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1. Introduction

Owing to its extraordinary electronic properties [1] and long 
coherence times [2], graphene has received significant atten-
tion as a promising candidate for realization of quantum com-
puting. Quantum dots (QDs) confined in graphene could be 
an ideal host for spin qubits [3, 4]. However, the electrostatic 
confinement of massless charge carriers has remained chal-
lenging due to the Klein tunneling and the absence of a gap 
in the spectrum [3, 5]. So far, graphene QDs have been exten-
sively investigated based on graphene nanoribbons and etched 
nanostructures, however, edge and substrate-induced disorder 
severely limits functionality of the device [6–9]. To avoid 
noise from edge disorders in graphene nanoribbons [10], it 
is desirable to explore gate-defined graphene QDs [11–13]. 
Experimental efforts have been made on monolayer graphene 
by combining electrostatic potential and magnetic field [14]. 
Recent work has observed the valley splitting of monolayer 
graphene due to the interaction with substrate [15]. Few-layer 

graphene (FLG) is the only known material to exhibit a band 
structure depending on stacking and electric fields [16]. By 
breaking the layer inversion symmetry in AB-stacked bilayer 
or ABC-stacked trilayer graphene, an external perpendicular 
electric field can open an energy gap by local electrostatic 
gating [17–19]. Gate-defined and gate-controlled QDs have 
been demonstrated in bilayer [11] and ABC-stacked trilayer 
graphene [20].

In order to design gate configuration in gate-defined QDs, 
numerical simulation is required to provide guidance. Landau 
level spectrum has been theoretically investigated in single and 
bilayer QDs [21, 22]. The results show that the valley degen-
eracy is broken by a magnetic field applied perpendicular to 
the graphene plane. Zarenia et  al studied electron-electron 
interactions in BLG QDs under a parabolic potential by numer-
ically solving the Schrödinger equation  [23]. Compared with 
monolayer and bilayer graphene, trilayer graphene has more 
complex interlayer interactions resulting in richer electronic 
structure [16, 24]. Several recent theoretical works have studied 
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the Landau level spectrum of ABA- and ABC-stacked trilayer 
graphene [25, 26]. Numerical simulations reveal that six cubic 
bands of ABC TLG lead to three groups of Landau levels (LLs) 
with intergroup and intragroup LL anticrossings [19]. TLG 
QDs with infinite-mass boundary conditions have been studied 
recently [27]. However, energy level spectrum and bound state 
properties have not been fully investigated yet in TLG QDs 
under a finite step potential well. In this paper, we present a 
study of eigenspectrum in TLG QDs simulated with a finite 
step potential well by using a general and analytic method. Our 
results show that the valley degeneracy of bound state levels can 
be lifted by a perpendicular magnetic field that breaks the time 
reversal symmetry, enabling possible control of spin qubits and 
valley-degrees of freedom in TLG QDs. Transition of energy 
levels between different groups of LLs can be identified from 
the calculation results and explained from the perturbation 
theory, which provides a guideline to identify the best param-
eter regime for designing TLG QDs as qubits.

The paper is organized as follows. In section 2 we introduce 
the analytic method to obtain the bound states in TLG QDs. 
The validity of our method is verified by matching the LLs in 
particular cases of homogeneous electrostatic potentials with 
results reported recently, and further confirmed by predicting 
the level transition between different groups of LLs from the 
perturbation analysis. Section  3 includes the main results 
which identify the breaking of valley degeneracy and transition 
between different groups of LLs. We further analyze the results 
in section 4, and discuss the best conditions to confine QDs.

2. Methods

Trilayer graphene has two different kinds of stacking, the 
HOPG stacking(ABA) and the rhombohedral stacking(ABC) 
[6]. To open a band gap by applying a perpendicular electric 
field [6, 26], we focus our consideration on the ABC-stacked 
TLG in this paper.

The atomic structure of ABC-stacked TLG is shown in 
figure 1. The nearest distance between adjacent carbon atoms 
is  =a 1.42 Å and the interlayer distance is  =c 3.35 Å0  [24]. 
The different sublattices A and B are represented by white and 
black solid balls, respectively.

To obtain the energy spectrum, we first generalize the 
analytic method for bound states in single layer and bilayer 
graphene [22] by applying the step potential well to the ABC-
stacked TLG. The validity of this method is tested by calcu-
lating the degenerate case (with homogeneous electrostatic 
potentials) and comparing the results with LLs obtained previ-
ously by different methods [25, 26]. Transition of bound state 
levels between two groups of LLs can be observed in the spec-
trum. The range where the transition occurs is consistent with 
the prediction from the analysis based on perturbation theory.

2.1. Analytic solution for bound states in ABC-stacked trilayer 
graphene QD

We begin with the effective low-energy Hamiltonian of 
ABC-stacked TLG around the K point. Under the basis 

( )ψ ψ ψ ψ ψ ψ, , , , ,A B A B A B1 1 2 2 3 3 , where the components are enve-
lope functions on different sublattices and different layers, the 
Hamiltonian is [6, 25]
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where = ±±p p pix y, ( )=p p p,x y  is the two-dimensional 
momentum operator. vF is the Fermi velocity of the  
monolayer graphene. For simplicity ħ = =v 1F . We 
only consider the nearest interlayer hopping γ = 0.41  
eV. A homogeneous magnetic field B is perpendicular 
to the TLG plane, which is included by the replacement 

→ ( )π = +p p Ae r . We denote the Hamiltonian after the 
replacement by πH .

In order to simulate a quantum dot in trilayer graphene, we 
consider a piecewise constant electrostatic potential applied 
to the graphene. A schematic diagram of the potential is 
shown in figure 2. The potential is fully characterized by six 
parameters Vi,in and Vi,out, where i  =  1, 2, 3 correspond to dif-
ferent graphene layers. This kind of potential is adopted as 
an approximation for gate-defined graphene QDs, where the 
potential barrier and gap are produced by top and back gates. 
The cases of more realistic potentials are briefly discussed in 
section 4.

The local gating effect is included in the potential term of 
the Hamiltonian, which is

Figure 1. Atomic structure of ABC-stacked trilayer graphene. 
Intralayer hoppings are shown as black thick line and interlayer 
hoppings γ1 are shown as thinner gray line. Other intralayer and 
interlayer hoppings are neglected for simplicity. Site A (white) and 
site B (black solid) are labeled on the bottom layer in the figure.
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[ ( ) ( ) ( ) ( ) ( ) ( )]=H V r V r V r V r V r V rdiag , , , , , ,V 1 1 2 2 3 3 (2)

where = +r x y2 2  is the distance from the center of the QD.
Considering the rotation symmetry of the system, we choose 

the symmetric gauge ( )/= −A B y x, , 0 2 and work in polar 
coordinates. The generalized momentum operator is found to 
be ħ[ / /( )]π π π= + = − ∂ + ∂ −θ

θ r eBri ie i 2x y r
i . Extending the 

total angular momentum operator in bilayer graphene [23], 
the total angular momentum operator for a symmetric TLG 
system can be given as:
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where = − ∂θL iz  is the orbital angular momentum which no 
longer commutes with the total Hamiltonian, I is the ×2 2 
identity matrix, σz is the Pauli z matrix. Jz commutes with the 
Hamiltonian and the corresponding eigenstates of both opera-
tors are the six-component spinors:
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where m is the angular quantum number, φAi and ( )φ =i 1, 2, 3Bi  
are the envelope functions for different sublattice sites of the 
three graphene layers.

The dimensionless coordinate /( )ξ = r l2 B  can be defined 
to simplify the Hamiltonian, where ħ/( )= | |l e BB  is the 
magn etic length. ( )=s Bsgn  refers to the direction of the 
magn etic field. The Hamiltonian acting on the six envelope 
functions ( ) ( )ψ φ φ φ φ φ φ=r , , , , ,A B A B A B

T
1 1 2 2 3 3  will be
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where /( )∆ = l1 2B B  is the magnetic energy and 
[ ( / )/ ]∓ ∓π ξ ξ= − ∂ +ξ

± m si 1 2m  is the momentum-like oper-
ator acting on the components of the spinor ( )ψ r .

The same functions in [22] can be adopted to further sim-
plify the Hamiltonian:
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where M(a, b, z) and U(a, b, z) are confluent hypergeometric 
functions [28]. φ<a  is well-behaved at the origin and φ>a  van-
ishes exponentially for →ξ ∞. ν is a parameter related to the 
eigenenergy. a  =  0, 1, 2, 3 is relevant to layers and sublattices.

Using the differentiation and recurrence relations of M and 
U, the following relations can be obtained:

π φ φ
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− −
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with j  =  1, 2, 3 and thus equation  (7) include φ0, φ1, φ2, φ3 
and b1, b2, ..., b6. As shown in equation (7), π + −

+
m j 1(π + −

−
m j 1) 

behaves like creation(annihilation) operator by acting on φ −j 1

(φj) and b2j(b2j−1) are the corresponded coefficients. b1, b2, ..., 
b6 only depend on m, s and differ for different regions. For 
r  >  R,

[( ) ( / )( )]
[( ) ( / )( )]
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ν

= − − + − +
= − + + + −

−b s j s

b s j s

1 4 1 ,

1 4 1 .
j
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For ⩽r R, the various values of bi are more complex and 
are shown in table 1. Utilizing the properties of φa as in equa-
tion (3), the Hamiltonian Hm in equation (5a) can be simpli-
fied to a numeric matrix by rewriting ( )ψ r  as

( )ψ φ φ φ φ φ φ= c c c c c c, , , , , .A B A B A B
T

1 0 1 1 2 1 2 2 3 2 3 3 (9)

Notice that ψ< and ψ> are in different forms for ⩽r R and 
r  >  R respectively. Under this form of ( )ψ r , the resulting 
Hamiltonian turns to be

Figure 2. Electrostatic potential used in the calculation. R is the 
radius of the QD where the potential jump from Vi,in to Vi,out, leading 
to bound states. R  =  200 nm is adopted in this paper.
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which is different for ⩽r R and r  >  R. The Hamiltonian Hb 
acts on numeric six-component spinor

( )�ψ = c c c c c c, , , , , .A B A B A B
T

1 1 2 2 3 3 (11)

There are two equations  ( )− =H Edet 0b  for the eigen-
value problem, one for ⩽r R and the other for r  >  R. From 
equation (8) and table 1, ν always appears three times in the 
Hamiltonian in equation (10a). Hence ν<i  and ν>i  can be solved 
as lengthy algebraic expressions of E, where i  =  1, 2, 3 dis-
tinguish the three solutions and the superscript refers to the 
two regions. For every single eigenenergy E, there are three 

corresponding eigenstates for both �ψν
<

i
 and �ψν

>
i
. In total, �ψ  

combined with equations (4), (6) and (9) gives us three pos-
sible eigenstates Ψ ν

<
m, i

 for region ⩽r R and three states Ψ ν
>
m, i

 
for region r  >  R, where the suffix νi represents the value of 
parameter ν. The final eigenstates are combination of the three 
Ψ νm, i for both regions, which should have identical value at the 
point r  =  R, i.e.
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where <ci  and >ci  are combination coefficients. Notice that all 
Ψ ν
<
m, i

 and Ψ ν
>
m, i

 are six-component spinors, so equation (12) is 
a set of six equations  for six unknown <ci  and >ci . The pre-
existing condition of the solutions of <ci  and >ci  gives the equa-
tion with solvable E, namely,

( )ψ ψ ψ ψ ψ ψ =ν ν ν ν ν ν
< < < > > >

=
det , , , , , 0,

r R1 2 3 1 2 3 (13)

where E is implicitly included in ν<i  and ν>i . ψ, as defined in 
equation (9), is used instead of Ψm, as the angular comp onents 
are the same in every row in this determinant and can be can-
celled out. Subscript νi distinguishes different values of ν used 
in ψ.

Equation (13) is the analytic equation to solve the bound 
state energy levels of the QD in ABC-stacked trilayer gra-
phene, which can be obtained numerically.

2.2. Comparison with LLs

To test the validity of our method, we apply the method to 
the degenerate case, i.e. = =V V Vi i i,in ,out  for all i  =  1,  2,  3 
and compare the results with the simulation results reported 
recently, where the energy spectrum should be reduced to LLs 
in homogeneous electric and magnetic fields. As a typical 
case, V1  =  100 meV, V2  =  50 meV, and V3  =  25 meV are 
used and the resulting levels are shown in figure 3 as a func-
tion of the magnetic field. Green dots represent energy levels 
obtained by the analytic method introduced in section  2.1. 
The first 7 LLs are included as black dashed lines, which 
are obtained by method introduced in appendix A. A zoom-
in plot of energy range near the band edge is shown in the 
inset. Reversion of LL order can be observed in the region of 
relatively weak magnetic fields. As can be seen from figure 3, 
bound state levels, in the case of degenerate potential, agree 
perfectly with LLs.

The potentials adopted here are the same as in [26], where 
the LLs for asymmetric TLG are obtained by solving the cou-
pled Hamiltonian equations. An opening of a band gap can be 
observed. An order reversal of the LLs also appears for weak 
magnetic fields. Results from our calculation perfectly agree 
with results obtained by directly solving the coupled differ-
ential equations [26]. The two groups of LLs start from V1 and 
V2 respectively, which also set the range of the band gap [26].

For a step potential in general, for a single m, the bound 
state levels go to LLs only under relatively strong magnetic 
fields when �l RB . Eigenstates can be separated into three 
sets: mainly inside the QD, mainly outside the QD or sitting 
across the potential step, which depends on the magnetic field. 

Table 1. Values of bi for r R⩽ .

b m 0⩾ m  =  −1 m  =  −2 −m 3⩽

b1 2 ν − s2 2/ ν − s2 2/ ν − s2 2/
b2 ν − s2 2/ 2 2 2
b3 2 2 ν − s2 4/ ν − s2 4/
b4 ν − s2 4/ ν − s2 4/ 2 2
b5 2 2 2 ν − s2 6/
b6 ν − s2 6/ ν − s2 6/ ν − s2 6/ 2

Figure 3. Typical low-lying energy levels versus magnetic fields for 
homogeneously biased ABC-stacked trilayer graphene. Green dots: 
levels obtained by the analytical method for homogeneous potential 
as a degenerate case. Arbitrary m and R gives the same results. 
Black dashed line: Landau levels obtained by method introduced in 
appendix A. Potentials V1  =  100 meV, V2  =  50 meV, and V3  =  25 
meV are adopted.

J. Phys.: Condens. Matter 29 (2017) 215002
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For the first two sets, the states experience a nearly homoge-
neous electrostatic potential and are very close to states corre-
sponding to LLs, and so are the bound state levels. Transition 
of levels from outside LLs to inside LLs can be observed, 
when the magnetic field increases and affects the bound states 
to shrink from outside, crossing the step and being into the 
QD. The above arguments can be formulated by the pertur-
bation theory on the potential and are discussed in detail in 
appendix C. For simplicity, LL states in the following context 
refer to the eigenfunctions corresponding to Landau levels. 
The perturbation theory is based on LL states in polar coordi-
nates, which can give an estimate on the transition range. The 
transition range here is defined to be the range of the magnetic 
field B under which the energy levels transit from one group of 
Landau levels to another group as B increases. We present the 
result given by the perturbation method here to further demon-
strate the validity of the analytic solution and the perturbation 
method itself.

A step potential, described by = =V V0.25 meV,1,in 2,in 
= −V0 meV, 0.25 meV3,in     and  = +V V 0.4 meVi i,out ,in , is 

adopted here. The analytical method gives the energy spec-
trum. From the expansion perspective in the perturbation 
method, the comparison between the spatial extension of a LL 
state and the dot area gives the transition range of the bound 
state levels in figures 4 and 5.

Figure 4 shows a zoomed area of the energy spectrum and 
three selected energy levels with m  =  −800 and n  =  0, −  1, 
−  2 which displays the transition of bound states between dif-
ferent LLs in this condition. The transition range is given by 
two vertical red dashed lines. If the magnetic field is stronger 
than the upper limit of this range, the energy levels will be 
very close to LLs for n  =  0, −1, −2 with respect to the poten-
tial inside the dot, as the corresponding LL states are located 
mainly inside the dot. The same argument can be applied to 
the magnetic field weaker than the lower limit of this range. 

For the magnetic fields in this range, the energy level will 
exhibit a transitional behavior to connect the Landau levels on 
the left and right side. The eigenfunctions are the superposi-
tion of LL states with different n’s, which is indicated by the 
anticrossings at the end of the transition. The transition ranges 
for more m’s are illustrated in figure 5, indicating the validity 
of such expansion perspective and the analytic method in gen-
eral for different m’s. Figure 6 shows changes in energy levels 
with m at a fixed magnetic field (B  =  6 T). When | |m  is large, 
the levels keep unchanged as m varies, which correspond to 
the outer LLs for n  =  0, −1, −2. As | |m  decreases, the energies 
gradually transform to the inner LLs.

3. Results

We show in section 2.2 that, for a homogeneously biased ABC-
stacked TLG with layer potential V1, V2 and V3, a bandgap 

Figure 4. Transition between two groups of LLs for bound state 
levels with m  =  −800 and n  =  0, −1, −2. Upper three dot-dashed 
lines are LLs corresponding to the outside potential for n  =  0, −1, 
−2. Lower three dashed horizontal lines are LLs corresponding 
to the inside potential for n  =  0, −1, −2. The solid green lines 
are bound state levels under the step potential for m  =  −800. 
Two dashed vertical red lines indicate the transition range for 
n  =  0, m  =  −800 obtained by the perturbative method. The four 
insets represent the spatial relationships of the wave function and 
the dot under four different magnetic fields.

Figure 5. Transition between two groups of LLs for bound state 
levels with different m’s, all consistent with transition range 
obtained by the perturbative method. m  =  −400, −600, −800, 
−1000 are adopted in the sub figures (a) to (d), respectively.

Figure 6. Energy levels versus m at B  =  6 T for n  =  0, −1, −2. 
When | |m  is large, the levels keep unchanged as m varies, which 
correspond to the outer LLs. As | |m  decreases, the energies gradually 
transform to the inner LLs.

J. Phys.: Condens. Matter 29 (2017) 215002
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ranging from V1 to V3 can be opened near zero energy. Two 
groups of LLs can be identified. One starts from the upper 
edge of the bandgap and bends upward. The other starts from 
the lower edge and bends downward.

For the piecewise constant potential in figure  2 , it’s 
straightforward to think that the energy levels of the system 
should be a combination of LLs from Vi,in and those from Vi,out. 
It is expected that there are four groups of levels near zero 
energy. Two of them show an energy gap from V1,in to V3,in and 
the other two show another gap from V1,out to V3,out. According 
to whether the two gaps overlap or not, two different cases can 
be resolved with different overall potentials. To be explicit, if 
we have >V V1,in 3,out, which is the case in figure 2, the inter-
section of the two gaps gives a true gap in the energy levels. 
If <V V1,in 3,out instead, the LLs corresponding to Vi,out will 
have one group bending downward from V3,out, crossing with 
another group of LLs which are bending upward from V1,in. 
The true energy levels of bound states have a complex pat-
terns for weak magnetic fields and converge to LLs for strong 
magnetic fields.

In this section, we numerically solve the bound state energy 
levels from equation (13) for two different potentials, i.e. two 
sets of Vi,in and Vi,out, one with finite intersection of inner and 

outer bandgap, resulting in an energy gap in the bound state 
levels, and the other with no intersection, giving a complex 
crossing feature in the evolution of energy levels versus the 
magnitude of the magnetic fields.

The first set of Vi,in and Vi,out is adopted as follows

τ

τ

=

=

= −

V
V

V

V
V

2
,

0,

2
,

1,in

2,in

3,in
 

(14a)

= +V V U,i i,out ,in

 
(14b)

where τ accounts for the valley degree of freedom and V  =  50 
meV, U  =  40 meV are used for the calculation. V1 and V3 are 
exchanged for τ = −1. The valley degree of freedom can be 
included by τ and will be briefly discussed in appendix B.

The results of the bound state levels under the above poten-
tial are displayed in figure  7, which shows the bound state 
energy levels with respect to the magnetic field. Figure 7(a) 
includes levels for m  =  −1,  0,  1 and τ = 1. Degeneracy of 

Figure 7. Bound state levels of a trilayer QD. (a) m  =  −1(blue solid lines), 0(red dashed lines), 1(green dotted lines) for τ = 1.  
(b) Both τ = 1 (green solid lines) and τ = −1 (red dashed lines) are included and = ±m 0, 1 for each value of τ. (c) Zoom-in of levels near 
the upper edge fo the gap, green solid lines for τ = 1 and red dashed lines for τ = −1. (d) The first seven LLs corresponding to potential 
inside the QD, of the same energy range as in (c), green solid lines for τ = 1 and red dashed lines for τ = −1.
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levels for different m values can be clearly observed at B  =  0. 
Levels with different m’s converge to the same LLs as long 
as they have the same LL index n within the same group of 
levels. Figure 7(b) shows the bound levels for both τ = ±1 
for the same range of m. Levels corresponding to different 
valleys are degenerate in the zero magnetic field, however, the 
degeneracy is lifted for the finite magnetic fields. An increase 
in level densities can be observed near the band edge, which 
agrees with the ‘Mexican hat’ band structure of ABC-stacked 
trilayer graphene in the presence of a perpendicular electric 
field [29].

A zoom-in plot of the bound state levels near the band 
edge is shown in figure  7(c). Lift of valley degeneracy can 
be clearly observed as B increases from zero to finite values. 
In the strong magnetic fields where �l RB , bound state levels 
tend to bulk LLs. The corresponded LLs are included in 
figure  7(d) for τ =± 1, which is in perfect agreement with 
bound state levels in strong magnetic fields.

It is worth noting that the behaviors of energy levels in 
figure 7 are slightly different from those in figures 4 and 5. 
In figure 7, the energy levels only approach one group of LLs 
(with respect to the potential inside the dot). There is no trans-
ition from this group to the group with respect to the potential 
outside the dot. This comes from the difference of the chosen 
m’s. For ≈B 0.01 T, lB and R are of the same order. The expan-
sion analysis is effective if �l RB . In such range of B, the 
chosen m’s in figure  7 exclude the possibility of escape of 
wave packets from the dot completely. Thus the energy levels 
will not approach the outer LLs first. But they will evolve to 
the inner LLs directly as the magnetic field increases.

The other set of Vi,in and Vi,out is used with = −V 8.61,in  
meV, = −V 2.42,in  meV, = −V 2.33,in  meV, = −V 0.51,out  meV, 

=V 3.72,out  meV and =V 9.33,out  meV, where the ranges of the 
two energy gaps have no intersection.

Figure 8 shows the results of energy levels as a function of 
B for the second set of Vi,in and Vi,out. The range of energy used 
in the plot is chosen so that the crossing feature is included. 
Two groups of LLs are also included, corresponding to homo-
geneously biased TLG under Vi,in and Vi,out respectively. The 

first six LLs are included as black dashed lines. One group 
of LLs originates from = −V 2.33,in  meV and bends upward, 
which sets the upper edge of the energy gap corresponding to 
Vi,in. The another group of LLs originates from = −V 0.51,out  
meV and bends downward, which sets the lower edge of the 
energy gap corresponding to Vi,out. The bound state levels are 
plotted as green dots, and four different values of m are used 
in the four subfigures. The bound state levels show interesting 
and complex evolution patterns with respect to the magnetic 
field for different values of m, exhibiting transitions between 
different groups of LLs. When m  =  0, the energy levels in 
B  >  1 T region ( ensuring the effectiveness the expansion 
analysis ) behave similar as in figure  7. They approach the 
inner LLs and no more transition occurs. When m  =  −20, 
−  80, the wave packets are located further from the origin, 
so the transition between the outer LLs and inner LLs can be 
observed because of the shrinking effect on the wave func-
tions of the increased magnetic field. When m  =  −200, the 
wave packets are located even much further and it requires 
larger magnetic field to draw the wave packets into the dot to 
produce the transition behavior of the energy levels.

4. Discussion

4.1. Discussion on valley splitting

In the previous calculation, the valley degeneracy can be lifted 
by a magnetic field, which is an essential step towards control-
ling valley degree of freedom in graphene. Previous work has 
shown that graphene ribbons can be used as a valley filter [30, 
31]. However, it’s hard to yield a graphene sheet with a deter-
ministic edge shape. In our gate-defined QD with valley split-
ting, especially near the edge of the band gap, large energy 
difference between the two valley makes it possible to select 
states with definite valley, realizing a valley polarization for 
current passing through the QD.

The valley splitting ∆ ′K K,  can be calculated as the energy 
difference between one valley-polarized ground state and the 
first excited states from the other valley [22], which is about 

Figure 8. Energy levels of a trilayer QD under one typical second-type potential. Different m values are used for different sub-figures.  
(a) m  =  0. (b) m  =  −20. (c) m  =  −80. (d) m  =  −200. Bound state levels are shown in green dots. Black dashed lines are the first six LLs. 
Anticrossings can be observed and transition from inner LLs to outer LLs occurs at different magnetic field strength for different m values.
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1.6 meV from figure 7 on condition that B  =  4 T. This is larger 
than Zeeman splitting µ ≈g B 0.47B  meV with ≈g 2 ( [32]). As 
a consequence, the valley freedom will not entangle with the 
spin freedom, resulting in longer coherence time of the spin 
qubit in TLG QDs.

4.2. Estimation of parameter regime for TLG QD confinement

In addition to valleytronics, the energy spectrum and its expan-
sion interpretation can provide useful insights for the quantum 
dots in the presence of a magnetic field. For the energy levels 
between the gap outside the dot, the corresponding states 
are localized inside the dot and well confined. So the Fermi 
energy within such energy range is appropriate for confining 
a quantum dot. However, for the energy levels outside this 
gap, even though there can be energy levels corresponding to 
bound states confined inside the dot, the energy levels for the 
LL states outside the dot intersect with other levels. In conse-
quence, the electron will possibly escape from these degener-
ated LLs, making the dot ‘leaky’. For a special case in which 
<V V1,in 3,out, the leak of the electrons in the conduction band 

inside the dot, whose energies also lie within the valence band 
of the barrier, can be thought as Klein tunneling because in 
this case the electrons escape through the valence band with 
respect to the barrier potential [33]. From the theory of Klein 
tunneling, one can deduce that increasing the magnetic field 
would suppress the conductance [33].

As mentioned in section  3, when the gap inside the dot 
and that outside the dot overlap with each other, a true gap 
emerges and forbids the tunneling of electrons. In this circum-
stance, the exhaustion of electrons or holes can be observed. 
Considering the potential in figure 2, if only V1,in lies within 
V1,out and V3,out, which is the case illustrated in figure 2, the 
exhaustion of electrons is permissible. If only V3,in lies within 
the outside gap, the exhaustion of holes can be obtained. If the 
entire inside gap is within the outside gap, a transition from 
electron QD to hole QD can show up in the transport meas-
urement. Due to the existence of charging energy [18], the 
exhaustion phenomenon can only be observable if the gap is 
comparable or larger than charging energy. If the entire out-
side gap is within the inner gap, there will either be no cur-
rent or relatively large current as the Fermi levels being tuned 
across the band gap of the inside potential.

In order to increase the coherence time of TLG-QD-based 
spin qubits, all the degeneracy should be broken to prevent 
undesirable incoherent mixture of other degrees of freedom 
and avoid their entanglement with the spin [22]. In addition 
to valley degeneracy, the orbital degeneracy for different 
m’s should also be lifted off, which can be obtained with the 
electrostatic potential. So the magnetic field should be inside 
transition range and the transition should be steep enough for 
a relatively large energy difference between the concerned 
orbital energy levels. For a step potential well in our case, 
because the LL states of larger n have wider spatial extension, 
the transition ranges are also wider and not steep. As a result, 
the energy difference between different m’s will be relatively 
smaller comparing to those with lower n. So it is better to 
adjust the Fermi energy to the energy levels corre sponding to 

lower n and avoid the higher n regime. For TLG, a typical band 
gap adopted in figure 8 is approximately 10 meV (the gap out-
side the dot). In the cases like this, many high n levels inside 
the gap correspond to the magnetic field strength smaller than 
1T. So in this case, the magnetic field should be adjusted to 
avoid that area with high density of states, but it should not be 
too large at the same time. On the one hand the LLs for n  =  0 
tend to shrink the gap, and on the other hand the levels of dif-
ferent m’s will get closer. The distribution of the energy levels 
near the band edge is determined by R/lB for the step potential 
well. This value should be neither too small to have a proper 
Zeeman splitting nor too large to keep levels with different 
angular momentum from being nearly degenerate again. The 
size of the dot will determine the steepness of the potential 
well and thus affect the energy difference between different 
angular momentum in the transition range.

For the energy levels plotted in figure  7, m  =  0,  n  =  20 
state at B  =  1 T is a relatively ideal state to define the dot 
state. The level is within the gap outside the dot. The magnetic 
field is stronger enough to break the time reversal symmetry, 
but not too strong to form LLs. The typical energy splitting is 
about 1 meV. However, considering the charging energy, the 
real energy splitting will be much larger in a real quantum dot.

Since the wave function can be obtained analytically in the 
step potential well, it enables the estimation for the exchange 
interaction between two spin qubits of the graphene QDs. 
For a double dots system, the bound states in each dot can 
take similar forms and be related with a phase factor from 
gauge transformation. In this way, the exchange energy J can 
be calculated as the energy difference of the singlet and the 
triplet [34]. Once the exchange coupling J(t) is obtained, a 
SWAP operation can be realized by tuning J(t) with the gate 
voltage and the magnetic field. The SWAP gate can be used to 
construct the XOR gate which is universal. For distant QDs, 
coupling can be further achieved via various architectures  
[35, 36], enabling potential applications in quantum informa-
tion processing.

4.3. Generalization to multi-step and non-axial-symmetric 
potentials

For the simple step potential in figure 2, the eigenstates under 
magnetic fields can be taken as a combination and hybridiza-
tion of the LL states corresponding to the potential inside and 
outside the dot. In real experiments, the potential profiles are 
more complex. To further predict the energy level tendency, 
extensions can be made from the simple step potential well to 
three types of more complex potentials: smooth edge poten-
tials, nonaxial symmetric potentials and multistep potentials. 
The smooth edge potential refers to the potential which has a 
smooth transition at the dot edge. For this kind of potentials, 
the transition ranges of energy levels mentioned in section 2.2 
will be broader than those of the step potential, but there is 
no essential difference. The nonaxial symmetric potential has 
a dependence on θ. Such nonaxial symmetric dot area will 
also broaden the transition ranges of the energy levels. This 
is because the distortion of the dot edge from a circle can be 
restricted by a ring if the distortion is not so large. Outside the 
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ring, the potential is flat and possesses axial symmetry, there-
fore the ring can be taken as a transition area of the potential. 
Similar to the smooth edge potential’s transition area, it causes 
hybridization of LL states under a wider magn etic field trans-
ition range. The difference from the smooth edge potential 
case is that, inside the transition ranges, the breaking of the 
rotational symmetry will mix the LL states belonging to dif-
ferent m’s together. The multistep potential can be described 
as

( )
⩽
⩽

⩽

⎧
⎨
⎪

⎩⎪
= <
… …

−

V r

V r R
V R r R

V R r

,
,

,

i

i

i

in n

1 1

2 1 2

1

 (15)

where i  =  1,  2,  3. The energy spectrum under such poten-
tial can be foreseen as combination and hybridization of 
the Landau levels corresponding to each of the step. In this 
way, even though the rotational symmetry of the potential is 
retained, more degeneracy of m will be lifted and more trans-
ition ranges will emerge. Further extension can be made on 
other 2D materials. Once the Landau levels and LL states are 
obtained, the bound states and energy spectrum tendency, 
under a dot potential and magnetic fields, can be predicted 
similarly as the situation for the TLG quantum dot. If a more 
accurate prediction on the spectrum is needed, one may follow 
the perturbation process, calculate the integrals and solve the 
eigenvalue problem. An alternative way is to directly solve 
the differential equation numerically such as using the com-
mercial software COMSOL, which can give similar results in 
our case.

Other than completely numerical ways to find eigenfunc-
tions, the expansion approach may provide a general method 
for real potentials in experimental situations. As discussed 
above, the ideal energy levels for TLG QD qubits should be 
within the gap outside the dot and the ideal magnetic field 
should be adjusted to avoid high density of states, thus an 
upper limit for m and n can be set in the perturbation process 
and this makes the expansion method possible for arbitrary 
potential shape.

5. Conclusion

In summary, we have solved the bound state levels of ABC-
stacked TLG QDs under a step potential well. Similar to the 
cases in single layer and bilayer graphenes [22], breaking of 
valley degeneracy is observed under a homogeneous magnetic 
field. Transfer to LLs can be identified under strong magnetic 
fields. We test the validity of our method by calculating the 
degenerate case with homogeneous electrostatic potentials 
with = =V V Vi i i,in ,out . The results agree with LLs obtained by 
previous theoretical studies [25, 26]. Transition of bound state 
levels can be seen between two groups of LLs with increasing 
magnetic field strength. The range, in which the transition 
occurs, is consistent with the prediction from a perturbative 
analysis. The step potential well can be distinguished into 
two cases, depending on whether the band gap of inner LLs 

and outer LLs overlap or not. For the first case, a true energy 
gap will occur in the overlapping energy range and relatively 
large energy deviation between two valleys can be observed 
near the band edge. We have discussed the consequences and 
potential applications of valley splitting. We also exploit pos-
sible generalization of step potential and the resulting pattern 
of bound state levels from the perturbative analysis. Optimal 
parameters for TLG QD qubits can be explored from our spec-
trum analysis. Our method also paves the way for prediction 
of exchange interaction between TLG QDs.
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Appendix A. Energy levels in homogeneously 
biased TLG

Under constant electrostatic potential, the TLG system can be 
described by the same Hp as in equation (1a) and also has the 
same substitution → ( )π = +p p Ae r  for the homogeneous 
magnetic field. πH  can be diagonalized by first choosing the 
Landau gauge ( ) ( )=A r Bx0,  and then adopting LL wave 
functions to simplify πH . After this procedure, πH  is reduced 
to a numeric matrix of which the eigenvalues can be easily 
solved [25, 37]. We point out here that the method in [25] 
can be directly adopted to the system under a homogeneous 
external electric field described by

[ ]=H V V V V V Vdiag , , , , , ,V 1 1 2 2 3 3 (A.1)

where Vi’s are constants independent of space position. The 
energy levels of the system = +H H Hp V can be solved from 
the above method for given layer potentials Vi.

Appendix B. Valley degree of freedom in TLG

The valley degree of freedom is originally included in 
the low energy effective Hamiltonian in equation  (1a) as 

τ= ±τ ±p p pix y, , where τ = ±1 distinguishes the two valleys. 
Explicitly, Hamiltonian for τ = −1 reads

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
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⎟
⎟

γ
γ

γ
γ
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−
−

−
−

−
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+

−

+

−
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−

H

V p

p V

V p

p V
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p V

1 0 0 0 0

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

0 0 0 0 3

.

1

1

1

1

1

 (B.1)

Similar to the bilayer case [38], the Hamiltonian for valley 
τ = −1 can be transformed to the Hamiltonian for τ = 1 if 
only the layer potential is interchanged by rearranging the 
basis. By adopting basis ( )ψ ψ ψ ψ ψ ψ− − −, , , , ,B A B A B A3 3 2 2 1 1 , the 
Hamiltonian in equation (B.1) transforms to
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 (B.2)

which is identical to the Hamiltonian for τ = 1 except for an 
extra minus sign before γ1 and an interchange of layer 1 and 
3. γ1 always appears as squared through out the calculation so 
the minus sign has no effect on the energy levels. Hence we 
introduce τ to account for the interchange of layer potentials, 
as adopted in equation (14) and thereafter. Similar convention 
is also adopted for BLG [22, 23].

Appendix C. Expansion based on wave functions 
corresponding to Landau levels

The similarity between QD bound state spectrum and Landau 
levels in strong magnetic field regime implies a new way to 

handle this eigenvalue problem. The eigenfunction Ψi under 
the QD potential can be expanded in the basis of LL states in 
polar coordinates ψp

n m, :

∑∑ ψΨ =
=

a ,i
n m p

n m p
n m

, 1

6

,
,

 (C.1)

where i is the index for energy levels under a dot potential, m 
is the angular momentum quantum number, n is the principle 
quantum number and p is the index of the six eigenvalues of 
the 6-by-6 matrix outside the dot. The confining potential 
well can be treated as a perturbation on a flat potential. The 
Hamiltonian is composed of two parts, ( )θ= +H H V r,0 . H0 
corresponds to the Hamiltonian outside the dot, while ( )θV r,  
corresponds to the potential perturbation inside the dot. ( )θV r,  
is diagonal and the diagonal terms are spacial dependent with 
zero values outside the dot. Denoting ψp

n m,  as ⟩|nmp , the matrix 
element Hamiltonian under this basis is

⟨ ⟩ ⟨ ⟩
⟨ ⟩δ δ δ

| | = | + |
= + | |

nmp H ijq nmp H V ijq

E nmp V ijq .np ni mj pq

0
 (C.2)

Figure C1. Reduced radial wave functions of LLs (not normalized) 
in polar coordinates. In this figure, n  =  1, m  =  −1. The wave 
function with larger s has equal or more zeros.

Figure C2. Reduced radial wave functions of LLs (not normalized) 
in polar coordinates. s  =  1, n  =  1 and multiple value of m are 
included. When m 0⩽ , the wave packet is located further from the 
origin if | |m  is larger.

Figure C3. Edges of the reduced radial LL wave functions and 
corresponding nonlinear fit curves. The blue dots are the inner 
edges of the last component of the reduced radial wave function 
for n  =  0, and the red squares are the outer edges. The edges are 
defined as the inner and outer most positions where the norm of the 
wave function has fallen to one tenth of its maximum value, which 
are shown in the inset. For m  <  0, the trends of the edges versus m 

are close to | |m  and can be perfectly fitted by + | |+a b m c .

Table C1. Values of βi.

β n 1⩾ n  =  0 n  =  −1 n  =  −2

β1 2n — — —
β2 −2 — — —
β3 2n  +  2 2 — —
β4 −2 −2 — —
β5 2n  +  4 4 2 —
β6 −2 −2 −2 —
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For explicitness, the LL states can be written as a combina-
tion of six components.

( ) ( ) ⟩∑ψ θ θ= Φ |
=

r c r s, , ,p
n m

s p
p s
n m

s
n m,

, 1

6

,
, ,

 (C.3)

where Φs
n m,  is the spatial wave function and s is the index for 

the spinor components (not the sign of B as in section 2 and 
B  >  0 in appendix C). The space dependent potential on the 
basis of six components is a 6-by-6 matrix

( ) ( ) ⟩⟨∑θ θ= | |
=

V r V r s s, , ,
s

s
1

6

 (C.4)

where the diagonal terms vanish outside the dot

( )  ( ) θ = > = …V r r R i, 0 1, 2 6.i (C.5)

Thus the matrix element of the space dependent potential 
Vnmp,ijq can be written as
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(C.6)

The above expression can be further simplified in the 
example mentioned in section 2.2, where the potential is rota-
tionally symmetric. Equation (C.6) becomes

( ) ( )

( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

∫ ∫

∫

∑

∑δ ϕ ϕ

= Φ Φ

=

< =

∗

=

∗

V A c c V r

C r V r

d

d ,

nmp ijq
r R s

p s
n m

s
n m

q s
i j

s
i j

s

m j

R

s
s
n m

s
i j

s

,
1

6

,
, ,

,
, ,

,
0 1

6
, ,

 

(C.7)

where ( ) /( )π= ∗C c c N N2 p s
n m

q s
i j

p
n m

q
i j

,
,

,
, , , , N p

n m,  and Nq
i j,  are normal-

ization factors. The angular parts are orthogonal if ≠m j, 
hence Vnmp,ijq  =  0, implying that the hybridization only occurs 
between LL states of identical m.

When all the matrix elements have been calculated, the 
eigenvalues of this large matrix give the energy spectrum. 
If the base functions of all n’s and m’s are considered in 
equation (C.1), the spectrum will be quite accurate, which 
is impossible. Nevertheless, only limited number of n will 
suffice for the accuracy of a small range of energy levels 
from the perturbation theory, because the unperturbed 
energy generally varies with n for each particular p in equa-
tion  (C.1) . Without the perturbation potential, the degen-
eracy for each energy is infinite due to the different m’s. 
However, only limited number of m will enter the perturba-
tion process effectively because of the localization of the 
LL states.

C.1. Landau level wave functions in polar coordinates

Following the Hamiltonian in equation (5a) in polar coordinate 
and based on the spinor in equation (4), for the homogeneous 

electric field ( ) =V r Vi i (constant), another form of the six-
component wave function can be adopted to simplify the 
Hamiltonian:
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In the above spinor, ∈ ∈ − <n m n m n, , 2,⩾Z Z . cs
n m,  is the 

coefficient of each component and ∑ | | == c 1s s
n m

1
6 , 2 . N p

n m,  is the 
normalization factor. The specific forms of the comp onents 
are as follows.
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 (C.9)

In equation (C.9), /( )ξ = r l2 B  and ( )L xa
b  is the generalized 

Laguerre polynomial. Under such basis, the eigen wave func-
tion can be expressed with the aforementioned coefficients

( )Ψ = c c c c c c, , , , , .p
n m

p
n m

p
n m

p
n m

p
n m

p
n m

p
n m T,
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,

,4
,
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,
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,

 (C.10)

The Hamiltonian acting on this vector is also numeric, similar 
to equation  (10a), but with bi replaced by another group of 
parameters βi. The values of βi are as listed in table C1. For 
n  =  0, −1, −2, the spinor always has zero components indi-
cating the Hamiltonian should be reduced to a ( )− | |n5 2 -by-
( )− | |n5 2  matrix, and the number of eigenenergies is also 
reduced.

C.2. The locality of LL states

As introduced in equations  (C.3) and (C.8), Φs
n m,  can be 

decomposed into radial part and angular part. The reduced 
radial wave functions have a similar form, which is 

( )/ /ξ ξξ− + +
− − +
+Le m a

m n
m a2 1 2

1
22

, where the possible values of n 
and m are mentioned in appendix C and a  =  0, 1, 2, 3. These 
functions are all localized in space and exhibit similar depen-
dency on m. The spatial behavior of these functions are critical 
to the estimation of Vnmp,ijq in equation (C.6) qualitatively.

Figure C1 shows the LL reduced radial wave functions 
(not normalized) of the six components indexed by s when 
n  =  1,  m  =  −1. For s  =  6, the wave function has the most 
nodes and is most extensive. Thus it is reasonable to use the 
last component to estimate the spatial extension of the LL 
state.
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For larger n, the wave function has more zeros and is 
more extensive. For a normalized state, more extensive 
spatial extension indicates smaller probability amplitude 
within this range, which means the value of Vnmp,ijq in equa-
tion (C.6) is small for the integral with different n and i. So 
it can be expected that if | − |n i  is large enough, the pertur-
bation matrix element itself will be small, not to mention 
that the energy differences further limit the perturbation 
effect.

Figure C2 shows the LL reduced radial wave functions 
(not normalized) of the first components with different m’s for 
n  =  1. When ⩽m 0, for larger | |m , the wave function is located 
further from the origin. This is the critical feature making the 
perturbation method possible here. Even though the original 
energy levels are degenerated due to the infinite number of m, 
the overlap between ϕs

n m,  and ϕs
n j,  is significantly small when 

| − |m j  is large enough. Given the magnetic field B and the 
electric potential well, LL states with large | |m  are located out-
side the dot and can be effectively treated as eigen states, thus 
have little perturbation effects on other states. An upper limit 
of m can be determined in this way, and only a finite number 
of LL states need to be recombined to form new states. If 
the potential inside the dot is flat, the energy levels can be 
acquired by solving the numeric Hamiltonian matrix with the 
diagonal elements replaced by the inner potential. In this case, 
hybridization only exists among the six components with the 
same n and m but different p’s.

In figure  C3 the spatial extensions of the reduced radial 
wave functions of different m’s for n  =  0 are calculated and 
displayed as a function of m. The spatial extension of the 
given wave function is defined by the inner and outer edge. 
The edges are defined as the inner and outer most positions 
where the norm of the wave function has fallen to one tenth 
of its maximum value, and the edges can be perfectly fitted by 

+ | |+a b m c .
Notice here the spatial extension is defined by ξ, which is 

/( )r l2 B . As B increases, the range of r will be shrunk towards 
the origin. For a step potential well with certain m and given 
magnetic field B, if the dot edge is within the spatial exten-
sion, all such B’s compose the transition range for energy 
level with this m.

In this way, once the transition range is known, the tendency 
of the energy spectrum can be roughly predicted. Instead of 
computing the integrals and solving for the eigen values of 
the Hamiltonian in the perturbation process, the validity of 
the method in section 2.1 is tested by focusing on the locality 
of the LL states to predict the transition range. The ability 
of such prediction is a significant advantage of the expansion 
method. It is time-consuming to calculate the eigenenergies 
one by one, but it is much easier, by using simple math, to 
obtain the spatial extension of a LL state and compare it with 
the dot edge.

Appendix D. Note added in proof

When preparing this paper for publication, we became aware 
of the related paper by M. Mirzakhani et  al [27]. These 

two papers differ in boundary conditions and calculation 
methods. Under a finite step well potential, we show the 
transition of bound state levels between different groups of 
LLs and relate it to the positions of LL states through per-
turbation theory.
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