
System Intelligence: Model, Bounds and Algorithms

Longbo Huang
IIIS@Tsinghua University

longbohuang@tsinghua.edu.cn

ABSTRACT
We present a general framework for understanding system
intelligence, i.e., the level of system smartness perceived by
users, and propose a novel metric for measuring intelligence
levels of dynamical human-in-the-loop systems, defined to
be the maximum average reward obtained by proactively
serving user demands, subject to a resource constraint. Our
metric captures two important elements of smartness, i.e.,
being able to know what users want and pre-serve them,
and achieving good resource management while doing so.
We provide an explicit characterization of the system in-
telligence, and show that it is jointly determined by user
demand volume (opportunity to impress), demand correla-
tion (user predictability), and system resource and action
costs (flexibility to pre-serve).

We then propose an online learning-aided control algo-
rithm called Learning-aided Budget-limited Intelligent Sys-
tem Control (LBISC). We show that LBISC achieves an in-

telligence level that is within O(N(T)−
1
2 + ε) of the highest

level, where N(T) represents the number of data samples
collected within a learning period T and is proportional to
the user population size in the system, while guaranteeing

an O(max(N(T)−
1
2 /ε, log(1/ε)2)) average resource deficit.

Moreover, we show that LBISC possesses anO(max(N(T)−
1
2 /ε,

log(1/ε)2)+T) convergence time, which is much smaller com-
pared to the Θ(1/ε) time required for non-learning based
algorithms. The analysis of LBISC rigorously quantifies the
impact of data and user population (captured by N(T)),
learning (captured by our learning method), and control
(captured by LBISC) on the achievable system intelligence,
and provides novel insight and guideline into designing fu-
ture smart systems.

1. INTRODUCTION
Due to rapid developments in sensing and monitoring, ma-

chine learning, and hardware manufacturing, building intel-
ligence into systems has recently received strong attention,
and clever technologies and products have been developed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’16, July 04-08, 2016, Paderborn, Germany
c© 2016 ACM. ISBN 978-1-4503-4184-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2942358.2942387

to enhance user experience. For instance, recommendation
systems [1], smart home [2], artificial intelligence engines
[3], and user behavior prediction [4]. Despite the prevail-
ing success in practice, there has not been much theoretical
understanding about system smartness. In particular, how
do we measure the intelligence level of a system? How do
we compare two systems and decide which one is smarter?
What elements in a system contribute most to the level of
smartness? Can the intelligence level of a system be pushed
arbitrarily high?

Motivated by these fundamental questions, in this paper,
we propose a general framework for modeling system smart-
ness and propose a novel metric for measuring system intelli-
gence. Specifically, we consider a discrete time system where
a server serves a set of applications of a user. The status of
each application changes from time to time, resulting in dif-
ferent demand that needs to be fulfilled. The server observes
the demand condition of each application over time and de-
cides at each time whether to pre-serve (i.e., serve before
the user even place a request) the demand that can come
in the next timeslot (which may not be present then), or to
wait until the next timeslot and serve it then if it indeed ar-
rives. Depending on whether demand is served passively or
proactively, the server receives different rewards represent-
ing user’s satisfaction levels, or equivalently, different user
perception of system smartness (a system that can serve us
before being asked is often considered smart). On the other
hand, due to time-varying service conditions, the service ac-
tions incur different costs. The objective of the server is to
design a control policy that achieves the system intelligence,
defined to be the maximum achievable reward rate subject
to a constraint on average cost expenditure.

This model models many examples in practice. For exam-
ple, newsfeed pushing and video prefetching [5], [6], instant
searching [7], and branch prediction in computer architec-
ture [8], [9]. It captures two key elements of a smart system,
i.e., being able to know what users want and pre-execute
actions, and performing good resource management while
doing so. Note that resource management here is critical.
Indeed, one can always pre-serve all possible demands to
impress users at the expense of very inefficient resource us-
age, but an intelligent system should do more than that.

Solving this problem is non-trivial. First of all, rewards
generated by actions now depend on their execution timing,
i.e., before or after requests. Thus, this problem is differ-
ent from typical network control problems, where outcomes
of traffic serving actions are independent of timing. Sec-
ond, application demands are often correlated over time.

Hence, algorithms must be able to handle this issue, and to
efficiently explore such correlations. Third, statistical infor-
mation of the system dynamics are often unknown. Hence,
control algorithms must be able to quickly learn and utilize
the information, and must be robust against errors intro-
duced in learning.

There have been many previous works studying optimal
stochastic system control with resource management. [10]
designs algorithms for minimizing energy consumption of a
stochastic network. [11] studies the tradeoff between energy
and robustness for downlink systems. [12] and [13] develop
algorithms for achieving the optimal utility-delay tradeoff
in multihop networks. [14] studies the problem of schedul-
ing delay-constrained flows over wireless systems. However,
all these works focus only on causal systems, i.e., service
begins only after demand enters the system. Recent works
[15], [16], [17], [18] and [19] consider queueing system con-
trol with future traffic demand information. Works [20] and
[21] also consider similar problems where systems can proac-
tively serve user demand. They obtain interesting results
that characterize cost reduction under proactive service, and
the impact of number of users and prediction in terms of
proactive service window size. However, system utilities in
the aforementioned works are measured by average metrics,
e.g., throughput or outage probabilities, and actions taken at
different times for serving traffic are equivalent. Moreover,
they do not investigate the impact of user predictability and
benefits of learning.

We tackle the problem by first establishing an explicit
characterization of the maximum achievable intelligence level.
The characterization provides a fundamental limit of system
intelligence and reveals that it is jointly determined by user
demand volume (opportunity to impress), demand correla-
tion (user predictability), and system resource and control
costs (flexibility to pre-serve). Then, by carefully defining
effective rewards and costs that represent action outcomes
in pairs of slots, we propose an ideal control algorithm that
assumes perfect system statistics, called Budget-limited In-
telligent System Control (BISC).

We further develop Learning-aided BISC (LBISC), by in-
corporating a maximum-likelihood-estimator (MLE) for esti-
mating statistics, and a dual learning component (DL) [22]
for learning an empirical Lagrange multiplier that can be in-
tegrated into BISC, to facilitate algorithm convergence and
reduce resource deficit. We show that LBISC achieves a sys-
tem intelligence that can be pushed arbitrarily close to the
highest value while ensuring a deterministic budget deficit
bound. Furthermore, we investigate the user-population ef-
fect on algorithm design in system intelligence, and rigor-
ously quantify the degree to which the user population size
can impact algorithm performance, i.e., algorithm conver-
gence speed can be boosted by a factor that is proportional
to the square-root of the number of users. The analysis
of LBISC quantifies how system intelligence depends on the
amount of system resource, action costs, number of data
samples, and the control algorithm. To the best of our
knowledge, we are the first to propose a rigorous metric for
quantifying system intelligence, and to jointly analyze the
effects of different factors.

The contributions of this paper are summarized as follows.

• We propose a mathematical model for investigating
system intelligence. Our model captures three impor-
tant components in smart systems including observa-

tion (data), learning and prediction (model training),
and algorithm design (control).
• We propose a novel metric for measuring system in-

telligence, and explicitly characterize the optimal in-
telligence level. The characterization shows that intel-
ligence is jointly determined by system resource and
action costs (flexibility to pre-serve), steady-state user
demand volume (opportunity to impress), and the de-
gree of demand correlation (predictability, captured by
demand transition rates).
• We propose an online learning-aided algorithm, called

Learning-aided Budget-limited Intelligent System Con-
trol (LBISC), for achieving maximum system intelli-
gence. Our algorithm consists of a maximum-likelihood-
estimator (MLE) for learning system statistics, a dual-
learning component (DL) for learning a control-critical
empirical Lagrange multiplier, and an online queue-
based controller based on carefully defined effective
action rewards and costs.
• We show that LBISC achieves an intelligence level that

is within O(N(T)−1/2 + ε) of the maximum, where T
is the algorithm learning time, N(T) is the number of
data samples collected in learning and is proportional
to the user population of the system, and ε > 0 is an
tunable parameter, while guaranteeing that the aver-

age resource deficit is O(max(N(T)−
1
2 /ε, log(1/ε)2)).

• We prove that LBISC achieves a convergence time of
O(T+max(N(T)−1/2/ε, log(1/ε)2)), which can be much
smaller than the Θ(1/ε) time for its non-learning coun-
terpart. The performance results of LBISC show that
a company with more users has significant advantage
over those with fewer, in that its algorithm conver-
gence can be boosted by a factor that is proportional
to the square-root of the user population.

The rest of the paper is organized as follows. In Section
2, we present a few examples of system smartness. We then
present our general model and problem formulation in Sec-
tion 3, and characterize the optimal system intelligence in
Section 4. Our algorithms are presented in Section 5. Anal-
ysis is given in Section 6. Simulation results are presented
in Section 7, followed by the conclusion in Section 8.

2. EXAMPLES
In this section, we provide a few examples that will serve

both as explanations and motivation for our general model.
Instant searching [7]: Imagine you are searching on a

search engine. When you start typing, the search engine
tries to guess whether you will type in a certain keyword
and pre-computes search results that it believes are relevant
(predict and pre-service). If the server guesses correctly,
results can be displayed immediately after typing is done,
and search latency will be significantly reduced, resulting in
a great user experience (high reward). If the prediction is
inaccurate, the search engine can still process the query after
getting the keyword, with the user being less impressed by
the performance (low reward) and resources being wasted
computing the wrong results (cost).

Video streaming [5]: When a user is watching videos
on Youtube or a smart mobile device, the server can predict
whether the user wants a particular video clip, and pre-
load the video to the user device (predict and pre-service).
This way, if the prediction is correct, user experience will be

greatly improved and he will enjoy a large satisfaction (high
reward). If the prediction is incorrect, the bandwidth and
energy spent in pre-loading are wasted (cost), but the server
can still stream the content video to on the fly, potentially
with a degraded quality-of-service (low reward).

Smart home [23]: Consider a smart home environment
where a thermostat manages room temperatures in the house.
Depending on its prediction about the behavior of hosts, the
thermostat can pre-heat/pre-cool some of the rooms (predict
and pre-service). If the host enters a room where tempera-
ture is already adjusted, he receives a high satisfaction (high
reward). If the prediction is incorrect, the room tempera-
ture can still be adjusted, but may affect user experience
(low reward). Moreover, the energy spent is wasted (cost).

In all these examples, we see that the smart level of a
system perceived by users is closely related to whether his
demand is served proactively, and whether such predictive
service is carried out without too much unnecessary resource
expenditure. These factors will be made precise in our gen-
eral given in the next section.

3. SYSTEM MODEL
We consider a system where a single server is serving a

customer with M applications (Fig. 1). Here each applica-
tion can represent, e.g., a smartphone application, watching
a particular video clip, or a certain type of computing task
the customer executes regularly. We assume that the system
operates in slotted time, i.e., t ∈ {0, 1, ...}.

������

0 1

Application 1

Application M

✏11 � ✏1

1 � �1�1

Figure 1: A multi-application system where a server
serves a set of applications of a customer.

3.1 The Demand Model
We use A(t) = (Am(t),m = 1, ...,M) to denote the de-

mand state of the customer at time t. We assume that
Am(t) ∈ {0, 1}, where Am(t) = 1 means there is a unit
demand at time t and Am(t) = 0 otherwise. For instance, if
application m represents a video clip watching task, Am(t)
can denote whether the users wants to watch the video clip
in the current slot. If so, the server needs to stream the
video clip to the customer’s device.

We assume that for each application m, Am(t) evolves ac-
cording to an independent two-state Markov chain depicted
in Fig. 1, where the transition probabilities εm and δm are as
shown in the figure. Note that such an ON/OFF model has
been commonly adopted for modeling network traffic states,
e.g., [24] and [25].1 We assume that εm and δm are unknown

1It is possible to adopt a more general multi-state Markov
chain for each application. Our results can also likely be

to the server, but the actual states can be observed every
time slot.2

3.2 The Service and Cost Model
In every time slot t, the server serves application m’s de-

mand as follows. If Am(t) has yet been served in slot t−1, it
will be served in the current slot. Otherwise the current de-
mand is considered completed. Then, in addition to serving
the current demand, the server can also try to pre-serve the
demand in time t+ 1. We denote µmc(t) ∈ {0, 1} the action
taken to serve the current demand and µmp(t) ∈ {0, 1} to
denote the action taken to serve the demand in time t+ 1.3

It can be seen that:

µmc(t) = max[Am(t)− µmp(t− 1), 0]. (1)

That is, demand will be fulfilled in the same time slot. Since
µmc(t) is completely determined by µmp(t − 1) and Am(t),

we define µ(t) , (µmp(t), ∀m) for notation simplicity and
view µ(t) as the only control action at time t.

We assume that each service to applicationm, either proac-
tive or passive, consumes resource of the server. This can
be due to energy expenditure or bandwidth consumption.
To capture the fact that the condition under which actions
are taken can be time-varying, we denote Sm(t) the resource
state for application m at time t, which affects how much
resource is needed for service, e.g., channel condition of a
wireless link, or cost spent for getting a particular video clip
from an external server. We denote S(t) = (S1(t), ..., SM (t))
the overall system resource state, and assume that S(t) ∈
S = {s1, ..., sK} with πk = Pr

{
S(t) = sk

}
and is i.i.d. every

slot (also independent of A(t)). Here we assume that the
server can observe the instantaneous state S(t) and the πk
values are known.4 To model the fact that a given resource
state sk typically constrains the set of feasible actions, we
denote US(t) the set of feasible actions under S(t). Exam-

ples of US(t) include Usk = {0/1}M for the unconstrained

case, or Usk = {µ ∈ {0/1}M :
∑
m µmp ≤ Nk} when we are

allowed to pre-serve only Nk applications. We assume that
Usk is compact and if µ ∈ Usk , then a vector obtained by
setting any entry to zero in µ remains in Usk .

Under the resource state, the instantaneous cost incurred
to the server is given by C(t) =

∑
m Cm(t), where

Cm(t) , Cm(µmc(t),S(t)) + Cm(µmp(t),S(t)). (2)

With (2), we assume that the cost in each slot is linear
in µ(t), a model that fits situations where costs for serv-
ing applications are additive, e.g., amount of bandwidth re-
quired for streaming videos. We assume that Cm(·, sk) = 0

extended to model systems where user behavior exhibits pe-
riodic patterns. In these scenarios, Markov models can be
built for user’s behavior in different time periods and can be
learned with data collected in those periods.
2This is due to the fact that the states essentially denote
whether or not the user has requested service from the
server. Thus, by observing the user’s response we can see
the states.
3Our results can be extended to having µmp(t) ∈ [0, 1], in
which case partial pre-service is allowed.
4This assumption is made to allow us to focus on the user de-
mand part. It is also not restrictive, as S(t) is a non-human
parameter and can often be learned from observations serv-
ing different applications, whereas A(t) is more personalized
and targeted learning is needed. Nonetheless, our method
also applies to the case when {πk, k = 1, ...,K} is unknown.

is continuous, Cm(0, sk) = 0 and Cm(1, sk) ≤ Cmax for some
Cmax <∞ for all k and m. We define

Cav , lim sup
t→∞

1

t

t−1∑
τ=0

E
{
C(τ)

}
(3)

as the average cost spent serving the demand. For nota-
tion simplicity, we also denote Cm ,

∑
k πkCm(1, sk) as the

expected cost for serving one unit demand.

3.3 The Reward Model
In each time slot, serving each application demand gen-

erates a reward to the server. We use rm(t) to denote the
reward collected in time t from application m. It takes the
following values:

rm(t) =

 0 Am(t) = 0
rmc Am(t) = 1 & µmp(t− 1) = 0
rmp Am(t) = 1 & µmp(t− 1) = 1

(4)

By varying the values of rmp and rmc, we can model different
sensitivity levels of the user to pre-service. We assume that
rmp ≥ rmc are both known to the server.5 This is natural for
capturing the fact that a user typically gets more satisfaction
if his demand is pre-served. We denote rmd = rmp − rmc
and denote rd , maxm(rmp − rmc) the maximum reward
difference between pre-service and normal serving.

To evaluate the performance of the server’s control policy,
we define the following average reward rate, i.e.,

rav = lim inf
t→∞

1

t

t−1∑
τ=0

∑
m

E
{
rm(τ)

}
. (5)

rav is a natural index of system smartness. A higher value of
rav implies that the server can better predict what the user
needs and pre-serves him. As a result, the user perceives
a smarter system. In the special case when rmp = 1 and
rmc = 0, the average reward captures the rate of correct
prediction.

3.4 System Objective
In every time slot, the server accumulates observations

about applications, and tries to learn user preferences and
to choose proper actions. We define Γ the set of feasible
control algorithms, i.e., algorithms that only choose feasible
control actions µ(t) ∈ US(t) in every time slot, possibly with
help from external information sources regarding applica-
tion demand statistics. For each policy Π ∈ Γ, we denote
I(Π, ρ) = rav(Π) and Cav(Π) the resulting algorithm intelli-
gence and average cost rate, respectively.

The objective of the system is to achieve the system in-
telligence I(ρ), defined to be the maximum reward rate rav
achievable over all feasible policies, subject to a constraint
ρ ∈ (0, ρmax] on the rate of cost expenditure, i.e.,

I(ρ) , max : I(Π, ρ) (6)

s.t. Cav(Π) ≤ ρ (7)

Π ∈ Γ.

5This can be done by monitoring user feedbacks, e.g., display
a short message and ask the user to provide instantaneous
feedback. In the case when they are not known a-priori,
they can be learned via a similar procedure as in the LBISC
algorithm presented later.

Here ρmax ,
∑
k πk

∑
m

∑
Cm(1, sk) is the maximum bud-

get needed to achieve the highest level of intelligence.6

3.5 Discussions of the Model
In our model, we have assumed that user demand must

be served within the same slot it is placed. This is a suit-
able model for many task management systems where jobs
are time-sensitive, e.g., newsfeed pushing, realtime compu-
tation, elevator scheduling, video streaming and searching.
In these problems, a user’s perception about system smart-
ness is often based on whether jobs are pre-served correctly.

Our model captures key ingredients of a general intelligent
system including observations, learning and prediction, and
control. Indeed, general monitoring and sensing methods
can be integrated into the observation part, various learning
methods can be incorporated into our learning-prediction
step, and control algorithms can be combined with or replace
our control scheme presented later.

4. CHARACTERIZING INTELLIGENCE
In this section, we first obtain a characterization of I(ρ).

This result provides interesting insight into system intelli-
gence, and provides a useful criteria for evaluating smartness
of control algorithms.

To this end, denote z(t) = (A(t),S(t)) and Z = {z1, ..., zH}
the state space of z(t), and denote πh the steady-state dis-
tribution of zh. Furthermore, define for notation simplicity

the transition probability a
(ih)
m as:

a(ih)
m =

{
1− δm when ih = A

(h)
m = 1

εm when ih = A
(h)
m = 0

(8)

That is, a
(i)
m denotes the probability of having Am(t+1) = 1

in the next time slot given the current state. Then, our
theorem is as follows.

Theorem 1. I(ρ) is equal to the optimal value of the fol-
lowing optimization problem:

max :
∑
h

πh

3∑
j=1

θ
(h)
j

∑
m

a(ih)
m [µ

(h)
mpjrmp + (1− µ(h)

mpj)rmc](9)

s.t.
∑
h

πh

3∑
j=1

θ
(h)
j

∑
m

[Cm(µ
(h)
mpj , zh) (10)

+(1− µ(h)
mpj)a

(ih)
m Cm] ≤ ρ

θ
(h)
j ≥ 0,

∑
j

θ
(h)
j = 1, ∀ zh, j

µ
(h)
j ∈ Uzh , ∀ zh, j.

Here θ
(h)
j represents the probability of adopting the pre-service

vector µ
(h)
j under state zh.

Proof. See Appendix A.

Theorem 1 states that no matter what learning and pre-
diction methods are adopted and how the system is con-
trolled, the intelligence level perceived by users will not ex-
ceed the value in (9). This is a powerful result and provides
6This corresponds to the case of always pre-serving user de-
mand. Despite a poor resource utilization, all demands will
be pre-served and I(ρmax) =

∑
m

εmrmp

εm+δm
where εm

εm+δm
is

the steady-state distribution of having Am(t) = 1.

a fundamental limit about the system intelligence. The-
orem 1 also reveals some interesting facts and rigorously
justifies various common beliefs about system intelligence.
(i) When user demands are more predictable (captured by

transition rates εm and δm, represented by a
(ih)
m in (9)), the

system can achieve a higher intelligence level. (ii) A system
with more resources (larger ρ) or better cost management
(smaller Cm functions) can likely achieve a higher level of
perceived smartness. (iii) When there is more demand from
users (captured by distribution πh), there are more opportu-
nities for the system to impress the user, and to increase the
perceived smartness level. The inclusion of transition rates
in the theorem shows that our problem can be very different
from existing network optimization problems, e.g., [26] and
[27], where typically steady-state distributions matter most.

As a concrete example, Fig. 2 shows the I(ρ) values for
a single-application system under (i) ε = δ and (ii) δ = 0.6.
We see that in the symmetric case, where the steady-state
distribution is always (0.5, 0.5), I(ρ) is inverse-proportional
to the entropy rate of the demand Markov chain, which is
consistent with our finding that a higher intelligence level
is achievable for more predictable systems (lower entropy).
For the δ = 0.6 case, I(ρ) first increases, then decreases,
and then increases again. The reason is as follows. At the
beginning, as ε increases, demand increases. Then, when ε ∈
[0.4, 0.7], I(ρ) is reduced by either the increasing randomness
(less predictable) or decreased demand (less opportunity).
After that, predictability increases and I(ρ) increases again.
This shows that I(ρ) is jointly determined by the steady-
state distribution and the transition rates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

I(ρ):δ=ε

Entropy: δ=ε

I(ρ):δ=0.6 Entropy: δ=0.6

Figure 2: System intelligence (M = 1): The left y-
axis is for I(ρ) and the right y-axis is for the en-
tropy rate. The x-axis shows the value of ε. We
see that I(ρ) is consistent with our finding that one
can achieve higher intelligence levels for more pre-
dictable systems.

Note that solving problem (9) is non-trivial due to the
need of system statistics and the potentially complicated
structure of Uzh . Thus, in the next section, we propose
a learning-based algorithm for solving the optimal control
problem. For our algorithm design and analysis, we define
the following modified dual function for (9), where V ≥ 1 is
a control parameter introduced for later use:7

gπ(γ) ,
∑
h

πh sup
µ

(h)
p

∑
m

{
V a(ih)

m [µ(h)
mprmp + (1− µ(h)

mp)rmc]

−γ[Cm(µ(h)
mp, zh) + (1− µ(h)

mp)a
(ih)
m Cm − ρ]

}
. (11)

Here we use the subscript π to denote that the dual function

7Notice that although (11) does not include the θ
(h)
j vari-

ables. It can be shown to be equivalent. Moreover, (11) is
sufficient for our algorithm design and analysis.

is defined with distribution π. We also use γ∗ to denote the
minimizer of the dual function. It is shown in [28] that:

gπ(γ∗) ≥ V × I(ρ). (12)

We also define the dual function for each state zh as follows:

gh(γ) , sup
µ

(h)
p

∑
m

{
V a(ih)

m [µ(h)
mprmp + (1− µ(h)

mp)rmc] (13)

−γ[Cm(µ(h)
mp, zh) + (1− µ(h)

mp)a
(ih)
m Cm − ρ]

}
.

It can be seen that gπ(γ) =
∑
h πhgh(γ).

5. ALGORITHM DESIGN
In this section, we present an online learning-aided control

algorithm for achieving maximum system intelligence. To
facilitate understanding, we first present an ideal algorithm
that assumes full information of εm, δm, and πh. It serves
as a building block for our actual algorithm.

5.1 An Ideal Algorithm
To do so, we first define the effective reward and cost for

each application m as functions of A(t) and µ(t). Specifi-
cally, when Am(t) = i, we have: :

r̃(i)m (µmp(t)) =

{
a
(i)
m rmp if µmp(t) = 1

a
(i)
m rmc if µmp(t) = 0

(14)

Here a
(i)
m is defined in (8) as the probability to get into state

Am(t + 1) = 1 conditioning on the current state being i.
To understand the definition, we see that when Am(t) = i,
by taking µmp(t) = 0, the server decides not to pre-serve
the potential future demand at Am(t + 1). Hence, if there

is demand in slot t + 1 (happens with probability a
(i)
m), it

will be served by µmc(t + 1), resulting in a reward of rmc.

On the other hand, if µmp(t) = 1, with probability a
(i)
m , the

future demand will be pre-served and a reward rmp can be
collected. It is important to note that the effective reward is
defined to be the reward collected in slot t+1 as result of ac-
tions at time t. We denote r̃(µ(t)) ,

∑
m r̃

(Am(t))
m (µmp(t)).

Similarly, we define the effective cost as a function of µ(t)
for Am(t) = i:

C̃(i)
m (µmp(t)) =

{
Cm(1,S(t)) if µmp(t) = 1

a
(i)
m

∑
k πkCm(1, sk) if µmp(t) = 0

(15)

Note that C̃m(µmp(t)) is the expected cost spent in slots
t and t + 1. As in the effective reward case, we denote

C̃(µ(t)) ,
∑
m C̃

(Am(t))
m (µmp(t)).

With the above definitions, we introduce a deficit queue
d(t) that evolves as follows:

d(t+ 1) = max[d(t) + C̃(t)− ρ, 0], (16)

with d(0) = 0.Then, we define a Lyapunov function L(t) ,
1
2
d2(t) and define a single-slot sample-path drift ∆(t) ,

L(t + 1) − L(t). By squaring both sides of (16), using

(max[x, 0])2 ≤ x2 for all x ∈ R, and C̃(µ(t)) ≤ MCmax,
we obtain the following inequality:

∆(t) ≤ B − d(t)[ρ− C̃(t)]. (17)

Here B , ρ2max + M2C2
max. Adding to both sides the term

V
∑
m r̃m(µmp(t)), where V ≥ 1 is a control parameter, we

obtain:

∆(t)− V r̃(µ(t)) ≤ B −
(
V r̃(µ(t)) + d(t)[ρ− C̃(µ(t))]

)
. (18)

Having established (18), we construct the following ideal
algorithm by choosing pre-service actions to minimize the
right-hand-side of the drift.

Budget-limited Intelligent System Control (BISC): At every

time t, observe A(t), S(t) and d(t). Do:
• For each m, define the cost-differential as follows:

Dm(t) , Cm(1,S(t))− a(i)m Cm. (19)

Here i = Am(t). Then, solve the following problem to
find the optimal pre-serving action µ(t):

max :
∑
m

µmp(t)[V a
(i)
m (rmp − rmc)− d(t)Dm(t)] (20)

s.t. µ(t) ∈ US(t).

• Update d(t) according to (16). 3

A few remarks are in place. (i) The value a
(i)
m (rmp − rmc)

can be viewed as the expected reward loss if we choose
µmp(t) = 0 and the value Dm(t) is the expected cost sav-
ing for doing so. The parameter V and d(t) provide proper
weights to the terms for striking a balance between them. If
the weighted cost saving does not overweight the weighted
reward loss, it is more desirable to pre-serve the demand in

the current slot. (ii) For applications where a
(i)
m (rmp − rmc)

is smaller, it is less desirable to pre-serve the demand, as
the user perception of system intelligence may not be heav-
ily affected. (iii) In the special case when ρ ≥ ρmax, we see
that d(t) will always stay near zero, resulting in µmp(t) = 1
most of the time. (iv) BISC is easy to implement. Since
each µmp(t) is either 0 or 1, problem (20) is indeed finding
the maximum-weighted vector from US(t). In the case when
US(t) only limits the number of non-zero entries, we can eas-

ily sort the applications according to the value V a
(i)
m (rmp −

rmc)− d(t)Dm(t) and choose the top ones.

5.2 Learning-aided Algorithm with User Pop-
ulation Effect

In this section, we present an algorithm that learns δm
and εm online and performs optimal control simultaneously.
We also explicitly describe how the system user population
size can affect algorithm performance.

To rigorously quantify this user effect, we first introduce
the following user-population effect function N(T).

Definition 1. A system is said to have a user population
effect N(T) if within T slots, (i) it collects a sequence of
demand samples {A(0), ...,A(N(T) − 1)} generated by the
Markov process A(t), and (ii) N(T) ≥ T for all T . 3

N(t) captures the number of useful user data samples a
system can collect in T time slots, and is a natural indicator
about how user population contributes to learning user pref-
erences. For instance, if there is only one user, N(T) = T .
On the other hand, if a system has many users, it can of-
ten collect samples from similar users (often determined via
machine learning techniques, e.g., clustering) to study a tar-
get user’s preferences. In this case, one typical example for
N(T) can be:

N(T) = f(# of user) · T, (21)

where f(# of user) computes the number of similar users
that generate useful samples.

Now we present our algorithm. We begin with the first
component, which is a maximum likelihood estimator (MLE)
[29] for estimating user demand statistics.8

Maximum Likelihood Estimator (MLE(T)): Fix a learning time

T and obtain a sequence of samples {A(0), ...,A(N(T)−1)}
in [0, T − 1]. Output:

ε̂m(T) =

∑N(T)−1
t=0 1{Am(t)=0,Am(t+1)=1}∑T−1

t=0 1{Am(t)=0}
(22)

δ̂m(T) =

∑N(T)−1
t=0 1{Am(t)=1,Am(t+1)=0}∑T−1

t=0 1{Am(t)=1}
. (23)

That is, use empirical frequencies to estimate the transition
probabilities. 3

Note that after estimating ε̂ and δ̂, we also obtain an esti-
mation of π̂. We now have the second component, which is a
dual learning module [22] that learns an empirical Lagrange

multiplier based on ε̂ and δ̂, and π̂.
Dual Learning (DL(ε̂, δ̂, π̂)): Construct ĝπ̂(γ) with ε̂, δ̂,

and π̂ according to (11). Solve the following problem and
outputs the optimal solution γ∗T .

min : ĝπ̂(γ), s.t. γ ≥ 0. 3 (24)

Here ĝπ̂(γ) is the dual function with true statistics being

replaced by ε̂, δ̂, and π̂. With MLE(T) and DL(ε̂, δ̂, π̂), we
have our learning-aided BISC algorithm.9

Learning-aided BISC (LBISC(T , θ)): Fix a learning time T

and perform the following:10

• (Estimation) For t = 0, ..., T − 1, choose any µp(t) ∈
US(t) At time T , perform MLE(T) to obtain ε̂ and δ̂,
and π̂.

• (Learning) At time T , apply DL(ε̂, δ̂, π̂) and compute
γ∗T . If γ∗T =∞, set γ∗T = V log(V). Reset d(T) = 0.

• (Control) For t ≥ T , run BISC with π̂, ε̂ and δ̂, and

with effective queue size d̃(t) = d(t) + (γ∗T − θ)+. 3
Here θ (to be specified) is a tuning parameter introduced

to compensate for the error in γ∗T (with respect to γ∗). It is
interesting to note that LBISC includes three important func-
tions in system control, namely, estimation (data), learning
(training) and control (algorithm execution). It also high-
lights three major sources that contribute to making a sys-
tem non-intelligent: lack of data samples, incorrect training
and parameter tuning, and inefficient control algorithms. An
intelligent system requires all three to provide good user ex-
perience and to be considered smart (Thus, if a search engine
does not provide good performance for you at the beginning,
it may not be because its algorithm is bad).

6. PERFORMANCE ANALYSIS
8Here we adopt MLE to demonstrate how learning can be rig-
orously and efficiently combined with control algorithms to
achieve good performance. Any alternative estimator that
possesses similar features as MLE can also be used here.
9The methodology can be applied to the case when rmp and
rmc are also unknown.

10The main reason to adopt a finite T is for tractability. In
actual implementation, one can continuously refine the esti-

mates for ε̂, δ̂, and π̂ over time.

In this section, we analyze the performance of LBISC. We
focus on three important performance metrics, i.e., achieved
system intelligence, budget guarantee, and algorithm con-
vergence time. The optimality and convergence analysis is
challenging. In particular, the accuracy of the MLE estima-
tor affects the quality of dual-learning, which in turn affects
algorithm convergence and performance. Thus, the analysis
must simultaneously take into account all three components.

Throughout our analysis, we make the following assump-
tions, in which we use ĝπ̂(γ) to denote the dual function in
(11) with different ε, δ and π values.

Assumption 1. There exists a constant ν = Θ(1) > 0
such that for any valid state distribution π′ = (π′1, ..., π

′
H)

with ‖π′ −π‖ ≤ ν, there exist a set of actions {µ(h)
j }j=1,2,3

with µ
(h)
j ∈ Uzh and some variables {θ(h)j ≥ 0}j=1,2,3 with∑

j θ
(h)
j = 1 for all zh (possibly depending on π′), such that:

∑
h

π′h

3∑
j=1

θ
(h)
j

∑
m

[Cm(µ
(h)
mpj , zh) + (1− µ(h)

mpj)a
(ih)
m Cm] ≤ ρ0,

where ρ0 , ρ − η > 0 with η = Θ(1) > 0 is independent of
π′. Moreover, for all transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ρ satisfies:

ρ ≥
∑
m

max[ε′mCm, (1− δ′m)Cm]. 3 (25)

Assumption 2. There exists a constant ν = Θ(1) > 0
such that, for any valid state distribution π′ = (π′1, ..., π

′
H)

with ‖π′−π‖ ≤ ν, and transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ĝπ̂(γ) has a unique optimal
solution γ∗ > 0 in R. 3

These two assumptions are standard in the network opti-
mization literature, e.g., [30] and [31]. They are necessary
conditions to guarantee the budget constraint and are often
assumed with ν = 0. In our case, having ν > 0 means that
systems that are alike have similar properties. (25) is also
not restrictive. In fact,

∑
m[πm0ε

′
mCm + πm1(1 − δ′m)Cm]

(πmi is the steady-state probability of being in state i for
m) is the overall cost without any pre-service. Hence, (25)
is close to being a necessary condition for feasibility.

We now have the third assumption, which is related to the
structure of the problem. To state it, we have the following
system structural property introduced in [13].

Definition 2. A system is polyhedral with parameter β >
0 under distribution π if the dual function gπ(γ) satisfies:

gπ(γ) ≥ gπ(γ∗) + β‖γ∗ − γ‖. 3 (26)

Assumption 3. There exists a constant ν = Θ(1) > 0
such that, for any valid state distribution π′ = (π′1, ..., π

′
H)

with ‖π′−π‖ ≤ ν, and transition probabilities ε′ and δ′ with
‖ε′ − ε‖ ≤ ν and ‖δ′ − δ‖ ≤ ν, ĝπ̂(γ) is polyhedral with the
same β. 3

The polyhedral property often holds for practical systems,
especially when control action sets are finite (see [13] for
more discussions).

6.1 System Intelligence and Budget
We first present the performance of LBISC in system intel-

ligence and budget guarantee. The following theorem sum-
marizes the results.

Theorem 2. Suppose the system is polyhedral with β =

Θ(1) > 0. By choosing θ = max(V log(V)2√
N(T)

, log(V)2) and a

sufficiently large V , with probability at least 1−2Me− log(V)2/4,
LBISC achieves:

• Budget:

d̃(t) ≤ dmax , V rd/D̂min +MCmax, ∀ t (27)

d(t) = O(max(
V log(V)2√

N(T)
, log(V)2)). (28)

Here d(t) = lim supt→∞
1
t

∑t−1
τ=0 E

{
d(t)

}
and D̂min =

Θ(1). (27) implies Cav(Π) ≤ ρ.

• System intelligence:

I(LBISC, ρ) ≥ I(ρ)− B1 + 1

V
−max

zh

emax(T
2
h − Th)

2V Th
. (29)

Here B1 , B+ 2M(V rd + dmaxCmax) log(V)/
√
N(T),

emax , (MCmax + ρ)2, and Th and T
2
h are the first

and second moments of return times of state zh. 3

Proof. Omitted due to space limitation. Please see our
technical report [32].

Theorem 2 shows that LBISC achieves an [O(N(T)−
1
2 +

ε), O(max(N(T)−
1
2 /ε, log(1/ε)2)] intelligence-budget trade-

off (taking ε = 1/V), and the system intelligence level can
be pushed arbitrarily close to I(ρ) under LBISC. Thus, by
varying the value of V , one can tradeoff the intelligence level
loss and the budget deficit as needed. Although Theorem 2
appears similar to previous results with learning, e.g., [22],
its analysis is different due to (i) the Markov nature of the
demand state A(t), and (ii) the learning error in both tran-
sition rates in (20) and the distribution.

6.2 Convergence Time
We now look at the convergence speed of LBISC, which

measures how fast the algorithm learns the desired system
operating point. To present the results, we adopt the follow-
ing definition of convergence time from [22] to our setting.

Definition 3. Let ζ > 0 be a given constant. The ζ-
convergence time of a control algorithm, denoted by Tζ , is

the time it takes for d̃(t) to get to within ζ distance of γ∗,

i.e., Tζ , inf{t : |d̃(t)− γ∗| ≤ ζ}. 3

The intuition behind Definition 3 is as follows. Since the
LBISC algorithm is a queue-based algorithm, the algorithm
will starting making optimal choice of actions once d̃(t) gets
close to γ∗. Hence, Tζ naturally captures the time it takes
for LBISC to converge. We now present our theorem. For
comparison, we also analyze the convergence time of BISC.11

Theorem 3. Suppose the conditions in Theorem 2 hold.

Under LBISC, with probability at least 1− 2Me− log(V)2/4,

E
{
T LBISC
D1

}
= O(max(

V log(V)2√
N(T)

, log(V)2)) + T, (30)

11Here the slower convergence speed of BISC is due to the fact
that it does not utilize the information to perform learning-
aided control. We present this result to highlight the impor-
tance of learning in control.

E
{
T BISC
D2

}
= Θ(V). (31)

Here D1 = O(V log(V)/
√
N(T) + D) with D = Θ(1) and

D2 = Θ(1).

Proof. See Appendix B.

Here the reason why D1 may be larger than D2 is due

to the fact that LBISC uses inaccurate estimates of a
(i)
m for

making decisions. In the case when N(T) = T , we can re-

cover the O(V 2/3) convergence time results in [22] by choos-

ing T = V 2/3. Theorem 3 also shows that it is possible to
achieve faster convergence if a system has a larger popu-
lation of users from which it can collect useful samples for
learning the target user quickly. It also explicitly quantifies
the speedup factor to be proportional to the square-root of
the user population size, i.e., when N(T) = N ∗ T where N

is the number of users, the speedup factor is
√
N(T)/

√
T =√

N .
This result reveals the interesting fact that a big company

that has many users naturally has advantage over companies
with smaller user populations, since they can collect more
useful data and adapt to a “smart” state faster.

7. SIMULATION
We now present simulation results for BISC and LBISC.

We simulate a three-application system (M = 3) with the
following setting. (r1p, r2p, r3p) = (3, 5, 8) and rmc = 1 for
all m. Then, we use ε = (0.6, 0.5, 0.3) and δ = (0.2, 0.6, 0.5).
The channel state space is S = {1, 2} for allm, with Pr

{
S1(t) =

1
}

= 0.5, Pr
{
S2(t) = 1

}
= 0.3, and Pr

{
S3(t) = 1

}
=

0.3. The service cost is given by Cm(1,S(t)) = Sm(t).
We simulate the system for Tsim = 105 slots, with V =
{5, 10, 20, 50, 100}. For LBISC, we simulate a user popula-
tion effect function as in (21), i.e., N(T) = f(# of user) · T
and choose f(# of user) = 2, 5, 8. We also fix the value

ρ = 3.5 and choose the learning time T = V 2/3.
We first present Fig. 3 that shows I(ρ) as a function

of ρ. For comparison, we include a second setting, where
we change (r1p, r2p, r3p) = (4, 5, 3), ε = (0.8, 0.4, 0.3), δ =
(0.2, 0.9, 0.5), and Pr

{
S2(t) = 1

}
= 0.8. It can be seen

that I(ρ) first increases as ρ increases. Eventually ρ be-
comes more than needed after all the possible predictability
has been exploited. Then, I(ρ) becomes flat. This dimin-
ishing return property is consistent with our understanding
obtained in Section 4.

2.5 3 3.5 4 4.5 5 5.5
2

4

6

8

2.5 3 3.5 4 4.5 5 5.5
2.5

3.5

4.5

5.5

6.5

7.5

8

ρ

Setting 1
Setting 2

I(ρ)

Figure 3: I(ρ) versus ρ: in the two settings tested,
I(ρ) are both concave increasing in ρ.

We now look at algorithm performance. From Fig. 4
we see that both BISC and LBISC are able to achieve high
intelligence levels. Moreover, LBISC does much better in
controlling the deficit (2×-4× saving compared to BISC). We
remark here that BISC assumes full knowledge beforehand,
while LBISC learns them online.

0 50 100 150 200 250 300
3

3.5

4

4.5

5

5.5

6

V

0 50 100 150 200 250 300
0

100

200

300

400

500

600

V

BISC
LBISC: N(T)=2T
LBISC: N(T)=5T
LBISC: N(T)=8T

BISC
LBISC: N(T)=2T
LBISC: N(T)=5T
LBISC: N(T)=8T

DeficitI(ρ)

Figure 4: Intelligence and deficit performance of
BISC and LBISC with different user-population effect.

Finally, we look at the convergence properties of the al-
gorithms. Fig. 5 compares BISC and LBISC with N(t) = 8T
and V = 300. We see that LBISC converges at around 460
slots, whereas BISC converges at around 920 slots, resulting
in a 2× improvement. Moreover, the actual deficit level un-
der LBISC is much smaller compared to that under BISC (80
versus 510, a 6× improvement). From this result, we see
that it is important to efficiently utilize the data samples
collected over time, and dual learning provides one way to
boost algorithm convergence.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

Time

Effective Deficit:
LBISC

Deficit: BISC

BISC
converge

LBISC
converge

Actual Deficit

Figure 5: Convergence of BISC and LBISC with N(T) =
8T for V = 300.

8. CONCLUSION
In this paper, we present a general framework for defining

and understanding system intelligence, and propose a novel
metric for measuring the smartness of dynamical systems,
defined to be the maximum average reward rate obtained
by proactively serving user demand subject to a resource
constraint. We show that the highest system intelligence
level is jointly determined by system resource, action costs,
user demand volume, and correlation among demands. We
then develop a learning-aided algorithm called Learning-
aided Budget-limited Intelligent System Control (LBISC),
which efficiently utilizes data samples about system dynam-
ics and achieves near-optimal intelligence, and guarantees
a deterministic deficit bound. Moreover, LBISC converges
much faster compared to its non-learning based counterpart.

9. ACKNOWLEDGEMENT
This work was supported in part by the National Basic Re-

search Program of China Grant 2011CBA00300, 2011CBA00301,
the National Natural Science Foundation of China Grant
61361136003, 61303195, Tsinghua Initiative Research Grant,
Microsoft Research Asia Collaborative Research Award, and
the China Youth 1000-talent Grant.

10. REFERENCES
[1] G. A. Gomez-Uribe and N. Hunt. The netflix

recommender system: Algorithms, business value, and

innovation. ACM Trans. on Management Information
Systems, Vol. 6, No. 4, Dec 2015.

[2] M. M. Gear. How to make the amazon echo the center
of your smart home. Wired,
http://www.wired.com/2016/01/iot-cookbook-amazon-
echo/, Jan
2016.

[3] N. Benaich. Investing in artificial intelligence.
TechCrunch
http://techcrunch.com/2015/12/25/investing-in-
artificial-intelligence/, Dec
2015.

[4] I. Weber and A. Jaimes. Who uses web search for
what? and how? Web Search and Data Mining
(WSDM), pages 21-30, 2011.

[5] V. N. Padmanabhan and J. C. Mogul. Using
predictive prefetching to improve world wide web
latency. ACM SIGCOMM Computer Communication
Review, Volume 26, Issue 3, Pages 22-36, July 1996.

[6] J. Lee, H. Kim, and R. Vuduc. When prefetching
works, when it doesn’t, and why. ACM Transactions
on Architecture and Code Optimization (TACO),
Volume 9, Issue 1, March 2012.

[7] M. Marrs. Predictive search: Is this the future or the
end of search? WordStream,
http://techcrunch.com/2015/12/25/investing-in-
artificial-intelligence/, June
2013.

[8] T. Ball and J. R. Larus. Branch prediction for free.
Proceedings of the Conference on Programming
Language Design and Implementation, ACM
SIGPLAN Notices, volume 28, pages 300-13, 1993.

[9] M. U. Farooq, Khubaib, and L. K. John.
Store-load-branch (slb) predictor: A compiler assisted
branch prediction for data dependent branches.
Proceedings of the 19th IEEE International
Symposium on High-Performance Computer
Architecture (HPCA), February 2013.

[10] M. J. Neely. Energy optimal control for time-varying
wireless networks. IEEE Transactions on Information
Theory 52(7): 2915-2934, July 2006.

[11] C. W. Tan, D. P. Palomar, and M. Chiang.
Energy-robustness tradeoff in cellular network power
control. IEEE/ACM Transactions on Networking, Vol.
17, No. 3, pp. 912-925, 2009.

[12] M. J. Neely. Super-fast delay tradeoffs for utility
optimal fair scheduling in wireless networks. IEEE
Journal on Selected Areas in Communications
(JSAC), Special Issue on Nonlinear Optimization of
Communication Systems, 24(8):1489–1501, Aug. 2006.

[13] L. Huang and M. J. Neely. Delay reduction via
Lagrange multipliers in stochastic network
optimization. IEEE Trans. on Automatic Control,
56(4):842–857, April 2011.

[14] I. Hou and P.R. Kumar. Utility-optimal scheduling in
time-varying wireless networks with delay constraints.
Proceedings of ACM MobiHoc, 2010.

[15] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive
resource allocation: harnessing the diversity and
multicast gains. IEEE Tansactions on Information
Theory, 2013.

[16] J. Spencer, M. Sudan, and K Xu. Queueing with

future information. ArXiv Technical Report
arxiv:1211.0618, 2012.

[17] S. Zhang, L. Huang, M. Chen, and X. Liu. Proactive
serving reduces user delay exponentially. Proceedings
of ACM Sigmetrics (Poster Paper), 2014.

[18] K. Xu. Necessity of future information in admission
control. Operations Research, 2015.

[19] L. Huang, S. Zhang, M. Chen, and X. Liu. When
Backpressure meets Predictive Scheduling. Proceedings
of ACM MobiHoc, 2014.

[20] J. Tadrous and A. Eryilmaz. On optimal proactive
caching for mobile networks with demand
uncertainties. IEEE/ACM Transactions on
Networking, To appear.

[21] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive
data download and user demand shaping for data
networks. IEEE/ACM Transactions on Networking,
vol. 23, no. 6, pp. 1917-1930, December 2015.

[22] L. Huang, X. Liu, and X. Hao. The power of online
learning in stochastic network optimization.
Proceedings of ACM Sigmetrics, 2014.

[23] M. Shann and S. Seuken. An active learning approach
to home heating in the smart grid. Proceedings of
IJCAI, 2013.

[24] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Trans. on
Networking, Vol. 2, pp. 1-15, 1994.

[25] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. ACM
IMC, 2010.

[26] L. Ying, S. Shakkottai, and A. Reddy. On combining
shortest-path and back-pressure routing over multihop
wireless networks. Proceedings of IEEE INFOCOM,
April 2009.

[27] M. J. Neely, E. Modiano, and C. Li. Fairness and
optimal stochastic control for heterogeneous networks.
IEEE/ACM Trans. on Networking, vol. 16, no. 2, pp.
396-409, April 2008.

[28] L. Huang and M. J. Neely. Max-weight achieves the
exact [O(1/V), O(V)] utility-delay tradeoff under
Markov dynamics. arXiv:1008.0200v1, 2010.

[29] J. Walrand. Probability in Electrical Engineering and
Computer Science. Amazon, 2014.

[30] A. Eryilmaz and R. Srikant. Fair resource allocation in
wireless networks using queue-length-based scheduling
and congestion control. IEEE/ACM Trans. Netw.,
15(6):1333–1344, 2007.

[31] X. Lin and N. B. Shroff. The impact of imperfect
scheduling on cross-layer congestion control in wireless
networks. IEEE/ACM Trans. on Networking, 2006.

[32] L. Huang. System intelligence: Model, bounds and
algorithms. arXiv technical report, arXiv:1605.02585,
2016.

[33] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar.
Convex Analysis and Optimization. Boston: Athena
Scientific, 2003.

Appendix A – Proof of Theorem 1
We prove Theorem 1 here.

Proof. (Theorem 1) Consider any control scheme Π and
fix a time T . Define the joint state z(t) = (A(t),S(t)) and

denote its state space as Z = {z1, ..., zH}. Then, consider
a state zh and let Th(T) be the set of slots with z(t) = zh
for t = 1, ..., T . Denote {µp(0), ...,µp(T)} the pre-service
decisions made by Π. Denote the following joint reward-
cost pair:12

(Reward(h)(T), Cost(h)(T)) ,

1

T

T−1∑
τ=0

∑
m

E
{
I[Am(τ+1)=1][µmp(τ)rmp + (1− µmp(τ))rmc];

Cm(µmp(τ), zh) + (1− µmp(τ))I[Am(τ+1)=1]Cm | z(τ) = zh
}
.

Notice that this is a mapping from zh to a subset in R2

and that both the reward and cost are continuous. Also note
that E

{
I[Am(τ+1)=1]

}
= a

(ih)
m , where ih = A

(h)
m is defined in

(14) to denote the probability of having Am(τ+1) = 1 given

Am(τ) = A
(h)
m . Using the independence of A(t) and S(t),

and Caratheodory’s theorem [33], it follows that there exists

three vectors µ
(h)
j (T) ∈ Uzh , j = 1, 2, 3, with appropriate

weights θ
(h)
j (T) ≥ 0, j = 1, 2, 3, and

∑
i θ

(h)
j (T) = 1, so

that:

(Reward(h)(T), Cost(h)(T)) (32)

,
3∑
j=1

θ
(h)
j (T)

∑
m

(
a(ih)
m [µ

(h)
mpj(T)rmp + (1− µ(h)

mpj(T))rmc];

Cm(µ
(h)
mpj(T), zh) + (1− µ(h)

mpj(T))a(ih)
m Cm

)
.

Now consider averaging the above over all zh states. We get:

(Rewardav(T), Costav(T)) ,∑
h

πh

3∑
j=1

θ
(h)
j (T)

∑
m

(
a(ih)
m [µ

(h)
mpj(T)rmp + (1− µ(h)

mpj(T))rmc];

Cm(µ
(h)
mpj(T), zh) + (1− µ(h)

mpj(T))a(ih)
m Cm

)
.

Using a similar argument as in the proof of Theorem 1 in

[10], one can show that there exist limit points θ
(h)
j ≥ 0

and µ
(h)
j as T → ∞, so that the reward-cost tuple can be

expressed as:

(Rewardav, Costav)

=
∑
h

πh

3∑
j=1

θ
(h)
j

∑
m

(
a(ih)
m [µ

(h)
mpjrmp + (1− µ(h)

mpj)rmc];

Cm(µ
(h)
mpj , zh) + (1− µ(h)

mpj)a
(ih)
m Cm

)
.

This shows that for an arbitrarily control algorithm Π, its
average reward and cost can be expressed as those in prob-
lem (9). Hence, its budget limited average reward cannot
exceed Φ, which is the optimal value of (9). This shows that
Φ ≥ I(ρ).

The other direction I(ρ) ≥ Φ will be shown in the analysis
of the LBISC algorithm, where we show that LBISC achieves
an intelligence level arbitrarily close to Φ.

Appendix B – Proof of Theorem 3
We will use of the following technical lemmas for our proof.

12To save space, here we use the notation E
{
X;Y |A

}
to de-

note (E
{
X|A

}
,E
{
Y |A

}
).

Lemma 1. With probability at least 1 − 2Me− log(V)2/4,
DL outputs a γ∗T that satisfies |γ∗T − γ∗| ≤ dγ where dγ ,
cV log(V)√

N(T)
and c = Θ(1) > 0. Moreover, |γ∗ − γ̂∗| ≤ dγ .

Proof. Omitted due to space limitation. Please see our
technical report [32].

Lemma 2. [33] Let Fn be filtration, i.e., a sequence of
increasing σ-algebras with Fn ⊂ Fn+1. Suppose the sequence
of random variables {yn}n≥0 satisfy:

E
{
||yn+1 − y∗|| | Fn

}
≤ E

{
||yn − y∗|| | Fn

}
− un, (33)

where un takes the following values:

un =

{
u if ||yn − y∗|| ≥ D,
0 else.

(34)

Here u > 0 is a given constant. Then, by defining ND ,
inf{k | ‖yn − y∗‖ ≤ D}, we have:

E
{
ND
}
≤ ||y0 − y∗||/u. 3 (35)

We now present the proof.

Proof. (Theorem 3) To start, note that the first T slots
are spent learning ε̂, δ, and π̂. Lemma 1 shows that after

T slots, with high probability, we have |γ∗T − γ∗| ≤ cV log(V)√
N(T)

for some c = Θ(1). Using the definition of d̃(t), this implies
that when V is large,

|d̃(T)− γ∗| ≤ θ/2 = max(V log(V)2/
√
N(T), log(V)2)/2. (36)

Using Eq. (40) in the proof of Theorem 2 in [32], and apply-

ing Lemma 2, we see then the expected time for d̃(t) to get

to within some D = Θ(1) of γ̂∗, denoted by T̃D, satisfies:

E
{
T̃D
}
≤ N1 max(V log(V)2/

√
N(T), log(V)2)/2η1. (37)

Here N1 and η1 are both Θ(1) constants.

Since |γ∗ − γ̂∗| ≤ dγ = cV log(V)/
√
N(T), by defining

D1 = cV log(V)/
√
N(T) +D, we conclude that:

E
{
T LBISC
D1

}
≤ N1 max(

V log(V)2

2η1
√
N(T)

,
log(V)2

2η1
) + T. (38)

In the case of BISC, one can similarly show that there
exists Θ(1) constants N1, D (only related to z(t) and β),
and η2, so that,

E
{
|d(t+N1)− γ∗| | d(t)

}
≤ |d(t)− γ∗| − η2. (39)

Since γ∗ = Θ(V) [13] and d(0) = 0, we conclude that:

E
{
T LBISC
D

}
≤ N1V/η2. (40)

This completes the proof of the theorem.

