routine,
the Dragon system gives around 100 position estimations to
each test point. During experiments, the student intentionally
blocked the direct paths from Tag to receivers to to manually
generate some NLOS outliers. The positioning error of each
test point is evaluated by comparing the averaging position
result to the ground truth.

The localization errors in 2D and 3D space are plotted
in Fig.8 and Fig. 12 respectively. It can be seen that the
positioning error in x and y dimension is smaller than that
of z dimension. The reason is that the receivers are deployed
in a x-y plane, so the positioning resolution in z dimension
is lower than that of x and y dimensions. We also find the
location accuracy is better in the center of the room than in
the corners. This is mainly because the sender-receiver angle
effects to the ranging errors, which will be discussed in the
last subsection. The CDF(Cumulative distribution function) of
positioning error is plotted in Fig.13. COFFEE outperform
the no filtration case without uprising. Using COFFEE, the
positioning error of Dragon system is < 10 cm with more
than 80% probabilities.

4) Analyzing to positioning errors in real-experiments:
When comparing to the simulation-based evaluations, we

−500
0

500

−1000100200300400500
140

160

180

200

220

240

260

x

 

y

 

z

real position

positioning result

Fig. 12. Indoor positioning error:
3D view

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error(cm)

pr
ob

ab
ili

ty
,e

rr
or

<
=

X

 

 

no filtration

with coffee

Fig. 13. Cumulative distribution func-
tion of positioning error

Fig. 14. Test the relative angle effects to ranging errors

found that the positioning accuracy in real-experiments were
much worse than the simulation results. We investigated
the reason and found that the positioning errors in real-
experiments were mainly caused by the ranging errors affected
by the relative angle between the sender and the receivers.

We conducted a separated experiment to investigate how
the ranging errors are sensitive to the relative angles. The
settings of the experiments are shown in Fig.14 a). A receiver
is controlled to move along a circle around a sender while
keeping constance distance to change the relative angles. Three
settings were tested, in which the sender-receiver distances are
2m, 4m and 6m respectively. Ranging errors were measured
50 times at each point. The average ranging errors versus
the relative angles θ at different sender-receiver distances are
shown in Fig14 b). The results show that in real-experiments,
the ranging errors are sensitive to the relative angles, which
can be as large as 14cm when the relative angles are large.
This experiment verified that that test points at room corners
that have large positioning errors are mainly affected by the
angle effects .

VI. RELATED WORK

Various methods are proposed to improve the robustness
of TOA-based position, which can be classified into geomet-
ric methods, statistical methods and systematic methods. 1)
Geometric methods: Some researchers studied to filter out
the outliers by exploiting the geometry conditions among the
measured distances. In [15], Triangle Inequality conditions
are utilized to filter distance outliers. If a distance triple
{dS,Ra

, dS,Rb
, dRa,Rb

} cannot satisfy the triangle inequality
conditions, the longer distance between dS,Ra

and dS,Rb
is

judged as an outlier. In the distance triple, S is a sender to
be located and Ra and Rb are two arbitrary receivers. The
algorithm repeats until all the remained distances pass the
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conditions. This filter uses the heuristic that the NLOS paths
are mainly caused by reflections, which are generally longer
than the direct path. In [8], graph embeddability and rigidity
are utilized to carry out the geometry based outlier detection.
Only the edges (measured distances) that form embeddable
redundantly rigid graphs are marked normal and the other
edges are marked as outliers. But when ranging noises are
considered, these geometric filters provide only loose restric-
tions. Some outliers may still pass these geometric filters.
In [10], a bilateration based robust positioning algorithm is
proposed. Using bilateration, two candidate positions can
be estimated from two distance measurements in 2D space.
After calculating all candidate positions via enumerating all
bilateration pairs, the position of the densest candidate points
is calculated as the target position. Although bilateration is
robust, it is hard to be calculated in 3D space, because the
intersections of balls are difficult to describe and store.

2) Statistical methods: Univariate statistical methods [1] are
widely used methods for general outlier detection problems by
assuming normal data obey some underlying distributions. But
such methods are not suitable for detecting distance outliers,
because the distance measurements are dynamic and don’t
obey a common distribution. Therefore, statistical methods
for outlier detection should be applied on the position set
instead of the distance set. Using this idea, Least Trimmed
Squares (LTS) estimator is proposed in [9] to find m NLOS
outliers from N distances by seeking N − m Line-of-Sight
distances that minimizes the sum of the square residuals.
The lower bounds for NLOS positioning and more related
works for least square and maximum likelihood based NLOS
mitigation methods are surveyed in [5]. Different from these
statistical methods, we present an efficient unsupervised learn-
ing approach, which improves both positioning accuracy and
calculation efficiency.

3) Systematic methods: Other solutions improved robustness
of TOA-based localization via system-type approaches. Be-
cause of the positioning variances will reduce when more TOA
measurements are used in multilateration [2], [14] [7]proposed
receiver array to obtain more TOA measurements for robust
position calculation. In ATLINTIDA [3], cross correlation
technique is used to detect TOA robustly by transmitting
pseudorandom sequences of pulses and use wide-baud US
signal. A robust wide-baud ultrasound positioning system was
developed in [6]. In this paper, we focus on robust positioning
by widely-used, low-cost, single frequency ultrasound.

VII. CONCLUSION

This paper studied robustness algorithm and system for
ultrasound TOA-based indoor localization. By a bipartite
graph model which maps the distance set to the potential
positions, COFFEE algorithms is developed, which conduct
unsupervised classification on the position set to eliminate the
NLOS distances. The fast convergence and accuracy of these
algorithms have been verified and analyzed, showing it out-
performs the state-of-the-art algorithms. COFFEE also shows
robustness to the number of distance outliers, which implies

its robust performances in various positioning scenarios. In
system aspect, a first-falling-edge synchronization technique
for robust time synchronization is developed, based on which
we have developed a ultrasound positioning system, called
Dragon. The positioning performances of Dragon prototype
were verified in deliberately interfering environments. The re-
sults showed remarkable positioning robustness improvements
by using the proposed methodologies. The angle effects to the
positioning error have also been investigated. In future work,
we will generalize the outlier detection algorithms to other
positioning algorithms, such as radio-map based positioning
methods.
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