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Universal quantum computation [1] is striking for its unprecedented capability in processing information, but
its scalability is challenging in practice because of the inevitable environment noise. Although quantum error
correction (QEC) techniques [2–7] have been developed to protect stored quantum information from leading
orders of errors, the noise-resilient processing of the QEC-protected quantum information is highly demanded
but remains elusive [8]. Here, we demonstrate phase gate operations on a logical qubit encoded in a bosonic
oscillator in an error-transparent (ET) manner. Inspired by Refs. [9, 10], the ET gates are extended to the
bosonic code and are able to tolerate errors during the gate operations, regardless of the random occurrence
time of the error. With precisely designed gate Hamiltonians through photon-number-resolved AC-Stark shifts,
the ET condition is fulfilled experimentally. We verify that the ET gates outperform the non-ET gates with a
substantial improvement of the gate fidelity after an occurrence of the single-photon-loss error. Our ET gates in
the superconducting quantum circuits are readily for extending to multiple encoded qubits and a universal gate
set is within reach, paving the way towards fault-tolerant quantum computation.

The uncontrollable noise in a quantum system is the most
significant obstacle in realizing universal quantum computa-
tion [1], since the induced errors are unpredictable and dele-
terious to the encoded quantum information. Quantum error
correction (QEC) is proposed to tackle this problem [11] by
expanding the dimension of the Hilbert space for quantum in-
formation and thus introducing the redundancy to tolerate the
leading errors. In conventional QEC, quantum information
is encoded on logical qubits, constructed by multiple physi-
cal qubits, within a subspace spanned by the QEC codewords
called the code space. Although each physical qubit is sus-
ceptible to noise, errors can be detected without corrupting
the stored quantum information while mapping the quantum
state in the code space to the orthogonal error spaces. Over
the past years, great progress has been achieved in QEC the-
ories, and proof-of-principle demonstrations of error detec-
tion and correction are reported in various experimental plat-
forms [2–7]. Especially, the break-even point of QEC has
been demonstrated with a logical qubit encoded in a bosonic
oscillator [12].

However, QEC can merely maintain the stored quantum
states from noise. Errors occurring during the execution of
quantum operations might accumulate and spread over the
quantum circuits, so that the processing of information is not
reliable. Fault-tolerant universal quantum computation archi-
tectures [8], such as the transversal gates on logical qubits
and magic-state distillation, were developed for performing
noise-resilient quantum gates on encoded qubits, but the im-
plementations are extremely challenging. Instead of realiz-
ing a complete fault-tolerant architecture, practical schemes
that demonstrate the key ideas in a near-term few-qubit sys-
tem were proposed [13, 14]. Only very recently, fault-tolerant
state preparation [15] and error detection [16, 17] were ex-
perimentally demonstrated. An alternative approach of fault-
tolerant operations based on the concept of error-transparent
(ET) gates [9, 10] was proposed theoretically and promises
fault-tolerant non-Clifford logical gates. Nevertheless, its im-
plementation in the multi-qubit QEC codes requires many-
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FIG. 1. Concept of error-transparent (ET) gate. During a quantum
gate on a logical state with finite operation time, error E might occur
randomly, mapping the state in the code space (upper gray cube) to
the orthogonal error space (lower purple cube). For the non-ET gate
(a), the track of state evolution in the error space is different for E
occurring at different time. When the ET condition is satisfied (b),
the tracks in both the code and error spaces are deterministic and
identical whenever the error occurs. Therefore, E can be detected
and corrected with QEC after the gate operation, making the ET gate
fault tolerant.

body interactions and is hard to realize experimentally.

Here, we extend the concept of ET gates to bosonic QEC
codes and experimentally demonstrate ET arbitrary phase
gates that tolerate the single-photon-loss error. The ET gates
are successfully validated by the remarkable improvement of
the coherence of the logical states after the occurrence of an
error during the evolution of the gates. By applying repet-
itive autonomous QEC (AQEC), the ET gates on the QEC-
protected logical qubits show higher fidelities than the cases
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with non-ET gates or without AQEC. Our results promise a
universal ET gate set for quantum computation, thus reveals
the potential of the bosonic quantum computation architec-
ture [18, 19], and presents a first step towards the fault-tolerant
quantum computation.

The basic idea of the ET operation on a logical qubit is
illustrated in Fig. 1. Applying a Hamiltonian H(t) to the log-
ical qubit, any encoded quantum state is expected to evolve
as |ψL (t1)〉 → U (t2, t1) |ψL (t1)〉 with a target unitary opera-

tion U (t2, t1) = T e−i
´ t2

t1
dτH(τ) (T is the time-ordering oper-

ator). However, because errors could occur during the oper-
ation process, the logical state will consequently jump from
the code space to the error space. Due to the stochastic na-
ture of noise, the practical evolution of the state may fol-
low different tracks, as shown in Fig. 1a. For example, if
an error E j occurs at time t, the track leads to the final state
|ψ̃(t)〉 = U(T, t)E jU(t,0)|ψL(0)〉 in the error space. An ET
operation requires a deterministic track of the logical state
evolution irrespective to t, as shown in Fig. 1b, and the tar-
get operation could always be achieved by mapping the state
back to the code space after the operation.

Therefore, we derive the condition for the
ET operation as U(T, t)E jU(t,0)|ψL(0)〉 =

eiφ(t)E jU(T,0)|ψL(0)〉,∀ j, t, |ψL(0)〉 by considering the
fact that a global phase φ(t) makes no influence on the logical
state. Note that the ET condition discussed in Refs. [9, 10]
is a more restricted case of our condition with φ (t) = 0.
Accordingly, the Hamiltonian should be carefully engineered
to make the evolution in the error spaces exactly the same as
that in the code space, i.e.

P†
j H(t)P j = P†

CH(t)PC + c(t)PC,∀ j, t, (1)

where PC is the projector onto the code space, P j ∝ E jPC
is the projector from the code space to the error space corre-
sponding to the error E j, and c(t) is a complex number.

To demonstrate the ET operations on a bosonic logical
qubit, we explore a superconducting circuit consisting of a
high-quality microwave cavity constituting the bosonic log-
ical qubit and a dispersively coupled transmon qubit as the
ancilla [20, 21], and the system Hamiltonian reads

H0 = ∆ωa†a−χa†a |e〉〈e|− K
2

a†2a2. (2)

Here, ∆ω is the cavity frequency with respect to a carefully
chosen local oscillator reference, a† (a) is the creation (an-
nihilation) operator for the bosonic mode, |e〉 (|g〉) is the ex-
cited (ground) state of the ancilla, and χ/2π = 1.60 MHz and
K/2π = 4.80 kHz are the dispersive coupling and Kerr coeffi-
cients originated from the ancilla, respectively. To correct the
dominant photon-loss errors in the bosonic mode, we encode
the quantum information on the lowest-order binomial code in
the cavity [22, 23], which is defined in Fock basis as

|0L〉=
|0〉+ |4〉√

2
, |1L〉= |2〉. (3)

We note that proper reference frame needs to be carefully cho-
sen such that there is no accumulation of the relative phase be-
tween Fock states |0〉 and |4〉. When a single-photon-loss error
occurs, the quantum state jumps into the error space spanned
by the basis states

|0E〉= |3〉, |1E〉= |1〉. (4)

When prepare the logical qubit in the code space and set the
ancilla to the idle state |g〉, a phase operation on the logical
qubit can be easily realized via the Kerr effect since

P†
CH0PC = K (I−Z) (5)

with respect to the code basis states (Eq. 3). Here, I and Z are
the Pauli matrices. Thus, an arbitrary phase gate RKerr (φ) =
ei 1

2 φZ on a single logical qubit can be implemented by waiting
for a duration of τ = φ/2K. However, such phase operations
can not tolerate single-photon-loss errors, because the ET con-
dition is not satisfied as

P†
EH0PE =

3
2

KI. (6)

Furthermore, the cavity’s Kerr nonlinearity associated with
the coupling to the ancilla cannot be switched off, therefore
the stored logical qubit is always impacted by RKerr and suf-
fers random photon-loss-error-induced dephasing [23].

To meet the ET condition, we develop a technique to flex-
ibly engineer the Hamiltonian in both the code and error
spaces. Through a detuned microwave drive on the ancilla,
photon-number-resolved AC-Stark shift (PASS) can be real-
ized. As schematically shown in Fig. 2a, due to the strong
ancilla-cavity dispersive coupling, the transition frequency of
the ancilla is photon-number (n) dependent, and thus an off-
resonant drive would induce photon-number dependent en-
ergy shift δn due to the AC-Stark effect [24, 25]. Such a fre-
quency shift can also be understood as a geometric phase ac-
cumulation ∼ δnτ = Ω2

∆d−nχ τ for the joint ancilla-cavity state
|gn〉 (Fig. 2b), while keeping the excitation to |en〉 negligible
due to the large detuning (Supplementary Information). Here
τ is the gate duration time, Ω is the Rabi drive frequency, and
∆d is the drive detuning with respect to the ancilla transition
frequency corresponding to n = 0. By applying drives with
carefully chosen frequencies and amplitudes, we could pre-
cisely engineer the frequency shifts of the Fock states to real-
ize the Hamiltonian

HPASS =
ntrc

∑
n=0

δn|n〉〈n|, (7)

with the truncated photon number ntrc = 4 for the code con-
sidered in this work (Eq. 3 and Eq. 4). Figure 2c shows the
measured Fock state frequencies when applying a continuous
drive in the middle of the ancilla transition frequencies corre-
sponding to n = 3 and n = 4, i.e. ∆d = −3.50χ (the dashed
orange line in Fig. 2a). The experimental results are well con-
sistent with the theoretical predictions.



3

2

0

-2

Im
 (α

)

-2 2
Re (α)

a

⟩|

⟩|

⟩| 3

⟩| 3

⟩| 2

⟩| 2

⟩| 1

⟩| 1

⟩| 0

⟩| 0

⟩|0

⟩| Parity 
Measure

ment

Error Detec�on

( )

Parity
Measure

ment

Wigner Tomography

/2

Encode

2
1

3
4

⟩|

⟩|

b

c

d

e

R Kerr  gate R ET  gate I ET  gate

30 µs 30 µs 30 µs

60 µs 60 µs 60 µs

90 µs 90 µs 90 µs

-80
-60
-40
-20

0
20
40
60

Fr
eq

ue
nc

y 
Sh

ift
 (k

H
z)

0.50.40.30.20.10.0
Drive Amplitude Ω/2π (MHz)

-2 2

2

0

-2
-2 2

2

0

-2

2

0

-2

-2 2

2

0

-2
-2 2

2

0

-2

2

0

-2

-2 2

2

0

-2
-2 2

2

0

-2

2

0

-2

FIG. 2. Photon-number-resolved AC-Stark shift (PASS) and ET phase gates. a, Illustration of the energy diagram in the strongly disper-
sively coupled bosonic mode-ancilla system. A detuned microwave drive on the ancilla would induce PASS for each transition frequency. b,
Geometric phase interpretation of the PASS. Fast rotating of the state in the Bloch space {|gn〉 , |en〉} induces a phase accumulation propor-
tional to time, equivalent to an energy shift of Fock state |n〉. c, Measured frequencies of Fock states with respect to |0〉 as a function of the
amplitude of a continuous drive. The drive frequency is in the middle of the ancilla transition frequencies corresponding to Fock states |3〉
and |4〉, as indicated by the horizontal dashed orange line in a. These results fit excellently with the theoretical predictions (dashed lines). The
vertical arrow indicates the amplitude to realize the ET phase gate RET. d, Experimental sequence to characterize the ET gates. After RKerr,
RET, or IET, an error detection measurement is performed, followed by a Wigner tomography. e, Evolution of the logical state encoded with
the lowest-order binomial code (|0L〉− i|1L〉)/

√
2 under the three different gates for different intervals of 30 µs, 60 µs, and 90 µs. Each left

column is the Wigner function for a detection of no error, while each right one for a detection of an error. For non-ET RKerr, the state after an
error eventually loses the phase information and becomes a mixed state; while for the ET gates, the coherence of the state in the error space is
preserved. All the Wigner functions are experimentally measured ones.

After experimentally validating the precisely controlled
PASS, we turn to realize the ET phase gate RET on the log-
ical qubit. With an appropriate drive amplitude, we can obtain

P†
C(H0 +HPASS)PC = K′(I−Z) (8)

and

P†
E(H0 +HPASS)PE = K′(I−Z)+ cI, (9)

with K′/2π = 3.33 kHz and c/2π = −0.63 kHz. Here, the
ET condition is satisfied with a re-chosen reference ∆ω =
6.09 kHz. We now verify the ET property of the phase
gate by measuring the evolution of a logical state (|0L〉 −
i|1L〉)/

√
2 with (RET) and without (RKerr) the PASS. To sep-

arately check the quantum evolution in the code and error
spaces, we perform Wigner tomography of the output states
by post-selecting the parity of the excitation number after var-
ious evolution times (Fig. 2d) with the assistance of the an-
cilla [23, 26]. The results are summarized in Fig. 2e. Com-
paring RET and RKerr, the evolution of the logical state in the

code space shows similar rotations and phase coherence for
both cases, as indicated by the fringes in the azimuth direc-
tion. However, the phase coherence in the error space is only
preserved by RET, in strong contrast to the significant corrup-
tion of phase coherence for RKerr, manifesting the tolerance to
the stochastic photon-loss error during the ET gate.

Additionally, the ET idle gate IET can also be realized by
simultaneously applying two PASS drives, such that K′ = 0.
This ET realization of an idle Hamiltonian is important, since
the Kerr effect could be shut off and the quantum informa-
tion can be protected by the binomial QEC code from random
photon-loss-error-induced dephasing. In Fig. 2e, IET shows
similar ET properties as RET, while the phase of the logical
state remains unchanged in both the code and error spaces.

To demonstrate the potential of the ET gates for fault-
tolerant quantum computation, we further investigate the ET
gates under AQEC protection, with the experimental sequence
shown in Fig. 3a. An AQEC pulse numerically optimized with
a duration of 1.5 µs recovers the error state during the ET gate
operation and also transfers the error entropy associated with
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performance characterization. The gate operation on the logical qubit is realized by the corresponding Hamiltonian with varying gate time TG,
and a QEC process is implemented before the decoding. The QEC process consists of an AQEC pulse followed by an ancilla measurement
and a reset. b, Phase shift of the logical state extracted from the process tomography. During the phase gates, the phases of the logical state
change linearly with TG. c, The gray dotted curve is the process fidelity F of RKerr without AQEC and could be regarded as a reference. The
AQEC indeed improves F except for TG being small. The ET gates perform better than RKerr as expected. d, F in the error and code spaces
respectively. In the code space, both RKerr and RET have nearly identical F . However, in the error space RET has much higher F than RKerr,
corroborating that the ET gate is able to protect the state when an error occurs during the gate. Note that at TG = 0 there is no single-photon-loss
error yet and the small probability of inferring the error space mainly comes from the imperfect AQEC pulse and ancilla excitation, consistent
with numerical simulations (Supplementary Information).
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FIG. 4. ET gates protected by repetitive AQEC. a, Experimental
sequence. b, Experimental process fidelity F as a function of time
with repetitive and interleaved ET gates and AQECs on the logical
qubit. Both ET gates have better performance than the non-ET RKerr.
The lifetime with the ET idle gate IET is shorter than that with the ET
phase gate RET because of extra ancilla excitation from the additional
drive. All these three gates with AQEC show better performance than
the case without AQEC.

the logical state to the ancilla, followed by a measurement-
based ancilla reset (Methods and Supplementary Informa-
tion). The AQEC is equivalent to previously demonstrated
feedback-based QEC [23], but holds the advantages of conve-
nience in experiments and avoids the latency in the electronic
control system since the AQEC is error-detection free [3, 4, 6].
Figures 3b-d summarize the experimental results and pro-
cess fidelities with different gate operation time TG. Arbitrary
phase gates can be achieved with appropriate TG, however
their gate fidelities F decay with TG as expected. In Fig. 3c,
we find all the gates are improved by AQEC when compared
with RKerr without AQEC, while the ET gates show superior
performances. By measuring the process fidelity F in the code
and error spaces separately, the ET effect is clearly evidenced
in Fig. 3d: F for RKerr and RET in the code space are almost
identical, but F for RET in the error space is substantially im-
proved.

Finally, the ET logical gate can be interleaved with AQEC
and performed repeatedly, as illustrated in Fig. 4a. Figure 4b
shows the measured process fidelity decaying exponentially as
a function of time. We have chosen the optimal time interval
for each gate (60 µs for RKerr and 120 µs for the ET gates).
Clearly, both ET gates have better performance than the non-
ET RKerr. The lifetime with IET is shorter than that with RET
because of extra ancilla excitation from the additional drive,
which causes dephasing of the logical state. In addition, all
these three gates with AQEC have better performance than
the case without AQEC, demonstrating the effectiveness of
AQEC.
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We introduce the concept of ET gates on a bosonic logical
qubit, where the evolution in the error space is independent
and exactly the same as that in the code space. The ET arbi-
trary phase gates and the idle gate have been demonstrated on
the lowest-order binomial code by engineering the frequency
shift of each Fock state, and an enhancement on the ET gate fi-
delity has also been demonstrated with repetitive AQEC. Our
approach could also be generalized to single-qubit Hadamard
gate and controlled-phase gate on two binomial logical qubits
(Supplementary Information), thus constituting the universal
ET gate set for quantum computation. Therefore, the ET gates
and the bosonic QEC codes offer an alternative fault-tolerant
quantum computation architecture. We note that another ET
gate on a bosonic logical qubit was independently demon-
strated in [27], which tolerates the damping error of the ancilla
by exploiting the ancilla’s higher energy levels. These two ET
gate demonstrations are complementary and together promise
the ET implementation of QEC against both the damping error
of the ancilla and photon-loss error of the bosonic mode.
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I. EXPERIMENTAL PARAMETERS AND TECHNIQUES

A. Experimental device

The experimental device is composed of two high-quality
three-dimensional coaxial aluminum cavities [1–3] (S1 and
S2), three ancillary transmon qubits (Q1, Q2, Q3) and three
stripline cavities [4] (R1, R2, R3), as shown in Fig. S1. The
detailed geometry of the device can be found in Ref. [5]. For
current experiment on the error-transparent (ET) gates on a
single-logical qubit, we only use the left part of the device (S1,
Q1, and R1), and the remaining parts stay in their ground states
during the experiment. The single-logical qubit is encoded in
the bosonic mode of S1 (referred as the ‘cavity’ henceforth),
which is dispersively coupled to the ancilla Q1. The stripline
cavity R1 with a high external coupling rate (κout ) is to readout
Q1. The relevant parameters and coherence properties of the
device under study are listed in Table S1 and Table S2. Note
that the coefficients χ = χqs and K = Ks are used in the main
manuscript and below for abbreviation.

B. Experimental techniques

In this work, we have developed two experimental tech-
niques to realize the ET gates under the protection of repeti-
tive quantum error correction (QEC). The first technique is the
photon-number-resolved AC-Stark shift (PASS) to engineer
the system Hamiltonian precisely, and thus the ET condition

Q1R1

S1

Q2 R2

S2

Q3

R3

FIG. S1. Experimental device. The ET gate experiment is based on
the parts in the dashed rectangle, consisting of a high-quality three-
dimensional coaxial aluminum cavity S1 as the storage cavity to en-
code the logical qubit, an ancillary transmon qubit Q1, and a stripline
cavity R1 for readout of the ancilla. The remaining parts are in their
ground states during the experiment.

Term Value
ωq/2π 6.036 GHz
ωs/2π 6.594 GHz
ωr/2π 8.892 GHz
Kq/2π 252 MHz
Ks/2π 4.8 kHz
χqs/2π 1.60 MHz
χqr/2π 2.00 MHz

TABLE S1. Experimentally characterized parameters for the
cavities and the ancilla qubit. Here, the subscripts (q,s,r) denote
the ancilla qubit (Q1), storage cavity (S1) and readout cavity (R1),
respectively. ω is the bare frequency for each compoment, K is the
self-Kerr coefficient and χ is the dispersive coupling strength.

Q1 Q3 S1 R1

T1 35 µs 25 µs 480 µs 58 ns
T2 25 µs 30 µs 560 µs -
Tφ 39 µs 75 µs 1.3 ms -
nth 1.6% 0.7% < 1% -

TABLE S2. Coherence properties of the ancilla qubits and the
cavities. T1 and T2 are the experimentally measured energy and
phase relaxation times, respectively, Tφ is the derived pure dephasing
time, and nth is the thermal excitation in the experiment.

can be satisfied for the binomial codes. The second technique
is the autonomous QEC (AQEC), by which the single-photon-
loss error can be detected and corrected without extracting the
error syndrome by the control electronics and thus the elec-
tronic latency can be avoided. In this section, we provide the
details of the two techniques.

1. PASS

For the system under study, the Hamiltonian for realizing
PASS reads

H0 = ∆ωa†a− K
2

a†2a2 +
(
ωq−χa†a−ωd

)
|e〉〈e|

+Ω(|e〉〈g|+ |g〉〈e|) , (S1)

where ∆ω is the cavity frequency with respect to a carefully
chosen local oscillator reference, a† (a) is the creation (an-
nihilation) operator for the bosonic mode, |e〉 (|g〉) is the ex-
cited (ground) state of the ancilla, χ is the dispersive coupling
strength, K is the self-Kerr coefficient of the cavity originated
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FIG. S2. Geometric phase interpretation of the PASS. An off-
resonant drive with a frequency ∆d between two dispersive transition
frequencies of the ancilla and an amplitude Ω would produce a ge-
ometric phase on each ancilla state. This phase is accumulated con-
stantly and causes an equivalent frequency shift on the photon Fock
state because the ancilla is approximately in its ground state and can
be traced out. The direction of the frequency shift is related to the
sign of the detuning ∆.

from the ancilla, ωq is the ancilla qubit frequency when the
cavity is in vacuum, ωd is the driving frequency on the an-
cilla, and Ω is the Rabi drive frequency. In the following, we
define ∆d ≡ ωq−ωd. In the limit of Ω�

∣∣∆d−χa†a
∣∣ for all

cavity states, we have the effective Hamiltonian as [6]

Heff ≈ ∆ωa†a− K
2

a†2a2 +
(
∆d−χa†a

)
|e〉〈e|

+
Ω2

(∆d−χa†a)
(|e〉〈e|− |g〉〈g|) . (S2)

Then, the effective frequencies for |gn〉 and |en〉 (the joint
ancilla-cavity states) are n∆ω − n(n−1) K

2 − Ω2

(∆d−nχ) and

n∆ω−n(n−1) K
2 +(∆d−nχ)+ Ω2

(∆d−nχ) , respectively. There-
fore, the effective frequency for Fock state |n〉 is shifted by
± Ω2

(∆d−nχ) conditional on n and the state of the ancilla qubit.
As a result, the detuned drive induces the PASS. For ex-
ample, for the drive frequency lying between ancilla transi-
tion frequencies corresponding to |n〉 and |n+1〉, i.e. ωq−
(n+1)χ < ωd < ωq− nχ , the PASS on |gn〉 and |g(n+1)〉
are negative and positive, respectively.

The PASS can also be understood from the point view of
the geometric phase accumulated on the photonic Fock state
due to the off-resonant drive, as shown in Fig. S2. The ancilla
state initialized at the pole cannot be efficiently excited, but
only rotates near the pole. The solid angle enclosed by the
trajectory of the state on the Bloch sphere can be represented
as

Θ = 2π[1− cos(θ)] = 2π(1− ∆√
4Ω2 +∆2

). (S3)

For the detuned drive, the cycle period for the state rotating

on the Bloch sphere is

Tcyc =
2π√

4Ω2 +∆2
, (S4)

so the accumulated geometric phase (Θ/2) is proportional to
the number of rotation cycles, and the equivalent frequency
shift can be derived as

δ (ε,∆) =
Θ

2Tcyc
=

√
4Ω2 +∆2−∆

2
(S5)

≈ Ω2

∆
(S6)

for |∆/Ω| � 1.
By taking into account the amplitude decay rate of the ex-

cited state of the ancilla qubit (κq), and for the ancilla prepared
in the ground state, the effective Hamiltonian becomes

Heff ≈ ∆ωa†a− K
2

a†2a2− Ω2

(∆d−χa†a)− iκq
. (S7)

Therefore, the PASS drive would not only induce the energy
level shift

HPASS = ∑
n

δn|n〉〈n|= ∑
n

Ω2

∆d−nχ
|n〉〈n|, (S8)

but also induce the phase decoherence of the Fock states with
a rate

γn ≈
Ω2

(∆d−nχ)2 κq. (S9)

This equation indicates that the frequency shift can be used to
implement a logical-qubit phase gate while the error brought
from the ancilla is significantly suppressed because of the an-
cilla’s small excitation during the gate.

Here, we also want to briefly discuss the limitation of the
PASS technique. For the purpose of error transparency in this
work, the PASS should compensate the self-Kerr effect, i.e.
δn =O (K). If an individual PASS drive is applied to |gn〉 and
|g(n+1)〉, we would have ∆d−nχ ≈ χ

2 , and thus the compen-

sation requires 2Ω2

χ = O (K). In addition, the PASS requires
a small drive amplitude Ω� χ and negligible induced deco-
herence γn � nκa, with κa being the amplitude decay rate of
the cavity. From Eq. (S9), we have γn ≈ 4Ω2

χ
κq
χ =

2κq
χ O (K).

Taking the fact that the self-Kerr coefficient of the cavity
is related to the cross-Kerr coefficient (dispersive coupling
strength) as K = χ2/4Ec, with Ec being the anharmonicity
(the self-Kerr) of the ancillary transmon qubit, we can derive
the conditions for the PASS drive to achieve the ET gates as:
(1) Ω = χ

2 O
(√

χ
2Ec

)
, (2) 1

2

√
χ

2Ec
� 1, and (3) χ

2Ec
� κa

κq
.

For the device in this study, we have Ec/2π ∼ 252 MHz,
χ/2π ∼ 1.60 MHz and κa

κq
∼ 0.07, therefore χ

Ec
∼ 6.4×10−3

and all the above conditions are satisfied. For a better perfor-
mance of the PASS technique for ET gates, κq and χ

Ec
of the

superconducting circuit should be further reduced.
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2. AQEC

AQEC is equivalent to the standard measurement-based
QEC, which consists of both error detection and correction
operations. However, AQEC does not need error detections.
It is worth noting that the AQEC had been used with the three-
qubit repetition code [7–9], while its extension to the bosonic
codes requires rather sophisticated conditional unitary opera-
tions. To perform AQEC for the bosonic codes, a unitary tran-
sition is implemented to correct the logical state in the error
space |ψE〉 while driving the ancilla to an orthogonal state:

U |ψE〉|g〉= |ψL〉|e〉, (S10)

but keep the logical state in the code space |ψL〉 unchanged:

U |ψL〉|g〉= |ψL〉|g〉. (S11)

In this case, the correlation between the quantum system and
the environment (which induces errors) is erased, and thus the
error entropy is transferred to the ancilla. After the operation,
the logical state is recovered, and the ancilla system can be
traced out. Note that in our experiment |ψE〉= a |ψL〉 (single-
photon-loss error) in the error space; while there is a non-
unitary no-jump evolution e−κaa†at/2 of |ψL〉 in the code space,
which is corrected in the AQEC pulse.

In practice, we need to reuse the ancilla, therefore we reset
the ancilla to a pure state after each implementation of AQEC
for the next round of AQEC. Compared with previous demon-
strations of QEC [10], the whole process does not need any
projective measurement on the encoded bosonic state, and the
error syndrome is not necessarily to be extracted. Therefore,
the real-time feedback control system is not required any more
and the potential electronic latency is avoided. The reset of the
ancilla could be implemented in either digital or analog ap-
proaches. For the digital approach, the ancilla can be directly
readout, and a control pulse dependent on the readout result
is then applied to reset the ancilla. In this measurement-based
case, the digital control only needs to implement the reset be-
fore the next AQEC step, which is hundreds of microseconds
later in our case, in contrast to a few hundred nanoseconds
required for real-time feedback control. For the analog ap-
proach, the ancilla could be engineered to couple to a readout
cavity by switching on a stimulating drive, which can allow
the decay of the excitation in the ancilla within about one mi-
crosecond. Here in this experiment, we use the so-called gra-
dient ascent pulse engineering (GRAPE) algorithm [11, 12] to
numerically optimize the AQEC pulse and use measurement-
feedback method to reset the ancilla.

II. MORE EXPERIMENTAL DATA

A. Detailed experimental data of the PASS

In the experiment, we have used one or two microwave
drives to precisely control the energy shifts of the photon num-
ber states, according to the photon-number-resolved AC-Stark
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FIG. S3. Ramsey-type experiments in the code and error spaces.
The Ramsey experiment is performed with a superposition of Fock
states |1〉 and |3〉 (the error space basis); and Fock states |2〉 and
|4〉 (the code space basis). The synchronized oscillations with both
one and two PASS drives in the two spaces demonstrate the satis-
faction of the ET condition. However, when the PASS drive is off,
the oscillations are not synchronized any more, indicating the non-
ET condition. The dashed lines are fits with a decayed sinusoidal
function.

effect. The experimental technique and theoretical details are
provided in the next section. Here, we show extra experimen-
tal results complementary to the presented ones in the main
text.

Table S3 summarizes the parameters of the microwave
drives used in the experiment. ∆d is the drive detuning with re-
spect to the ancilla qubit transition frequency when the cavity
is in a vacuum state (i.e. there is no photon-induced frequency
shift to the ancilla qubit), and Ω is the corresponding Rabi
drive frequency that is proportional to the microwave driving
amplitude. Here, all the driving parameters are optimized to
minimize the excitation of the ancilla qubit in the simulation,
and then carefully calibrated in the experiment.

For the ET phase gate, there is only one microwave drive
with ∆d being between −3χ and −4χ . Therefore, this drive
makes the frequency shifts of Fock states |3〉 and |4〉 in op-
posite directions, thus satisfying the ET condition ( f4− f2)−
( f3− f1) = 0. Here fn are measured through Ramsey-type ex-
periments on superposition states (|0〉+|n〉)/

√
2 with ∆ω = 0.

The experimentally measured fn for the three different gates
RKerr, RET, and IET are also provided in Table S3. We find
that the ET condition is indeed satisfied. In comparison, the
case without the PASS drive (the phase gate RKerr due to the
Kerr coefficient) has ( f4 − f2)− ( f3 − f1) ≈ 2π × 10 kHz.
For the ET gate RET, we choose a cavity frequency in a
reference frame with ∆ω/2π = 6.09 kHz to fix the phase
of Fock state |4〉, and then there is a non-zero rotating fre-
quency of Fock state |2〉 relative to Fock states |0〉 and |4〉,
i.e. f4/2− f2 = 6.67 kHz. As a result, a phase gate can be
realized to the binomial code.

By adding one more PASS drive with ∆d being between
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Driving parameter ET phase gate ET Idle
Amplitude Ω 0.074χ 0.054χ, 0.074χ
Detuning ∆d −3.41χ −3.37χ,−2.27χ

Fock state frequency shift (2π kHz) |1〉 |2〉 |3〉 |4〉 f3− f1 f4− f2 f4/2− f2
phase gate due to Kerr RKerr 0.14(3) −4.55(3) −14.39(3) −28.92(6) −14.25 −24.37 −9.91

ET phase gate RET −0.10(2) −5.52(1) −18.90(4) −24.37(7) −18.80 −18.85 −6.67
ET idle gate IET −0.88(3) −12.16(3) −13.05(3) −24.34(7) −12.17 −12.18 −0.02

TABLE S3. Parameters of the PASS drives and frequency shifts in the experiment. The numbers in the parenthesis are the measurement
uncertainty.
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FIG. S4. Process fidelity of the three single-logical-qubit gates with AQEC in the error space and code space respectively. The dashed
lines corresponding to the right vertical axis are the probabilities of detecting no-error (no single-photon loss).

−2χ and−3χ , we can further compensate the relative rotating
frequency between |0L〉= (|0〉+ |4〉)/

√
2 and |1L〉= |2〉, and

essentially generate the ET idle gate IET in the same reference
frame as RET. With the additional PASS drive, the induced
frequency shifts of Fock states |2〉 and |3〉 have different di-
rections. From Table S3, we find that ( f4− f2)−( f3− f1) = 0
and f4/2− f2 = 0 are both satisfied, indicating the satisfaction
of both the ET condition and the idle operation condition. We
note that such a gate is important for our experimental system,
because the idle gate could be used to protect the quantum in-
formation together with QEC and the corruption of quantum
information due to the Kerr effect can be eliminated.

The above ET/non-ET conditions with/without the PASS
drives have been experimentally verified in Ramsey-type ex-
periments, as shown in Fig. S3. The synchronized oscillations
with one or two PASS drives in the code and error spaces
demonstrate the satisfaction of the ET condition. However,
when the PASS drive is off, the oscillations are not synchro-
nized any more, indicating the non-ET condition.

B. Process fidelities for the single-logical-qubit gates with
AQEC

Figure S4 provides more concrete data for the three differ-
ent gates, accompanying Fig.3 in the main text. The perfor-

mances of the ET and non-ET gates are characterized by mea-
suring the process fidelity F as a function of the gate time TG.
Here, F is separately measured for the code and error spaces
by post-selecting the ancilla state that indicates if an error hap-
pens or not. The experimentally measured probabilities of no-
error happening are also provided, by which the total fidelity
can be derived as a weighted combination of those in both the
error and code spaces.

The main feature for the three gates in Figure S4 is that
the fidelities in the error space for the ET gates RET and IET
are very similar and much higher than the non-ET gate RKerr.
Such a difference manifests that the ET gates possess the capa-
bility of protecting the quantum information in the error space
from corruption.

The no-error probability decays with TG as expected, and
so does the fidelity in the code space for all these three gates.
However, the fidelities in the error space are low for TG = 0,
and then jump to a peak value followed by a decay. The
reason for this unexpected behavior with small TG is that in
these cases the error is mainly induced by the ancilla deco-
herence, ancilla excitation, and operation errors, instead of
the single-photon-loss error (has not happened yet) that the
ET gates can protect. When TG is large enough, the fidelity
in the error space becomes much higher because the con-
tribution of single-photon-loss errors dominates in the error
space. When TG further increases, the uncorrectable high-
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order photon-loss errors happen with higher probabilities, and
therefore the overall fidelities in both the code and error spaces
decay.

For the non-ET gate, the fidelity decays much faster be-
cause of the fast dephasing of quantum information in the er-
ror space due to the non-ET Kerr effect. Although the non-ET
gate loses the phase information in the error space quickly, its
fidelity remains at about 0.4 since the probability distribution
of the basis states preserves, in good agreement with numeri-
cal simulations (see the numerical analysis below). It is also
worth noting that the fidelities in the code space are slightly
lower under the ET gates because of the additional ancilla ex-
citation caused by the off-resonant drive (see the theory sec-
tion for more discussions).

III. NUMERICAL ANALYSIS

To analyze sources of errors in the experiment and study the
viability of the ET gates for potential fault-tolerant quantum
computation, we implement numerical simulations according
to our experimentally calibrated parameters. It is anticipated
that the main experimental imperfections include: (1) the im-
perfect AQEC operations on the system, (2) the decoherence
of the ancilla qubit during the ET gates, and (3) the thermal
excitation of the ancilla qubit. In the following, we compare
the results under different situations with the noiseless ideal
case.
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A. Numerical simulation with ideal AQEC

First of all, we use the ideal AQEC process in the numerical
simulation to study the viability of the PASS technique for the
realization of ET phase gates. The decoherence (damping and
dephasing) of both the ancilla and the cavity are included in
the numerical model. However, we assume the thermal bath
are in the vacuum state, so the ancilla cannot be populated by
the thermal noise from the bath. By substituting the experi-
mentally calibrated parameters into the master equations, the
system evolutions are numerically solved and the correspond-
ing process fidelities are summarized in Fig. S5. Similar to
the experiments in the main text, the ancilla qubit is traced out
after the ET gate evolution with different gate times, and the
density matrices in the error and code spaces are separately
processed to obtain the process fidelities.

Comparing the results from the ET and non-ET gates in
Fig. S5, we find the performances of the ET gates (Fig. S5c)
are close to the ideal case without the cavity’s self-Kerr ef-
fect (Fig. S5a). No self-Kerr effect of the cavity is a pre-
assumption for many theoretical works on quantum gates [13].
However, when the self-Kerr presents in the cavity, the idle
operation does not satisfy the ET condition, so the state in the
error space corrupts quickly (Fig. S5b).

By applying the PASS technique on the system to engineer
the Hamiltonian, the ET condition can be satisfied and the
process fidelity in the error space preserves. However, we
find that the curves of the ET phase gates are slightly lower
than the ideal case. The reason could be attributed to the
excitation of the ancilla by the off-resonant drive. As pre-
dicted by Eq. S9, the state jump of the ancilla qubit would
induce the dephasing of the cavity states. In addition, there is
a small loss of fidelity when TG approaches zero (Fig S5c in-
set). This is because the effective Hamiltonian approximation
for PASS is only satisfied when the gate time is sufficiently
long TG� 1/∆. Therefore, for TG < 10 µs in our experiment,
the geometric phase cannot be regarded as continuously accu-
mulated, and the PASS is deviated from Eq. S8.

B. Numerical simulation with ancilla thermal excitation and
imperfect AQEC

The above simulations reveal the effect of the imperfections
due to the drive-induced ancilla excitation and the consequent
ancilla-excitation-induced dephasing, as predicted in the pre-
vious section on PASS. In practice, there are more imperfec-
tions that could induce the loss of gate fidelity.

One main contribution to the loss is the ancilla thermal ex-
citation. The results including the ancilla thermal bath are
shown in Fig. S6a. The fidelity decays more linearly, in con-
trast to the quadratically decay curves in Fig. S5c with zero
bath temperature. As shown in Fig. S7, the ancilla excita-
tion caused by the PASS drive increases with the drive ampli-
tude. For the parameter used in our ET experiments (Ω/2π ∼
0.1MHz), the PASS-drive-induced excitation is smaller than
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FIG. S7. Ancilla excitation from the PASS drive. The ancilla
excitation due to an off-resonant drive with a detuning frequency
∆d =−2.5χ are measured as a function of the drive amplitude when
the cavity is initialized at differnet Fock states. Dotted lines are sim-
ulation results. The ET gate used in the experiment is performed with
the drive amplitude Ω/2π ≈ 0.1 MHz. Therefore, the additional ex-
citation due to the PASS drive is about 0.01, while the thermal exci-
tation is about 0.02.

the measured thermal excitation in the experiment. Therefore,
we conclude that the photon dephasing is mainly from the an-
cilla thermal excitation, which can be suppressed by a cold
bath. The PASS-drive-induced dephasing could be potentially
solved by using alternative bosonic codes that are robust to
dephasing errors, such as the cat code [14, 15] or the numeri-
cally optimized codes [16–18].

In the experiment, there are inevitable imperfections in the
AQEC pulse and the measurement-feedback operation. To ac-
count for these errors on the performance of the non-ET gate
RKerr and the ET phase gate RET, a more detailed simulation
including these imperfections are carried out, and the results
are shown in Fig. S6b. The obtained results agree well with
the experimental results in Fig. 3 of the main text, indicating
the main imperfections in our experiments are due to the ther-
mal excitation of the ancilla qubit and the operation errors.

IV. THEORY

A. Requirement for error transparency

For an ET evolution, an error occurring at a random instant
t should not affect the final output state except for an extra
global phase, which can be represented by:

U(T, t)E jU(t,0)|ψL〉= eiφ(t)E jU(T,0)|ψL〉,∀i, j, t. (S12)

Here, |ψL〉 is an arbitrary logical quantum state in the code
space, and E j is in the error set. Because Eq. S12 should be
satisfied for arbitrary time t, it is equivalent to

U(t +δ t, t)E j|ψL〉= eiδφ(t)E jU(t +δ t, t)|ψL〉. (S13)
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As a property of the logical gate, U(t+δ t, t) cannot introduce
leakage out of the code space, i.e. U(t + δ t, t) = PCU(t +
δ t, t)PC with PC being the projector onto the code space.
Then the condition Eq. S13 can be transformed as

U(t +δ t, t)E jPC|ψL〉= eiδφ(t)E jPCU(t +δ t, t)PC|ψL〉,
(S14)

by adding the projectors. By combining the requirements for
QEC

PCE†
j E jPC = α jPC,α j ∈ R, (S15)

the ET condition becomes

PCE†
j U(t +δ t, t)E jPC = eiδφ(t)α jPCU(t +δ t, t)PC.

(S16)
After introducing the projector P j =

√α jE jPC from the
code space to the error space due to E j, the above equation
becomes

P†
j U(t +δ t, t)P j = eiδφ(t)PCU(t +δ t, t)PC. (S17)

Since U (t +δ t, t) = I− iH(t)δ t +O(δ t2), the ET condition
can also be represented by the system Hamiltonian as

P†
j H(t)P j = PCH(t)PC + c(t)PC, (S18)

where c(t) = −dφ(t)/dt. Here, the Hamiltonian is presented
in the code space.

In previous theoretical works [19, 20], the condition of ET
gates is derived as

[E j,H(t)]|ψLi〉= 0,∀i, j, t. (S19)

Comparing with the ET condition (Eq. S18) derived above, the
commutation relation is too strict, and Eq. S19 is just equiva-
lent to a special case of Eq. S18 with φ(t) = 0. Therefore, the
new ET condition provided in this work is more general with
less restriction, and could relax the requirements for experi-
mentally implementing the ET quantum gates.

∗ clzou321@ustc.edu.cn
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