
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336890138

Sphinx: A Transport Protocol for High-Speed and Lossy Mobile Networks

Conference Paper · October 2019

CITATIONS

0
READS

110

8 authors, including:

Some of the authors of this publication are also working on these related projects:

I hope to rise to the application-layer! View project

Network for AI View project

Junfeng Li

Tsinghua University

18 PUBLICATIONS 17 CITATIONS

SEE PROFILE

Jinkun Geng

Tsinghua University

34 PUBLICATIONS 31 CITATIONS

SEE PROFILE

Fei Gui

Xiangtan University

3 PUBLICATIONS 1 CITATION

SEE PROFILE

All content following this page was uploaded by Junfeng Li on 30 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/336890138_Sphinx_A_Transport_Protocol_for_High-Speed_and_Lossy_Mobile_Networks?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/336890138_Sphinx_A_Transport_Protocol_for_High-Speed_and_Lossy_Mobile_Networks?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/I-hope-to-rise-to-the-application-layer?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-for-AI?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junfeng_Li5?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junfeng_Li5?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junfeng_Li5?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jinkun_Geng?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jinkun_Geng?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua_University?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jinkun_Geng?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Gui2?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Gui2?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xiangtan_University?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Gui2?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Junfeng_Li5?enrichId=rgreq-18911491d54718c6951586edb4b50edd-XXX&enrichSource=Y292ZXJQYWdlOzMzNjg5MDEzODtBUzo4MTk1NjE2NDk2OTY3NjhAMTU3MjQxMDEzMjQ3Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Sphinx: A Transport Protocol for High-Speed and
Lossy Mobile Networks

Junfeng Li1, Dan Li1, Wenfei Wu1, K. K. Ramakrishnan2, Jinkun Geng1, Fei Gui3, Fanzhao Wang4, Kai Zheng4

1Tsinghua University, 2University of California, Riverside, 3University of XiangTan, 4Huawei Technologies

Abstract—Modern mobile wireless networks have been demon-
strated to be high-speed but lossy, while mobile applications
have more strict requirements including reliability, goodput
guarantee, bandwidth efficiency, and computation efficiency. Such
a complicated combination of requirements and conditions in
networks pushes the pressure to transport layer protocol design.
We analyze and argue that few of existing network transport
layer solutions are able to handle all these requirements. We
design and implement Sphinx to satisfy the four requirements
in high-speed and lossy networks. Sphinx has (1) a proactive
coding-based method named semi-random LT codes for loss
recovery, which estimates packet loss rate and adjusts the re-
dundancy level accordingly, (2) a reactive retransmission method
named Instantaneous Compensation Mechanism (ICM) for loss
retransmission, which compensates the lost packets once actual
loss exceeds the estimation, and (3) a parallel coding architecture,
which leverages multi-core, shared memory and kernel-bypass
DPDK. Prototype and evaluation show that Sphinx outperforms
TCP and other coding solutions significantly in microbenchmarks
across all four requirements, and improves the performance of
applications such as video streaming and block data transfer.

Index Terms—Transport protocol, Forward error correction,
Proactive and reactive hybrid protocol, Lossy mobile networks

I. INTRODUCTION

Recent progress in mobile radio access networks focuses
on improving network bandwidth (from about 50Kbps in
2G to more than 10Gbps in 5G) and coverage (e.g., small
cell) [1]–[3]. One design choice to boost bandwidth is to
apply higher-frequency (shorter wavelength) channels, which
are able to carry more information. However, the lossy nature
of a wireless network is still preserved, and this lossy nature
is even exacerbated by the pursuit of bandwidth since using
a short wavelength in communication makes the channel
more vulnerable to noisy and complicated environments [4].
Thus, mobile applications face a high-speed but lossy wireless
network.

Mobile applications atop these mobile networks are flour-
ishing and inspired by the mobile Internet economy. These
diverse applications tend to propose requirements on various
dimensions to the underlying networks. We summarize and
list these requirements as (1) reliability (for precise informa-
tion delivery), (2) goodput guarantee (for data transmission
completion time), (3) bandwidth efficiency (for cost sav-
ing in mobile data plan), and (4) computational efficiency
(for applicability in mobile devices). All these requirements
should be satisfied by the network transport layer between

the applications and the mobile hardware NICs. And all these
requirements should be achieved in high-speed and lossy
wireless environments.

However, few of the existing transport layer protocols were
designed for such a complicated combination of application
requirements and network environments. UDP is excluded due
to its non-guarantee of reliability. Reliable transport protocols
are categorized into two classes — reactive approaches and
proactive ones. TCP stands for the reactive solutions, which
guarantee reliability by detecting packet loss and retransmit-
ting it. We argue this reactive approach does not suit our target
scenario because the detection and retransmission cost one
extra round trip time (RTT) and congestion window is also
falsely adjusted, which impairs the goodput guarantee.

Proactive solutions in the other class usually provide extra
redundancy together with the original packets so that even if
a loss happens the receiver can still recover the content deliv-
ered. This redundancy is usually implemented by forward error
correction (FEC) [5]. However, this family is still insufficient
in our complicated application scenario (i.e., four application
requirements and two network properties). First, some FEC
schemes are computationally expensive (e.g., Reed-Solomon
codes (RS codes) [6] in Loss-Tolerant TCP (LT-TCP) [7]),
which limits their deployment in mobile devices. Second, and
more importantly, few of FEC approaches can adapt to the
actual network loss condition to adjust the redundancy level
(i.e., they either use static coding parameters [6] or send by the
best effort in a rateless way [8]), which violates the bandwidth
efficiency requirement.

Having analyzed the insufficiency of existing solutions, we
propose a new transport protocol — Sphinx — targeting at
the requirements of reliability, goodput guarantee, bandwidth
efficiency, and computation efficiency in high-speed and lossy
wireless networks. Sphinx is a combination of both proactive
and reactive ideas, and it preserves the advantages of both
sides.
Sphinx’s proactive loss protection adopts improved LT

codes, which first estimate the packet loss rate (PLR) and
then adjust the redundancy level accordingly. One-RTT loss
detection time is saved if packet loss happens. And Sphinx

also conducts simple bitwise exclusive or (XOR) operation on
randomly selected symbols to make it friendly to less powerful
mobile devices. As this coding approach combines prediction
and random coding, we name it semi-random LT codes.
Sphinx also has reactive loss protection in case that978-1-7281-1025-7/19/$31.00 © 2019 IEEE

ljf

ljf
Preprint

the actual PLR exceeds the estimated PLR and the receiver
side cannot decode the data. This reactive loss protection is
provided by acknowledging arrived data blocks/symbols and
retransmitting lost ones. We also learn from selective ACK
(SACK [9]) to provide precise loss information about blocks
and symbols. Thus block-level SACK (Block-SACK) and
symbol-level SACK (Symbol-SACK) are designed; the former
releases sender’s resource and avoids the retransmission of
needless redundant packets; the latter gives instantaneous feed-
back of loss to reduce the waiting and detecting time. And we
name this reactive loss protection mechanism instantaneous
compensation mechanism (ICM).

Finally, we design a parallel architecture to accelerate
Sphinx by leveraging kernel-bypass technique (DPDK [10]),
shared memory and multi-core in end hosts.

We implement the prototype and evaluate Sphinx in
an emulated high-speed and lossy network. Microbenchmark
shows that Sphinx satisfies the four requirements signifi-
cantly better than existing TCP (CUBIC [11]) and coding
solutions, and each of the three design points in Sphinx does
benefit its performance profiling. We also show two cases, i.e.,
data block transmission and video streaming, to demonstrate
that Sphinx can improve application’s performance signifi-
cantly (e.g., 10⇥ faster than TCP in block transmission).
Sphinx makes the following contributions:
1) Semi-random LT codes, a proactive coding scheme that

estimates network loss rate and adjusts the redundancy
level accordingly for loss recovery.

2) Instantaneous Compensation Mechanism (ICM), a re-
active retransmission method that compensates the lost
packets promptly once actual loss exceeds the estima-
tion.

3) Parallel coding architecture, which improves scalability
and performance on multi-core platforms.

II. BACKGROUND

A. Network Requirements in Mobile Networks
Network Conditions in Modern Mobile Networks. Mo-

bile radio access network is evolving to the 5th generation
(5G) now, and a significant change is that it tends to use
communication channels in high frequency (short wavelength).
This progress makes network bandwidth increase significantly
because the high-frequency channel is able to carry more
information (e.g., from less than 1Mbps in 2G to potentially
exceeding 10Gbps in 5G) [1].

However, a side effect is that the communication channel
becomes vulnerable due to short wavelength. Wireless net-
works have the nature to be lossy, and this is amplified with
the wavelength being smaller. The wireless signal transmission
faces the problem of fading (the signal strength decreases with
distance), obstacles (the signal is reflected), and interference
(a signal overlaps with itself or some other signals). Moreover,
mobile devices would not likely to be static in the space, and
the motion itself would disturb the data transmission [4]. In
summary, in modern mobile (radio) networks, applications are
facing a high-bandwidth but lossy network environment.

Network Requirements from Applications. In the mean-
while, the flourish of mobile application eco-system leads
to a huge amount of diverse mobile applications in users’
mobile devices. Different applications would have different
network requirements due to their application scenarios, and
we summarize and list these requirements below:

1) Reliability. Applications such as cloud storage and
video-on-demand may require the network transfer to
be reliable, and no contents in the whole piece of data
should be lost during the transmission.

2) Goodput Guarantee. Application payload (i.e., the
original content) should be delivered quickly enough.
This is particularly useful for applications with time con-
straints (e.g., instant messaging, live video streaming).

3) Bandwidth Efficiency. As in mobile networks, the
mobile users pay for their consumed bandwidth. Thus,
the mobile network bandwidth had better be efficiently
utilized to transmit meaningful payload.

4) Computation Efficiency. In practical scenarios, the user
mobile devices usually are not as strong as servers,
which requires the computation in network stack to be
within the computational capability of the hardware.

Retrospecting existing solutions (listed in the next section),
few solutions can satisfy all these requirements in current
mobile network conditions.

B. Related Works and State of the Art
While there are solutions proposed to solve one or several

requirements above, few of them are sufficient to satisfy all the
requirements above in complicated network conditions, such
as modern or next-generation mobile networks.

The reliability requirement excludes connection-less so-
lutions such as UDP, and the remaining reliable transport
protocols are categorized into reactive protocols and proactive
ones. The reactive protocols detect packet loss and retransmit
them, and the proactive protocols transmit packets with extra
redundancy so that if a loss happens, the lost packet can be
recovered. We discuss existing solutions in detail below.

Reactive TCP-based Solutions. There exist a lot of TCP
variants now, such as NewReno [12], SACK [9], Vegas [13],
CUBIC [11], but TCP’s reliability design targets packet loss
caused by network congestion, not corruptions caused by low
channel quality. TCP relies on acknowledgment to confirm
previously transmitted data packets arriving at the receiver
side, and retransmits lost packets. We argue that TCP has two
insufficiencies: first, the detect-and-retransmit scheme costs
at least one RTT to feedback the loss signal to the sender,
which is a waste to channel bandwidth [16]; second, a lost
packet would cause TCP’s congestion control to slow down the
sender’s rate; but the packet loss may be caused by unqualified
channel instead of congestion, and thus, the congestion win-
dow shrinking is unnecessary [17]. These two disadvantages
cause TCP not able to guarantee the flow throughput (as well
as goodput) in the lossy wireless networks.

Proactive Coding-based Solutions. There are two typical
kinds of coding-based transport protocols. One is based on

2

TABLE I
IMPROVEMENTS OF SPHINX COMPARED WITH EXISTING SOLUTIONS

reliability goodput guarantee bandwidth efficiency computation efficiency
UDP 7 3 3 3

TCP variants [9], [11]–[13] 3 7 3 3
RS Codes [6] (LT-TCP [7]) 3 3 7 7

Fountain Codes [8] (LT Codes [14], Raptor codes [15]) 3 3 7 3
Sphinx 3 3 3 3

fixed-rate codes, such as Reed-Solomon codes (RS codes) [6].
RS codes make combinations of n packets to m encoded
packets (m > n, and bandwidth efficiency is n/m), and thus, it
is resistant to a loss rate of at most (m�n)/m. Loss-Tolerant
TCP (LT-TCP) [7] is a TCP-based implementation with RS
codes. LT-TCP provides extra retransmission once the actual
loss rate exceeds (m�n)/m to guarantee the receiver is able to
decode all packets. Referring to the four requirements above,
RS-code based solutions have static parameters (i.e., m and n),
which may not be adaptive to the actual channel quality; that
is, once the channel quality varies (or improved), there may be
more redundant packets than needed. Thus, it is not bandwidth
efficient. In addition, RS codes’ encoding and decoding are
based on the Galois Field Arithmetic, which requires special
hardware or too intensive software computation for mobile
devices [18]. Previous version of QUIC [19] implements a
simple FEC mechanism (i.e., XOR) with a fixed code rate,
whose static redundancy is also hard to adapt to varying
network conditions [20].

Another type is based on rateless codes, such as foun-
tain codes [8]. Fountain codes employ a simple XOR-based
operation for coding with high computation efficiency. The
sender repeats to send (randomly) encoded packets to the
receiver until the receiver acknowledges that it can decode the
currently transmitted chunk. LTTP [21] adopts LT codes [14],
one kind of fountain codes, to achieve reliable UDP-based
protocol. However, the transmission of fountain codes tends
to saturate all available bandwidth with encoded packets until
the acknowledgment arrives (at least one RTT later), which is
hard to be bandwidth efficient.

Application Layer Solutions. There are also application
layer protocols, which are built atop the transport layer;
examples are Real-Time Messaging Protocol (RTMP) [22] and
Dynamic Adaptive Streaming over HTTP (DASH) [23] for
video streaming. These protocols focus on adjusting the data
block properties (e.g., chunk size, bit rate) instead of guarantee
the transmission qualities. Currently, they are built atop TCP or
UDP and consequently inherit their weakness (i.e., no goodput
guarantee on TCP, and no reliability on UDP).

The categorization and analysis can be summarized as Ta-
ble I, and we can see that in the context of high-bandwidth but
lossy wireless network, most of existing transport solutions are
not able to serve the current diversifying network applications.
And our goal in this paper is to design a new network transport
protocol that can provide reliable, high goodput, efficient band-
width utilization, and mobile device computationally efficient
data transmission to mobile applications in high-bandwidth but

lossy wireless networks.

III. SPHINX DESIGN

We combine the advantages of proactive and reactive
transport protocols, and design Sphinx targeting the new
requirements. We elaborate the details of Sphinx in §III-B
and §III-C. Finally, if supported by devices, Sphinx can
further leverage parallel processing to accelerate Sphinx.

A. Overview

Intuition. Sphinx combines the advantages of both proac-
tive and reactive approaches. As summarized in Table I,
proactive approaches do not have good bandwidth efficiency.
The essential reason is because the level of redundancy is
fixed in existing designs. We propose to make the level of
redundancy optimistically adaptive to the network conditions
(i.e., the instantaneous loss rate). (§III-B)

While the estimated redundancy level in Sphinx would
only guarantee packet recovery with the best effort, there are
still chances where the actual packet loss number exceeds the
estimation. In this case, the receiver would not be able to
decode the received packets. Thus, Sphinx adds a reactive
extension. The receiver sends selective acknowledgments for
each symbol and block so that the sender can timely infer the
unrecovered symbols/blocks and retransmit them. (§III-C)

Application

 Sphinx

NIC

Data Slicer

Encoder
W1 W2

W3 W4

Congestion Controller

Parameter
Selector

Application

 Sphinx

NIC

Data Assembler

Decoder
W1 W2

W3 W4

Congestion Controller

Monitor

Lossy
Mobile Networks

Sender Side Receiver Side

Fig. 1. Sphinx overview.

Architecture. Fig. 1 shows the architecture of Sphinx.
It works as a layer between applications and NICs. On the
sender side, the Data Slicer divides the data into several
blocks, each of which is encoded by the Encoder. While the
encoding process requires parameters, which are obtained from
statistics collected by Congestion Controller and computed by
Parameter Selector. Congestion Controller also has another
function to control the sending rate.

On the receiver side, the Decoder recovers data blocks from
encoded packets, and then, the Data Assembler combines and
delivers them to the application layer. The Monitor passes the

3

decoding status to the Congestion Controller, and the latter
sends feedbacks accordingly.

In addition, the coding workloads can be distributed to
multiple Workers (e.g., W1 ⇠ W4) among several cores on
both sender and receiver sides.

B. Sphinx Coding (Semi-Random LT Codes)
1) Overview: One insufficiency of coding approaches is

that their redundancy level fails to adapt to the actual network
loss conditions. Thus, Sphinx’s coding process leverages
runtime measured packet loss information to guide to generate
suitable redundant packets, which both guarantees the lost
packet recovery and reduces bandwidth waste to the best
extent. As this approach is a combination of estimation of
packet loss rate (PLR) and random selection of packets for
coding, we name it semi-random LT codes.

ProFEC Packet

1 2 3

a b c d

a11 b12 c13 d3123

Input
Symbol

Encoded
Symbol

Encoded	
Packet	

Original	Packet

Data
Block

1 Encoding	Degree
Input	Symbol	Index1

Raw	Data
Encoded	Data

Fig. 2. An example of the coding and sending process of Sphinx.
For Sphinx coding, data is diced into blocks, and each

block is divided into input symbols and transmitted individu-
ally. In a block transmission, there are two kinds of packets
— the original packets are generated by encapsulating input
symbols directly and the ProFEC packets (i.e., Proactive For-
ward Error Correction packets) are encoded packets computed
from input symbols. As an example shown in Fig. 2, the data
block is sliced into three input symbols. Three original packets
and one ProFEC packet are generated. In each packet, there
is a metadata field, including the encoding degree (i.e., the
number of input symbols encoded) and the input symbol index
(i.e., the index of all input symbols). To make the coding
operation friendly to mobile devices, Sphinx uses simple
XOR to encode packets.

2) Adaptive Encoding: Algorithm and Parameter Calcula-
tion: The algorithm of Sphinx encoding has two parameters
— the encoding degree of each ProFEC packet (Dh) and the
total number of ProFEC packets for a block (Npro). For a
block after sending all its original packets, Sphinx generates
Npro ProFEC packets. For each ProFEC packet, Sphinx
randomly samples Dh input symbols and encodes (XOR) them
into a ProFEC packet.

The Dh and Npro are computed based on the PLR mea-
sured in past transmission. Assume the PLR is measured as
pavg with standard deviation � in the past period, the two
parameters’ calculation is detailed as follows:

(1) Degree of ProFEC Packets Dh. A ProFEC packet with
encoding degree Dh is encoded from Dh input symbols. It
would be decodable if less than one input symbol is lost. Thus,

Dh ⇥ (pavg + �) 1.

And we have
Dh =

�
1

pavg + �

⌫
(1)

Note that we choose (pavg + �) to denote the PLR, which
overestimates the packet loss and further increases the confi-
dence to decode packets. If PLR follows a normal distribution,
[pavg � �, pavg + �] would cover 68.2% of PLR possibilities.

(2) Number of ProFEC Packets Npro. Assume one block
is diced into n input symbols, and the expected number of
lost original packets is q = n · pavg. In other words, q input
symbols could be lost in the transmission.

2a) Sample Input Symbols to Cover Lost Symbols. For
encoding process, we need to sample k input symbols (with
replacement) to cover all lost symbols at least once so that the
receiver can recover all lost symbols. Among the k samples,
the probability where l of them are among the lost q symbols
is (C represents Combination numbers):

Cl
k · q

l · (n� q)k�l

nk
(2)

For a certain l, the probability where each of q lost
symbols is chosen for at least once is (S represents Stirling
numbers) [24]:

q! · S(l, q)
ql

(3)

Thus, combining Equation 2 and 3, the probability where
the k samples contain all q lost input symbols is:

P (k) =
kX

l=q

Cl
k · q

l · (n� q)k�l

nk
· q! · S(l, q)

ql

=
kX

l=q

Cl
k · (n� q)k�l · q! · S(l, q)

nk

(4)

We set the probability of coverage P (k) with a high value
(i.e., P (K) > T), and iterate k to find its minimum value.

2b) Encode Samples to ProFEC Packets. Finally, the
all k samples would be encoded to Npro ProFEC packets.
Considering the PLR, we set

Npro ⇥Dh ⇥ (1� pavg) = k,

and get

Npro =

⇠
(

1

1� pavg
) · k

Dh

⇡
(5)

3) Decoding: The Sphinx decoding algorithm is the same
as the decoding algorithm of LT codes [14].

C. Sphinx Transmission Control (ICM and Others)
The Sphinx coding mechanism makes a tradeoff between

bandwidth efficiency and payload decodability (related to
goodput) with best effort, but symbol recovery failure is still
possible when the actual PLR exceeds the estimated one. Thus,
Sphinx introduces loss recovery to compensate the network
loss. In addition, as a transport protocol, Sphinx also need
to handle other transmission control issues such as congestion
control (§III-C2).

4

1) Instantaneous Compensation Mechanism (ICM) for Loss
Recovery: As data is encoded, transmitted, and decoded in the
granularity of block, we considered two loss recovery options
— block-level feedback or symbol-level feedback. Block-level
feedback could notify the sender about the decoding status so
that retransmission can be precise, but its coarse granularity
makes the message of a lost block sent by its next successful
block, which introduces non-trivial loss detection time (i.e.,
block size/throughput). Symbol-level feedback can deliver the
packet loss information quickly to the sender, but it may cause
unnecessary retransmissions. The whole data transmission has
redundancy (i.e., ProFEC packets) to recover a block, and
some lost packets do not need retransmission.

Considering the advantages of both block-level and symbol-
level feedbacks, as well as the light-weight to send feed-
back packets, we propose to apply both kinds of feedbacks.
We also learn from selective ACK (SACK [9]) to provide
precise loss information about blocks and symbols. Thus
block-level SACK (Block-SACK) and symbol-level SACK
(Symbol-SACK) are designed for precise retransmission. As
this approach is an Instantaneous Compensation Mechanism
for loss recovery, we name it ICM. The logic is elaborated as
below:

Sender Receiver

…

Send	Block	1#

Block 1# is recovered

Block 2# is recovered

Block 4# is recovered

Send	Block	2#
Send	Block	3#

Send	Block	4#
Send	Block	5#
Send	Block	6#

Send	Block	7#
Encoded	packet
Block-SACK

Fig. 3. A part of Block-SACKs and the workflow.

Block-SACK. Each block is indexed by a block sequence
number which can be regarded as its identifier. When the
receiver successfully decodes a block, a Block-SACK would
be sent back to the sender. The Block-SACK contains the latest
PLR and the indexes of decoded blocks. When a sender gets
a Block-SACK which specifies a missing block, the sender
would re-send the block immediately. Fig. 3 shows Block-
SACK’s format and workflow.

The most important reason of introducing Block-SACK is
that it allows the sender side to release all resources (memory,
timers, etc.) of recovered blocks and continue to send.

Symbol-SACK

Sender Receiver

…

Send	Block	1#

Block 1# is recovered
Block 2# is recovered

Block 4# is recovered

Send	Block	2#

Send	Block	3#
Send	Block	4#

Send	Block	5#
Send	Block	6#

Send	Block	7#

Encoded	packet

Fig. 4. A part of Symbol-SACKs and the workflow.
Symbol-SACK. Sphinx identifies each input symbol with

its index. Symbol-SACK is sent for the successful receiving

of both original packets and ProFEC packets. In the Symbol-
SACK, the indexes of recovered input symbols in the most
recent block and previous unrecovered blocks are attached.
Fig. 4 shows Symbol-SACK’s format and workflow.

Sender Receiver

…

Send	Block	1#

Block 1# is recovered
Block 2# is recovered

Block 4# is recovered

Send	Block	2#

Send	Block	3#
Send	Block	4#

Send	Block	5#
Send	Block	6#

Send	Block	7#

Resend	Block	3#
Send	Block	8#

Encoded	packet
Block-SACK

Symbol-SACK

Fig. 5. An example of ICM.

When the Symbol-SACK contains the recovery status of
more than two blocks and the latest block has more than
three input symbols recovered, indicating that at least one
block could not be recovered by the receiver, the sender
will retransmit the unrecovered block immediately. To reduce
redundancy as well as latency, the sender only retransmits
part of original packets for missing input symbols and their
corresponding FEC packets (i.e., reactive FEC packets, a.k.a.,
ReFEC packets). ReFEC packets are generated in a similar
way as ProFEC packets. Fig. 5 shows an example where a
Symbol-SACK notifies a previously missing block 3#, and the
sender retransmits that block instantaneously, sooner than it
receives the Block-SACK 3#.

2) Other Designs: Feedback Loss. Block-SACK and
Symbol-SACK may be lost as well. However, the sender can
infer from other feedbacks it receives. If a Block-SACK is lost,
the sender can infer recovered block indexes from Symbol-
SACKs. If a Symbol-SACK is missing, the sender could gather
the recovery status from its successor Symbol-SACKs. Since
the amount of Symbol-SACKs is large, the loss of some
Symbol-SACKs has limited impact.

Continuous Sending. Unlike some existing solutions [21],
when Sphinx completes sending one block, it does not wait
for its acknowledgment but goes on to send the next one,
reducing the latency, until receiving the feedback to stimulate
retransmission.

Rate Control. Sphinx uses a congestion window to con-
trol sending rate. The window would buffer all data blocks
to send and in flight, and release a block once it is acknowl-
edged. The window is dynamically adjusted in the additive
increase multiplicative decrease (AIMD) mode like TCP, i.e.,
the window is increased by one every RTT and decreased to
a half when a loss happens.

A challenge is to distinguish the packet loss caused by con-
gestion or low channel quality. The former requires the sending
rate to slow down (i.e., decrease window); while the latter
does not. In our current design, we use Explicit Congestion
Notification (ECN) in the network to notify congestion, and
packet loss to indicate channel low quality. But if the network
does not support ECN, we would fall back to use packet loss
as the signal of congestion.

5

D. Parallel Coding Architecture
We implement Sphinx as a layer between NIC and ap-

plications using DPDK [10]. As shown in Fig. 6, we further
design a parallel coding architecture to accelerate Sphinx by
leveraging shared memory and multi-core in end hosts. DPDK
is supported in mobile devices [25]; the shared memory is a
memory management technique that applies to mobile devices,
and multi-core is applicable in a subset of mobile devices.
Especially when one end of Sphinx is deployed on physical
servers (e.g., video servers), the parallel architecture would
boost Sphinx significantly.

)

(

DPDK

…

(

R T R T R T

Packet
(The status of coding, ring buffers)

Core 0# Core 1# Core n#

Fig. 6. The parallel coding architecture of Sphinx.
Parallel Workload Processing. There are a distributor

and multiple workers, and each of them is dedicated to
one core. Since the coding processes of different blocks are
independent of each other, each block is assigned to a fixed
worker, which avoids concurrent access conflicts. The distrib-
utor sends/receives packets and assigns packets to workers
according to their block ID (a metadata field in the header).
Thus, coding is processed in parallel at block level.

Shared State Management. The distributor tries to balance
the workload among workers. It reads the progress of each
worker and assigns new blocks to the least-loaded worker. The
progress states are also stored in the shared memory. Only the
worker is able to update its own states, and the distributor can
only read.

Zero-copy Packet Movement. After a packet is received, it
is stored in shared memory, and only the pointer to the packet
is transferred between the distributor and workers through
packet descriptor in a ring buffer [26]–[29]. Thus, heavy
memory copy around distributor and workers is eliminated.

IV. EVALUATION

We evaluate the microbenchmarks of Sphinx in terms of
its bandwidth efficiency, goodput guarantee, and computation
efficiency. We then show its performance metrics for applica-
tions, including data block transmission time and video stream-
ing buffering. Results show that Sphinx outperforms various
existing solutions (TCP, other coding solutions) obviously, and
serves applications’ requirements very well.

A. Experiment Settings
We set up our testbed to emulate a network topology. Two

physical servers are directly connected by a wired link. Five
pairs of sender and receiver are set up with senders on one
server and receivers on another. We use TC netem to emulate
a high-speed and lossy wireless link. In all experiments, we

start traffic from senders to their corresponding receivers. Each
server is equipped with Intel Core CPU i7-5930k @ 3.5GHz (6
cores), Intel 82599ES 10G NIC, and 16GB memory. Ubuntu
16.04 and DPDK 17.05 are installed.

B. Microbenchmarks
In this section, the traffic pattern is 500MB data transmis-

sion between each pair, and each data transmission is chunked
into 5000 blocks if a coding-based approach is applied. The
data transmission is performed by the best effort of both the
sender and the receiver side, i.e., either the CPU of one side
or the link capacity is saturated to 100%.

When measuring coding specific metrics, we measure and
compare (all or some of) (1) semi-random LT codes in
Sphinx, (2) traditional LT codes, (3) RS codes, and (4) FFT-
RS codes [30]. When measuring protocol specific metrics, we
measure and compare (all or some of) (1) basic Sphinx,
which is a single-core implementation of §III, (2) Sphinx
with traditional LT codes, which replaces semi-random LT
codes in §III-B with traditional LT codes, (3) Sphinx with RS
codes, which replaces semi-random LT codes with RS codes,
(4) Sphinx without ICM, which removes ICM in §III-C,
(5) multi-core Sphinx, which implements §III-D, and (6)
original TCP (default CUBIC).

Fig. 7. The redundancy of different versions of LT codes.
Bandwidth Efficiency. The coding redundancy is quantified

as the ratio of extra size introduced by encoded data and the
original data size. In RS codes, this is a tunable parameter
(i.e., (m � n)/n in §II). Sphinx and traditional LT codes
(rateless fountain codes) are two coding approaches which
adapt the PLR automatically, and the result is shown in Fig. 7.
We observe that the redundancy increases with the PLR since
more lost packets need more redundancy to recover. And also
semi-random LT codes in Sphinx introduce only about 50%
redundancy of traditional LT codes (e.g., 14% vs. 30% with
6% PLR).

Computation Efficiency. We vary the length of input
symbols and compare the average per-block coding time for
all four coding methods. In Fig. 8, we observe that coding
time increases with the length of input symbols, and semi-
random LT codes outperform the RS codes and traditional LT
codes significantly. For example, for symbol length of 1000
bytes, encoding a block using semi-random LT codes takes
about 2ms, but it takes about 15ms for traditional LT codes
and 18ms for RS codes. There are three reasons: Semi-random

6

Fig. 8. The encoding/decoding time of different FEC codes with
different input symbol length.

LT codes (1) do not encode original packets; (2) predict a
minimum redundancy level; (3) use simple XOR operation
for coding. FFT-RS codes have performance comparable with
semi-random LT codes, but the application of FFT-RS codes
is constrained by the requirement to perform FFT operation
on symbols, which does not always hold.

Goodput Guarantee. We vary the PLR and RTT of the
link, and measure the goodput of all six protocol schemes.
For space reason, we only list the situations where RTT is
10ms (Fig. 9), all other scenarios show the same trend. The
goodput metric is the y-axis in the figures, named Packet (after
decoding) Per Second (PPS). We get three observations: (1)
when there is no packet loss, TCP shows the best goodput,
because it does not compute redundant packets, saving CPU
and bandwidth. (2) When packet loss is introduced, coding-
based schemes outperform TCP. The reason is that TCP
mistakes the packet loss caused by low channel quality for that
caused by congestion, and falsely reduces congestion window
(as well as sending rate). While coding-based Sphinx always
sends by the best effort without reducing sending window.
(3) All the three designs, i.e., semi-random LT codes (basic
Sphinx vs. Sphinx with RS codes/traditional LT codes),
ICM (basic Sphinx vs. Sphinx without ICM), and parallel
coding architecture (basic Sphinx vs. multi-core Sphinx),
contribute to the goodput improvement. Note that the reasons
of improvement are different — semi-random LT codes reduce
CPU cost; ICM reduces loss detection time; and parallel
coding architecture leverages more CPU resource.

Fig. 9. Packets per second (PPS) with 10ms RTT.

C. Case Study: Data Block Transmission
Data block transmission time is a metric that directly

affects the application (e.g., instant messenger, searching)
performance. We still vary the PLR and RTT, and measure
per-block completion time, which is named “Average Payload
Unit Completion Time” (APUCT) in the y-axis of Fig. 10.
The conclusion is similar to that of goodput. When the
network has no loss, TCP is the most efficient; with packet
loss in the network, coding-based approaches perform better.
Sphinx has a more efficient coding design than RS codes and
traditional LT codes in terms of bandwidth and CPU efficiency,
and its ICM further reduces failure detection time. Multi-core
parallelism is a suitable acceleration technique for Sphinx.
As an example of Sphinx with all these merits, when RTT
is 10ms and PLR is 6%, APUCT is about 4ms for multi-core
Sphinx which is 25 times less than TCP (>100ms).

Fig. 10. Average payload unit completion time (APUCT) with 10ms
RTT.
D. Case Study: Video Streaming

Fig. 11. The buffer size over time.
We show how Sphinx benefits a practical application —

video streaming. We replay a video stream trace from D-
LiTE [31] between a pair of sender and receiver, and the PLR
and RTT of network is set to 2% and 10ms. The sender still
sends with the best effort. The receiver maintains a buffer to
cache received video content, and it also drains the buffer at
a constant rate (the video bitrate). We measure the buffer size
(i.e., buffered content length in the unit of second). Buffer
accumulation indicates the transport is more efficient to fetch
contents, and buffer dropping to zero means there is nothing

7

to play at that instantaneous time and video lagging would
appear, impairing user’s quality of experience (QoE).

The experiment result is shown in Fig. 11. We can obviously
see that basic Sphinx and multi-core Sphinx accumulate
video buffers, which may provide good QoE. But TCP cannot
react correctly to the lossy link, and the buffer occasionally
drops to zero, causing lagging in video play. Multi-core
Sphinx outperforms the basic Sphinx, but not significantly,
since the amount of video data from the application layer is
the bottleneck for multi-core Sphinx experiment. Given that
the video data is transferred at full speed, the performance
gain of multi-core Sphinx is expected to be more distinct
than that of basic Sphinx.

V. CONCLUSION

Targeting at the requirements of reliability, goodput guar-
antee, bandwidth efficiency, and computation efficiency in
current high-speed and lossy mobile wireless networks, we
design Sphinx, which combines a proactive coding-based
method with a reactive loss retransmission method. The proac-
tive method is named semi-random LT codes, which measure
and predict the network loss rate first, and then adjust the
redundancy level (parameters) to use less extra bandwidth to
guarantee the best loss recovery. The reactive method is named
Instantaneous Compensation Mechanism (ICM), which has
both Block-SACK to timely inform the sender of successful
decoding and avoid unnecessary lost packet retransmission,
and Symbol-SACK to provide instantaneous loss information
without block-level long-time waiting. We finally design a
parallel coding architecture to accelerate Sphinx by lever-
aging multi-core, shared memory and kernel-bypass DPDK.
Our prototype and evaluation demonstrate the feasibility of
Sphinx and benefits to applications compared with existing
TCP (CUBIC) and coding solutions.

ACKNOWLEDGMENT

We thank reviewers for their valuable and insightful com-
ments. The work was supported by the National Key Re-
search and Development Program of China under Grant
2018YFB1800100, 2018YFB1800800, 2018YFB1800500, the
Research and Development Program in Key Areas of Guang-
dong Province (Grant No.2018B010113001), and the Na-
tional Natural Science Foundation of China under Grant
No. 61432002, No. 61772305, No.61672499. Dan Li is the
corresponding author of this paper.

REFERENCES

[1] S. Kavanagh. (2019) How fast is 5G? [Online]. Available: https:
//5g.co.uk/guides/how-fast-is-5g/

[2] S. Li and et al., “5G Internet of Things: A survey,” Journal of Industrial
Information Integration, vol. 10, pp. 1–9, 2018.

[3] J. Li, D. Li, Y. Yu, and et al., “Towards full virtualization of SDN
infrastructure,” Computer Networks, vol. 143, pp. 1–14, 2018.

[4] L. Wei and et al., “Key elements to enable millimeter wave communica-
tions for 5G wireless systems,” IEEE Wireless Communications, vol. 21,
no. 6, pp. 136–143, 2014.

[5] M. Hussain and A. Hameed, “Adaptive video-aware forward error
correction code allocation for reliable video transmission,” Signal, Image
and Video Processing, vol. 12, no. 1, pp. 161–169, 2018.

[6] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[7] O. Tickoo and et al., “LT-TCP: End-to-end framework to improve
TCP performance over networks with lossy channels,” in International
Workshop on Quality of Service. Springer, 2005, pp. 81–93.

[8] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol.
152, no. 6, pp. 1062–1068, 2005.

[9] M. Mathis and et al., “TCP selective acknowledgment options,” Tech.
Rep., 1996.

[10] Intel, “Intel DPDK: Data Plane Development Kit,” http://dpdk.org, 2019.
[11] S. Ha and et al., “CUBIC: a new TCP-friendly high-speed TCP variant,”

ACM SIGOPS operating systems review, vol. 42, no. 5, pp. 64–74, 2008.
[12] S. Floyd and et al., “The NewReno modification to TCP’s fast recovery

algorithm,” Tech. Rep., 2004.
[13] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion

avoidance on a global Internet,” IEEE Journal on selected Areas in
communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[14] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science. IEEE, 2002, pp. 271–280.

[15] A. Shokrollahi, “Raptor codes,” IEEE transactions on information
theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[16] T. Lakshman and U. Madhow, “The performance of TCP/IP for networks
with high bandwidth-delay products and random loss,” IEEE/ACM
Transactions on Networking (ToN), vol. 5, no. 3, pp. 336–350, 1997.

[17] K. Xu and et al., “Improving TCP performance in integrated wireless
communications networks,” Computer Networks, vol. 47, no. 2, pp. 219–
237, 2005.

[18] (2019) An introduction to Reed-Solomon codes: principles, architecture
and implementation. [Online]. Available: https://www.cs.cmu.edu/
⇠guyb/realworld/reedsolomon/reed solomon codes.html

[19] A. Langley and et al., “The QUIC transport protocol: Design and
Internet-scale deployment,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM).
ACM, 2017, pp. 183–196.

[20] A. Hussein and et al., “SDN for QUIC: An Enhanced Architecture with
Improved Connection Establishment,” in Proceedings of the 33rd Annual
ACM Symposium on Applied Computing (SAC). ACM, 2018, pp. 2136–
2139.

[21] C. Jiang and et al., “LTTP: an LT-code based transport protocol for
many-to-one communication in data centers,” IEEE Journal on Selected
areas in Communications, vol. 32, no. 1, pp. 52–64, 2014.

[22] (2019) Real-Time Messaging Protocol (RTMP) Specification. [Online].
Available: https://www.adobe.com/devnet/rtmp.html

[23] ISO/IEC 23009-1:2014. (2019) Information technology – Dynamic
adaptive streaming over HTTP (DASH) – Part 1: Media
presentation description and segment formats. [Online]. Available:
https://www.iso.org/standard/65274.html

[24] F. Qi and et al., “A diagonal recurrence relation for the Stirling numbers
of the first kind,” Applicable Analysis and Discrete Mathematics, vol. 12,
no. 1, pp. 153–165, 2018.

[25] J. Pak and K. Park, “A High-Performance Implementation of an IoT
System Using DPDK,” Applied Sciences, vol. 8, no. 4, p. 550, 2018.

[26] J. Hwang and et al., “NetVM: high performance and flexible networking
using virtualization on commodity platforms,” IEEE Transactions on
Network and Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[27] W. Zhang and et al., “OpenNetVM: a platform for high performance
network service chains,” in Proceedings of the 2016 workshop on Hot
topics in Middleboxes and Network Function Virtualization. ACM,
2016, pp. 26–31.

[28] J. Li, D. Li, Y. Huang, and et al., “Quick NAT: High performance
NAT system on commodity platforms,” in 2017 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2017, pp. 1–2.

[29] Y. Huang, J. Geng, D. Lin, and et al., “LOS: A high performance and
compatible user-level network operating system,” in Proceedings of the
First Asia-Pacific Workshop on Networking. ACM, 2017, pp. 50–56.

[30] S.-J. Lin and et al., “Novel polynomial basis and its application to
reed-solomon erasure codes,” in 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 2014, pp. 316–325.

[31] J. J. Quinlan and et al., “D-LiTE: A platform for evaluating DASH
performance over a simulated LTE network,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2016, pp. 1–2.

8

View publication statsView publication stats

https://www.researchgate.net/publication/336890138

