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Quantum Coherence and Intrinsic Randomness

Xiao Yuan, Qi Zhao, Davide Girolami, and Xiongfeng Ma*

The peculiar uncertainty or randomness of quantum measurements stems
from quantum coherence, whose information-theoretic characterization is
currently under investigation. The resource theory of coherence investigates
interpretations of coherence measures and the interplay with other quantum
properties, such as quantum correlations and intrinsic randomness.
Coherence can be viewed as a resource for generating intrinsic randomness
by measuring a state in the computational basis. It is observed in a previous
work that the coherence of formation, which measures the asymptotic
coherence dilution rate, indeed quantifies the uncertainty of a correlated party
(classical system) about the system measurement outcome. In this work, the
result is re-derived from a quantum point of view, and then the intrinsic
randomness is connected to the relative entropy of coherence, another
important coherence measure that quantifies the asymptotic distillable
coherence. Even though there do not exist bound coherent states, these two
coherence measures—intrinsic randomness quantified by coherence of
formation and by relative entropy of coherence—are different. Interestingly, it
is shown that this gap is equal to the quantum discord, a general form of
quantum correlations, in the state of the system of interest and the correlated
party, after a local measurement on the former system.

1. Introduction

According to the Born rule,[1] the outcome of a quantum mea-
surement is intrinsically random. Given a quantum state |𝛼⟩ =∑

i ci|i⟩, where {ci} are complex coefficients, the result of a pro-
jectionmeasurement {|i⟩⟨i|} is not deterministic, having the out-
put i with a probability pi = |ci|2. Such randomness differs from
the classical uncertainty due to uncharacterized measurements.
This intrinsic randomness promises to be a potential resource
for information processing tasks. There are many proposals for
quantum random number generation, we refer to refs. [2,3] for
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reviews. As it is immediately clear from the
example above, intrinsic randomness is a
consequence of breaking coherent superpo-
sitions of quantum states, a phenomenon
nowadays routinely observed in the labo-
ratory. Recently, several works have stud-
ied the properties of coherent states as an
information-theoretic resource.[4,5] It turns
out that the key notion to identify a re-
source, the definition of free operations, is
not unique in the case of coherence. As a re-
sult, several measures have been proposed
to quantify coherent superposition.
The most intuitive way to quantify co-

herence is via the distance to the set of
incoherent states  for a reference basis
{|i⟩}, given by an appropriate yet arbitrary
(pseudo-)metric function,

Cd(𝜌) = min
𝜎∈

d(𝜌, 𝜎) (1)

where d(𝜌, 𝜎) is a function to measure the
distance of two states and  is the inco-
herent state set which contains all statisti-
cal mixtures of the basis states {i}. We la-
bel this notion of coherence as the BCP

coherence.[6,7] A widely employed solution is to adopt the relative
entropy of coherence as a measure,

CR(𝜌) = min
𝜎∈

S(𝜌||𝜎) (2)

where the relative entropy of two states are given by S(𝜌||𝜎) =
Tr(𝜌 log(𝜌) − 𝜌 log(𝜎)), mainly because of its computability and
importance in information theory.[8] Another option is to quantify
coherence via a convex-roof construction, called the coherence of
formation, via

Cf (𝜌) ≡ min
{pj ,|𝜓j⟩}

∑
j

pjCR

(
𝜓j

)
(3)

where the minimization is over all possible decomposition of
𝜌 =

∑
j pj|𝜓j⟩⟨𝜓j|. In the resource theory of coherence, the rela-

tive entropy of coherence and the coherence of formation mea-
sures the asymptotic coherence distillation and dilution rates,
respectively.[9] The coherence distillation and dilution problems
are then extended into the non-asymptotical scenario using other
coherence measures.[10–13] We refer to refs. [14,15] for reviews
of the resource theory of coherence. While the parent notion of
asymmetry has a clear-cut interpretation in a number of physical
settings[4] and other significant advances have been reported,[16]

the operational power offered by the BCP coherence still needs
to be fully understood.
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Given an input quantum state and a measurement owned by
Alice, the intrinsic randomness of outcome, against a potential
adversary Eve, is a topic of interest in the quantum informa-
tion theory. From Alice’s point of view, in the asymptotic limit,
the Shannon entropy H(pi)𝜌 = −

∑
i pi log pi is the quantifier of

the total uncertainty of a measurement with probability distri-
bution {pi} in the measurement outcome of a state 𝜌, named
nominal randomness. The nominal randomness consists of two
parts, intrinsic randomness and extrinsic randomness. The intrin-
sic randomness is quantum randomness which should be unpre-
dictable, while the extrinsic randomness can be predicated by a
quantum correlated party Eve in principle. For example, for pure
states, since Eve’s system is decoupled from Alice’s one, the only
kind of uncertainty is the truly quantum one (intrinsic random-
ness), there is no extrinsic randomness in the measurement out-
puts. Thus, the Shannon entropy (nominal randomness) is itself
a measure of intrinsic randomness. For the case of incoherent
states, the measurement uncertainty is purely classical (extrinsic
randomness) and there is no intrinsic randomness as it entirely
depends on Alice’s incomplete knowledge of her system. Our
goal is to quantify the quantum intrinsic randomness concern-
ing the existence of a potential adversary by coherence measures
and explore the quantum contribution to the total uncertainty.We
consider a scenario which is consistent with the aforementioned
two situations and allows to give an operational interpretation
to the quantum coherence in the more complex case of mixed
coherent states. From an operational perspective, the extractable
randomness is measured by the conditional min-entropy.[17] We
therefore also show how to obtain our results by considering the
asymptotic limit with the conditional min-entropy.
In this work, we focus on the interplay between quantum co-

herence and intrinsic randomness. In particular, we study oper-
ational interpretations of the relative entropy of coherence and
the coherence of formation in characterizing intrinsic random-
ness. The result for the coherence of formation has been previ-
ously considered.[18] This work re-derives this result by focusing
on a more rigorous scenario with the conditional min-entropy.
We further consider a more general scenario and relate the rel-
ative entropy of coherence with intrinsic randomness. We also
found that while there are no bound coherent states, which have
non vanishing coherence of formation but zero coherence of dis-
tillation, the two quantities are different.
The strategy we adopt is presented as follows. In Section 2.1,

we consider a projection measurement of the quantum state in
the reference basis. We pick the smooth conditional min-entropy
as the quantifier of the total uncertainty of the measurement out-
comes conditioned on all possible environment systems. To do
so, we consider a bipartite extension of a system manipulated
by Alice, say accessible to a pair Alice–Eve in the state 𝜌AE , and
address the question of how much information Eve can access
about Alice’s measurement outcome with the probability distri-
bution {pi} and outputs being the elements of a reference ba-
sis {|i⟩A}. We show that in the asymptotic scenario, Eve’s igno-
rance is quantified by the relative entropy of coherence of Al-
ice’s state with respect to the reference basis, which is a good
quantifier of the quantum uncertainty on Alice’s measurement:
min𝜌E H({pi}|E)𝜌AE = CR(𝜌A).
We then compare the results with the scenario where Eve gains

information about Alice’s measurement “classically” by perform-

ing a measurement on her part (Section 2.2). A previous work
proved that, as in the former setting, Eve’s uncertainty on Alice’s
outcome is a full-fledgedmeasure of the BCP coherence, namely,
the coherence of formation.[18,19] Such a measure is obtained by
a convex roof construction, which is different from the relative
entropy of coherence. In this work, we re-derive the same result
with the smooth conditional entropy. Furthermore, we show that
the gap between the two quantities, which characterizes the ir-
reversibility of coherence resource theory,[9] corresponds to the
quantum discord of the Alice–Eve’s system after Alice’s measure-
ment (Section 3.1). This is an interesting result as the state is sep-
arable (precisely, it is a classical-quantum state) so no entangle-
ment appears and the quantum advantage of Eve is indisputably
due to quantum discord. In Section 4, we draw our conclusions.

2. Coherence and Intrinsic Randomness

In this section, we introduce the intrinsic randomness or uncer-
tainty that one has conditioned on a correlated party. We show
that the intrinsic randomness is quantified by the coherence of
the state in the measurement basis.

2.1. Relative Entropy of Coherence as Uncertainty of Correlated
Party

Let us consider a d-dimensional Hilbert space and a reference ba-
sis I := {|i⟩} = {|1⟩, |2⟩,… , |d⟩}. Suppose a projective measure-
ment {|i⟩⟨i|} is performed on a given quantum state 𝜌A accessed
by Alice. The measurement outcome has a probability distribu-
tion {pi}, with

∑d
i=1 pi = 1 and pi = Tr[𝜌|i⟩⟨i|] ≥ 0. We aim to as-

sess the intrinsic or unpredictable randomness of the measure-
ment outcome. To do so, we consider another adversarial party
Eve where the joint state shared by Alice and Eve is 𝜌AE , satisfying
TrE [𝜌AE ] = 𝜌A with partial trace over system E. Note that the state
𝜌AE is not assumed to be pure in our analysis, though we show
shortly that considering pure states 𝜌AE is sufficient for charac-
terizing intrinsic randomness. The measurement can be repre-
sented as a dephasing channel

ΔA(𝜌) =
∑
i

⟨i|𝜌|i⟩|i⟩⟨i| (4)

and the joint state after Alice’s measurement becomes 𝜌′AE =
ΔA(𝜌AE). The state 𝜌

′
AE is a classical-quantum state and the ran-

domness of the measurement outcome conditioned on Eve’s sys-
tem is characterized by the smooth conditional min-entropy,[17]

H𝜀
min(A|E)𝜌′AE = sup‖𝜎AE−𝜌′AE‖≤𝜀Hmin(A|E)𝜎AE (5)

where 𝜀 is the smooth parameter, and the supremum takes over
all states 𝜎AE that are 𝜀 close to 𝜌′AE with ‖𝜎AE − 𝜌′AE‖ = 1 −

F(𝜎AE, 𝜌
′
AE) and fidelity F(𝜌, 𝜎) =

(
Tr
[√√

𝜌𝜎
√
𝜌
])2

. Here the

conditional min-entropyHmin(A|E)𝜌AE is
Hmin(A|E)𝜌AE = −inf𝜎EDmax(𝜌AE‖idA ⊗ 𝜎E) (6)
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where the infimum is over all normalized density operators on
system E, idA is the identity matrix on system A, and the max-
relative entropy Dmax(𝜌‖𝜎) is defined by
Dmax(𝜌‖𝜎) = inf{𝜆 ∈ ℝ, 𝜌 ≤ 2𝜆𝜎} (7)

We choose the smooth conditional min-entropy which measures
the maximum amount of private and uniformly random bits
that can be extracted.[17] Specifically, given a general classical-
quantum state 𝜌AE , one can apply an extractor on system A so
that it is 𝜀′-close to the perfectly uniform bits that are indepen-
dent of any side information of system E. Therefore, the length
𝓁𝜀

′
extr(A|E) of the extracted bits is given by

𝓁𝜀
′

extr(A|E) = H𝜀
min(A|E)𝜌AE +O(log 1∕𝜀′) (8)

with 𝜀 ∈ [ 1
2
𝜀′, 2𝜀′]. One can also consider other entropic quanti-

fiers which may characterize other operational tasks. We leave
the discussion of generalising our results to other entropic quan-
tifiers to a future work.
After Alice’smeasurement on 𝜌AE , the randomness of themea-

surement can be characterized by

RQ,𝜀
I (𝜌) = min

𝜌AE :TrE [𝜌AE ]=𝜌A
H𝜀

min(A|E)ΔA(𝜌AE )
(9)

where theminimization is over all states 𝜌AE satisfying TrE [𝜌AE ] =
𝜌A. For each 𝜌AE , we can further consider its purification by in-
troducing an additional system E′ so that the whole system is|𝜓⟩AEE′ , satisfying TrE′ [|𝜓⟩⟨𝜓|AEE′ ] = 𝜌AE . Then the intrinsic ran-
domness becomes

RQ,𝜀
I (𝜌) = min|𝜓⟩AEE′ :TrEE′ [|𝜓⟩⟨𝜓|AEE′ ]=𝜌A H𝜀

min(A|E)ΔA◦TrE′ (|𝜓⟩AEE′ )
≥ min|𝜓⟩AE :TrE [|𝜓⟩⟨𝜓|AE ]=𝜌A H𝜀

min(A|E)ΔA(|𝜓⟩AE )
(10)

where the second inequality is because of the data-processing in-
equality of the smooth conditional min-entropy defined in Equa-
tion (5). As the minimisation of the second line is only a special
case of theminimization in the definition ofRQ

I in Equation (16),
we have

RQ,𝜀
I (𝜌) = min|𝜓⟩AE :TrE [|𝜓⟩⟨𝜓|AE ]=𝜌A H𝜀

min(A|E)ΔA(|𝜓⟩AE ) (11)

As all purification states |𝜓⟩AE are equivalent under isometry on
system E, which nevertheless does not affect the smooth condi-
tional min-entropy, we therefore have

RQ,𝜀
I (𝜌) = H𝜀

min(A|E)ΔA(|𝜓⟩AE ) (12)

where |𝜓⟩AE is any purification of 𝜌A as shown in Figure 1a.
Suppose Alice prepares n≫ 1 copies of 𝜌A and performs the

projective measurement for all the copies, the average random-

Figure 1. Intrinsic randomness of measurements conditioned on quan-
tum and classical information. a) In a bipartite Alice–Eve system described
by a pure state𝜓AE , the quantumuncertainty of ameasurement performed
by Alice on the system in the mixed state 𝜌A is given by the amount of
uncertainty Eve has on the measurement outcome. Such quantum uncer-
tainty is quantified by the relative entropy of coherence RQI (𝜌A). b) Alterna-
tive definition of quantum coherence as uncertainty. In a bipartite Alice–
Eve system described by a pure state 𝜓AE , the quantum uncertainty of a
measurement performed by Alice on the system in the mixed state 𝜌A is
given by the minimum amount of uncertainty Eve has on the measure-
ment outcome after performing a measurement on her own systems. Such
quantum uncertainty is quantified by the convex roof measure RCI (𝜌A).

ness of each measurement outcome with the limit n → ∞ and
𝜀→ 0+ is then characterized by

RQ
I = lim

𝜀→0+
lim
n→∞

1
n
RQ,𝜀
I (𝜌⊗n)

= lim
𝜀→0+

lim
n→∞

1
n
H𝜀

min(A
n|En)Δ⊗n

A (|𝜓⟩⊗n
AE )

(13)

Theorem 1. The intrinsic randomness of Alice’s measurement out-
come conditioned on any (quantum) adversary Eve, RQ

I is quantified
by the relative entropy of coherence,

RQ
I (𝜌A) = CR(𝜌A)

= S(𝜌diagA ) − S(𝜌A)

= S(𝜌A||𝜌diagA )

(14)

Proof. According to the asymptotic equipartition property of
the smooth entropies,[20] we have

lim
𝜀→0+

lim
n→∞

{ 1
n
H𝜀

min
(An|Bn)𝜌⊗n

}
= H(A|B)𝜌 (15)

Therefore, we have

RQ
I = H(A|E)ΔA(|𝜓⟩AE ) (16)

where H(A|B)𝜌AB = S(𝜌AB) − S(𝜌B) is the von Neumann condi-
tional entropy, S(𝜌) = −Tr[𝜌 log 𝜌] is the von Neumann entropy
and 𝜌B = TrA[𝜌AB]. The right hand side of Equation (16) can be
explicitly evaluated, for example, with the analysis in Ref. [21].
We also briefly summarize the proof here for self-consistence.
After the measurement, the state is changed to

𝜌′AE = ΔA(|𝜓⟩AE) = ∑
i

pi|i⟩A⟨i|⊗ 𝜌Ei (17)
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where 𝜌E =
∑

i pi𝜌
E
i and each 𝜌

E
i = ⟨i|A(|𝜓⟩⟨𝜓|AE)|i⟩A∕pi is a pure

state. Using the equality S(
∑

i pi|i⟩⟨i|⊗ 𝜌i) = H(pi) +
∑

i piS(𝜌i),
the conditional entropy of the post-measurement state is then

S(A|E)𝜌′AE = H(pi) +
∑
i

piS(𝜌
E
i ) − S(𝜌E) (18)

Since H(pi) = S(𝜌diagA ) with 𝜌diagA :=
∑

i pi|i⟩⟨i|, S(𝜌E) = S(𝜌A), and
S(𝜌Ei ) = 0,∀i, we obtain our result in the theorem. □

Therefore, as a measure of BCP coherence,[6] the relative en-
tropy of coherence CR(𝜌A) satisfies all the requirements for a con-
sistent measure of intrinsic randomness.

2.2. Coherence of Formation as Uncertainty of Correlated Party

We observed that the quantum uncertainty of a local measure-
ment corresponds to the best case uncertainty of a correlated
party Eve, as quantified by means of the quantum conditional
entropy. We compare the result with an alternative measure of
quantum coherence— coherence of formation.[18] The setting is
for the sake of clarity depicted in Figure 1b. The difference is that
Eve performs a measurement whose outcomes follow a proba-
bility distribution {qEi }, q

E
i = Tr[𝜌E|e′i⟩E⟨e′i|], on her own system to

classically predict Alice’s measurement outcome. Suppose Eve’s
measurement is represented by a quantum channel as

(𝜌) =
∑
i

Tr[𝜌Oi]|i⟩⟨i| (19)

whereOi ≥ 0,
∑

i Oi = idE , and idE is the identitymatrix of system
E. For one copy of 𝜌AE , the randomness of Alice’s measurement
outcome conditioned on Eve’s measurement outcome is then

RC,𝜀
I (𝜌) = min


min

𝜌AE :TrE [𝜌AE ]=𝜌A
H𝜀

min(A|E)ΔA⊗(𝜌AE )
(20)

where the minimization is also over all Eve’s possible measure-
ments and all possible 𝜌AE satisfying TrE [𝜌AE ] = 𝜌A.With a similar
argument of the proof in the last section, we only need to focus on
any one specific purification |𝜓⟩AE of 𝜌A. Therefore, the intrinsic
randomness is

RC,𝜀
I (𝜌) = min


H𝜀

min(A|E)ΔA⊗(|𝜓⟩AE ) (21)

When Alice prepares n≫ 1 copies of 𝜌A and performs the pro-
jective measurement for all the copies, the average randomness
of each measurement outcome is

RC
I = lim

𝜀→0+
lim
n→∞

1
n
RC,𝜀
I (𝜌⊗n) (22)

In general, Eve’s measurement can be a joint measurement on
all her local systems. In this case, we haveRC

I = RQ
I . Here instead,

we restrict to the scenario that Eve also performs identical mea-
surement for each copy of her local system.[22] Therefore the joint
state after themeasurements isΔ⊗n

A ⊗⊗n(|𝜓⟩⊗n
AE ). According to

the asymptotic equipartition property of the smooth entropies[20]

shown in Equation (15), we have

RC
I = min


H(A|E)ΔA⊗(|𝜓⟩AE ) (23)

According to our recent work,[13] we can conclude as follows.

Theorem 2. The intrinsic randomness of Alice’s measurement out-
come conditioned on any (classical) adversary Eve with independent
measurements is quantified by the coherence of formation,

RC
I = Cf (𝜌) ≡ min

{pj ,|𝜓j⟩}
∑
j

pjS
(
Δ
(|𝜓j⟩⟨𝜓j|)) (24)

where Cf (𝜌) is the coherence of formation and the minimization is
over all decomposition of 𝜌 =

∑
j pj|𝜓j⟩⟨𝜓j|.

2.3. Qubit Calculation for RQ
I and RC

I

The quantum uncertainty measure obtained by convex roof ex-
tension is a measure of BCP coherence as well.[18] Let us com-
pare the two quantities RC

I (𝜌A) and RQ
I (𝜌A) in a simple exam-

ple about a qubit system. In the Bloch sphere representation,
𝜌A = (I + n⃗ ⋅ �⃗�)∕2, where n⃗ = (nx, ny, nz) and �⃗� = (𝜎x, 𝜎y, 𝜎z) are
the Pauli matrices. Supposing that the measurement basis is the
𝜎z eigenbasis, which is denoted by {|0⟩, |1⟩}, then we obtain
RC
z (𝜌A) = H

⎛⎜⎜⎜⎝
1 +

√
1 − n2x − n2y

2

⎞⎟⎟⎟⎠ (25)

RQ
z (𝜌A) = H

(
nz + 1
2

)
−H

(|n| + 1
2

)
where |n| = √

n2x + n2y + n2z and H is the binary entropy. Specif-

ically, for the state 𝜌A(v) = v|+⟩⟨+| + 1−v
2
I, where |+⟩ = (|0⟩ +|1⟩)∕2, v ∈ [0, 1], n⃗(v) = (v, 0, 0), we have

RC
z (𝜌A) = H

(
1 +

√
1 − v2

2

)
(26)

RQ
z (𝜌A) = 1 −H

( v + 1
2

)
(27)

In Figure 2, we plot the two measures versus the mixing param-
eter v. By definition, the randomness quantifier RC

z is against a
classical adversary, who can only perform independent measure-
ments on her local systems. On the contrary, the randomness
quantifier RQ

z assumes a powerful quantum adversary, who can
perform general measurements. As a classical adversary is a spe-
cial case of a general quantum adversary, the quantum coherence
measure RQ

z is generally smaller than RC
z . As they both measure

randomness, it is not hard to see that they both vanish when the
state is incoherent and they converge to the Shannon entropy in
the pure state case. All those intuitions are verified in the numer-
ical example shown in Figure 2.
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Figure 2. Comparison of the measures of quantum uncertainty RQz (red
dotted line) and RCz (blue dot-dashed line) in the qubit state 𝜌A(v) =
v|+⟩⟨+| + 1−v

2
I versus the mixing parameter v. RQz is the intrinsic random-

ness of Alice’s measurement outcome conditioned on a quantum adver-
sary; RCz is the intrinsic randomness conditioned on a classical adversary.

3. Quantum Coherence Gap and Quantum Discord

3.1. Quantum Discord as Difference between Coherence
Measures

Note that the quantum coherence measure RQ
I (𝜌A) is obtained

when considering an adversary that utilizes quantum informa-
tion to predict Alice’s measurement outcome. In comparison,
the measure RC

I (𝜌A) is obtained when the adversary performs in-
dependent and identical measurements on her local systems to
have a classical prediction. Obviously, the latter adversary strategy
is a special case of the former one, and henceRC

I (𝜌A) ≥ RQ
I (𝜌A). In

general, there is a non-zero gap between the two quantum coher-
ence measures, while they both vanish for incoherent states. As
the difference between the two frameworks in Figure 1 is brought
about by making a measurement on Eve’s party, it is intuitive to
think that the gap is related to how much the local measurement
changes the state. Indeed, we show that such a gap is associated to
the quantum discord of the bipartite state 𝜌′AE =

∑
i pi|i⟩⟨i|⊗ 𝜌iE

of the system after Alice carried out her measurement. Discord
(we omit the quantum label from now on) is a kind of quantum
correlation which equals entanglement for pure states but also
shows up in all but a null measure set of separable states. It can
be interpreted as the minimum disturbance induced on a bipar-
tite system by a local measurement,[23] but here it quantifies the
advantage of a quantum correlated system Eve in accessing in-
formation about Alice’s measurement. Its peculiarity is its asym-
metry, as a measurement on one party has in general a different
effect than performed on a different subsystem. For a state 𝜌AE ,
the discord defined as

DE(𝜌AE) = min
{qE
i
}
S(A|{qEi })𝜌AE − S(A, E)𝜌AE + S(E)𝜌AE

measures the least possible disturbance of a measurement with
probability distribution {qEi } on the E party. Simple algebra steps

Table 1. Comparison between coherence and entanglement measures.
COF: Coherence of formation; REC: Relative entropy of coherence.

Properties Coherence/Uncertainty Entanglement

Cost COF RCI , Equation (23) Entanglement of formation

Distillation REC RQI , Equation (16) Distillable Entanglement

Gap Discord, Equation (28) Bound Entanglement[24]

show that min{qE
i
} S(A|{qEi })𝜌′AE = min{qE

i
}H({pi}|{qEi })𝜓AE . Hence,

we obtain the following result for the meaning of the gap of the
two coherence measures.

Theorem 3. The gap between the relative entropy of coherence and
the coherence of formation is given by the discord of the joint state after
Alice’s measurement, that is, the least possible state change induced by
an Eve’s measurement,

RC
I (𝜌A) − RQ

I (𝜌A) = DE(𝜌
′
AE) (28)

We observe that, in the resource theory of quantum coherence,
the coherence of formation and the relative entropy of coherence
measure the coherence cost and the distillable coherence in the
asymptotic limit, respectively.[9] Thus, the coherence cost and the
distillable coherence equal the quantum uncertainty conditioned
on Eve’s classical[18] and quantum strategies here discussed. The
scenario is similar to what happens in the entanglement resource
theory,[25] where there is a nonzero gap between the entangle-
ment cost and the distillable entanglement (Table 1). In partic-
ular, some entangled states have zero distillable entanglement,
a phenomenon called bound entanglement. However, a key dif-
ference is that there is no coherent states with zero coherence of
distillation.[9] Hence, it emerges that zero relative entropy of co-
herence on a local Alice’s measurement implies zero coherence
cost, RQ

I (𝜌A) = 0 ⇒ RC
I (𝜌A) = 0 and then zero quantum discord,

that is, there exists at least a measurement on Eve’s side which
does not change the state. We also observe that the state 𝜌′AE is al-
ways separable. Thus, the quantum advantage in accessing non-
local information about a correlated party measurement is here
genuinely due to quantum discord, rather than entanglement.

3.2. An Example

To clarify the result, we consider the following example inspired
by the cryptographic scenario of the BB84 protocol.[26] Alice pro-
cesses two bits information representing eigenbasis and polar-
ization of a quantum state 𝜌A. If the basis bit is 0 (1), she pre-
pares the state in the X (Z) basis, while if the polarization bit is
0 (1), the state has polarization up (down) in the chosen eigen-
basis. To set the notation, if the two bits are 00, 01, 10, 11, Alice
prepares |0⟩, |1⟩, |+⟩, |−⟩, respectively. Let us suppose the prob-
ability of choosing each state is equal, and that Alice sends the
quantum state to Eve, who tries to guess the state. Then, the state
shared by Alice and Eve is given by

𝜌′AE = 1
4
(|00⟩⟨00|⊗ |0⟩⟨0| + |01⟩⟨01|⊗ |1⟩⟨1| (29)

+ |10⟩⟨10|⊗ |+⟩⟨+| + |11⟩⟨11|⊗ |−⟩⟨−|)
Adv. Quantum Technol. 2019, 2, 1900053 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900053 (5 of 7)



www.advancedsciencenews.com www.advquantumtech.com

Equivalently, we can consider that Alice and Eve initially share a
pure state

|𝜓⟩AE = 1
2
(|00⟩|0⟩ + |01⟩|1⟩ + |10⟩|+⟩ + |11⟩|−⟩)

and the prepared state 𝜌′AE can be obtained by measuring
Alice’s subsystem of |𝜓⟩AE in the computational basis, I =
{|00⟩, |01⟩, |10⟩, |11⟩}. Note that, as we consider the case where
Alice has two qubits in her system, the randomness against Eve
should be 0 ≤ RI ≤ 2. Therefore, Eve’s information about Alice’s
measurement outcome is equivalent to considering the coher-
ence of

𝜌A

= 1
4

[(|00⟩ + 1√
2
(|10⟩ + |11⟩))(⟨00| + 1√

2
(⟨10| + ⟨11|))

+

(|01⟩ + 1√
2
(|10⟩ + |11⟩))(⟨01| + 1√

2
(⟨10| + ⟨11|))]

(30)

The two quantum coherence measures are RQ
I (𝜌A) = 1 and

RC
I (𝜌A) = 3∕2, the latter obtained being via numerical optimiza-

tion. Hence, the quantum discord of the post-measurement state
is DE(|𝜓⟩AE) = 1∕2, measuring how much extra information Eve
can obtain by performing coherent measurements than indepen-
dent measurements of multiple copies of 𝜌′AE .

4. Conclusion

Given the twofold uncertainty of a quantum measurement, we
provided an operational interpretation to the genuinely intrin-
sic randomness about a measurement performed by an observer
Alice, which we quantify with the relative entropy of coherence,
as the minimum uncertainty about the outcome by a quantum
correlated party Eve. We then compared the result to an alter-
native strategy to quantify quantum coherence by a convex roof
extension of the Shannon entropy. The gap between the two
strategies is equal to the discord of the bipartite state shared by
Alice and Eve. The result provides a new link between single
system quantumness and quantum correlations even in separa-
ble states, which was inspired by previous studies on the trade-
off between local and global quantum properties.[27–34] Following
this line of thinking, other interesting scenarios where the inter-
play between coherence and correlations should be investigated
is in the context of physical limits to privacy and to communi-
cation, for example, data hiding protocols.[35–39] Another poten-
tial avenue of further research is the extension of the result to
the multipartite setting, that is, to determine a link between local
coherence and genuine multipartite quantum correlations. Note
that in this paper, we only consider the uncertainty of a projec-
tive measurement (computational basis measurement), it is also
interesting to explore the uncertainty of a general quantummea-
surement instead of projectivemeasurement.[40] Quantum coher-
ence is also connected to the generated randomness with the ex-
traction process.[12,41]

Acknowledgements
This work was supported by the National Natural Science Foundation of
China Grants No. 11674193 andNo. 11875173, the National Key R&D Pro-
gramof ChinaGrantsNo. 2017YFA0303900 andNo. 2017YFA0304004, the
Zhongguancun Haihua Institute for Frontier Information Technology, the
EPSRC (Grant No. EP/L01405X/1), and the Wolfson College, University of
Oxford.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
intrinsic randomness, quantum coherence, quantum discord

Received: May 27, 2019
Revised: August 2, 2019

Published online: August 27, 2019

[1] M. Born, Z. Phys. 1926, 37, 863.
[2] X. Ma, X. Yuan, Z. Cao, B. Qi, Z. Zhang, npj Quantum Information

2016, 2, 16021.
[3] M. Herrero-Collantes, J. C. Garcia-Escartin, Rev. Mod. Phys. 2017, 89,

015004.
[4] I. Marvian, R. W. Spekkens, Phys. Rev. A 2016, 94, 052324.
[5] J. Åberg, Phys. Rev. Lett. 2014, 113, 150402.
[6] T. Baumgratz, M. Cramer, M. B. Plenio, Phys. Rev. Lett. 2014, 113,

140401.
[7] F. Herbut, J. Phys. A: Math. Gen. 2005, 38, 2959.
[8] V. Vedral, Rev. Mod. Phys. 2002, 74, 197.
[9] A. Winter, D. Yang, Phys. Rev. Lett. 2016, 116, 120404.
[10] Z. Qi, Y. Liu, X. Yuan, E. Chitambar, X. Ma, Phys. Rev. Lett. 2018, 120,

070403.
[11] B. Regula, K. Fang, X. Wang, G. Adesso, Phys. Rev. Lett. 2018, 121,

010401.
[12] Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, A. Winter, IEEE Trans. Inf. The-

ory, 2019, https://doi.org/10.1109/TIT.2019.2911102
[13] Y. Liu, Z. Qi, X. Yuan, J. Phys. A: Math. Theor. 2018, 51, 414018.
[14] A. Streltsov, G. Adesso, M. B. Plenio, Rev. Mod. Phys. 2017, 89,

041003.
[15] M.-L. Hu, X. Hu, J. Wang, Y. Peng, Y.-R. Zhang, H. Fan, Phys. Rep.

2018, 762–764, 1.
[16] B. Yadin, J. Ma, D. Girolami, M. Gu, V. Vedral, Phys. Rev. X 2016, 6,

041028.
[17] R. Konig, R. Renner, C. Schaffner, IEEE Trans. Inf. Theory 2009, 55,

4337.
[18] X. Yuan, H. Zhou, Z. Cao, X. Ma, Phys. Rev. A 2015, 92, 022124.
[19] C. Liu, Q.-M. Ding, D. Tong, J. Phys. A: Math. Theor. 2018, 51, 414012.
[20] M. Tomamichel, Quantum Information Processing with Finite Re-

sources: Mathematical Foundations. Vol. 5, Springer, New York 2015.
[21] P. J. Coles, Phys. Rev. A 2012, 85, 042103.
[22] Note that here we only need to assume that Eve performs indepen-

dent measurements on each copy of her local system. It reduces to
the identical measurement case by considering a random permuta-
tion of all the states.

[23] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys.
2012, 84, 1655.

[24] G. Jaeger, Quantum Information. Springer, New York 2007.

Adv. Quantum Technol. 2019, 2, 1900053 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900053 (6 of 7)



www.advancedsciencenews.com www.advquantumtech.com

[25] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod.
Phys. 2009, 81, 865.

[26] C. H. Bennett, G. Brassard, Quantum Cryptography: Public Key Dis-
tribution and Coin Tossing, in Proc. IEEE Int. Conf. Computers, Systems
and Signal Processing. IEEE Press, New York 1984, pp. 175–179.

[27] D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 2013, 110, 240402.
[28] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, G. Adesso, Phys. Rev.

Lett. 2015, 115, 020403.
[29] Y. Yao, X. Xiao, L. Ge, C. P. Sun, Phys. Rev. A 2015, 92, 022112.
[30] J. Ma, B. Yadin, D. Girolami, V. Vedral, M. Gu, Phys. Rev. Lett. 2016,

116, 160407.
[31] A. Streltsov, E. Chitambar, S. Rana, M. N. Bera, A. Winter, M. Lewen-

stein, Phys. Rev. Lett. 2016, 116, 240405.
[32] E. Chitambar, M.-H. Hsieh, Phys. Rev. Lett. 2016, 117, 020402.

[33] M.-L. Hu, H. Fan, Phys. Rev. A 2017, 95, 052106.
[34] A. Streltsov, S. Rana, M. N. Bera, M. Lewenstein, Phys. Rev. X 2017,

7, 011024.
[35] D. P. DiVincenzo, M. Horodecki, D. W. Leung, J. A. Smolin, B. M.

Terhal, Phys. Rev. Lett. 2004, 92, 067902.
[36] S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J. H. Shapiro, M.

Takeoka, M. M. Wilde, Phys. Rev. X 2014, 4, 011016.
[37] A. Datta, S. Gharibian, Phys. Rev. A 2009, 79, 042325.
[38] S. Wu, U. V. Poulsen, K. Mølmer, Phys. Rev. A 2009, 80,

032319.
[39] S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Int. J. Quantum

Inform. 2011, 9, 1643.
[40] Z. Cao, H. Zhou, X. Ma, New J. Phys. 2015, 17, 125011.
[41] M. Hayashi, H. Zhu, Phys. Rev. A 2018, 97, 012302.

Adv. Quantum Technol. 2019, 2, 1900053 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900053 (7 of 7)


